Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 20(12): 6345-6357, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37942616

RESUMEN

Despite the continuous advancement of surgical resection techniques, postoperative tumor recurrence and metastasis remain a huge challenge. Here, we constructed an injectable curcumin/doxorubicin-loaded nanoparticle (NanoCD) hydrogel, which could effectively inhibit tumor regrowth and metastasis via reshaping the tumor immune microenvironment (TIME) for highly effective postsurgical cancer treatment. NanoCD was prepared by the controlled assembly of curcumin (CUR) and doxorubicin (DOX) via π-π stacking and hydrogen bonding in the presence of human serum albumin. To facilitate prolonged treatment of postsurgical tumors, NanoCD was further incorporated into the temperature-sensitive Poloxamer 407 gel (NanoCD@Gel) for intracavity administration. Mechanistically, DOX induced the generation of intracellular reactive oxygen species (ROS) and CUR reduced the ROS metabolism by inhibiting thioredoxin reductase (TrxR). The synergy of DOX and CUR amplified intracellular ROS levels and thus resulted in enhanced immunogenic cell death (ICD) of tumor cells. Upon being injected into the tumor cavity after resection, the in situ-generated NanoCD@Gel allowed the local release of CUR and DOX in a controlled manner to induce local chemotherapy and persistently activate the antitumor immune response, thereby achieving enhanced immunogenic chemotherapy with reduced systemic toxicity. Our work provides an elegant strategy for persistently stimulating effective antitumor immunity to prevent postsurgical tumor recurrence and metastasis.


Asunto(s)
Curcumina , Nanopartículas , Humanos , Curcumina/farmacología , Hidrogeles , Especies Reactivas de Oxígeno , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/prevención & control , Línea Celular Tumoral , Doxorrubicina , Microambiente Tumoral
2.
Biomaterials ; 314: 122808, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39270626

RESUMEN

Postoperative tumor treatment necessitates a delicate balance between eliminating residual tumor cells and promoting surgical wound healing. Addressing this challenge, we harness the innovation and elegance of nature's ingenuity to develop a butterfly-wing-inspired photoactive nanofiber patch (WingPatch), aimed at advancing postoperative care. WingPatch is fabricated using a sophisticated combination of electrostatic spinning and spraying techniques, incorporating black rice powder (BRP) and konjac glucomannan (KGM) into a corn-derived polylactic acid (PLA) nanofiber matrix. This fabrication process yields a paclitaxel-infused porous nanofiber architecture that mirrors the delicate patterns of butterfly wings. Meanwhile, all-natural composites have been selected for their strategic roles in postoperative recovery. BRP offers the dual benefits of photothermal therapy and antibacterial properties, while KGM enhances both antibacterial effectiveness and tissue regeneration. Responsive to near-infrared light, WingPatch ensures robust tissue adhesion and initiates combined photothermal and chemotherapeutic actions to effectively destroy residual tumor cells. Crucially, it simultaneously prevents infections and promotes wound healing throughout the treatment process. Its effectiveness has been confirmed by animal studies, and WingPatch significantly improves treatment outcomes in both breast and liver tumor models. Thus, WingPatch exemplifies our dedication to leveraging natural world's intricate patterns and inventiveness to propel postoperative care forward.

3.
J Biomed Mater Res A ; 109(4): 404-425, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32681742

RESUMEN

Due to limitations of treatment and the stubbornness of infiltrative tumor cells, the outcome of conventional antitumor treatment is often compromised by a variety of factors, including severe side effects, unexpected recurrence, and massive tissue loss during the treatment. Hydrogel-based therapy is becoming a promising option of cancer treatment, because of its controllability, biocompatibility, high drug loading, prolonged drug release, and specific stimuli-sensitivity. Hydrogel-based therapy has good malleability and can reach some areas that cannot be easily touched by surgeons. Furthermore, hydrogel can be used not only as a carrier for tumor treatment agents, but also as a scaffold for tissue repair. In this review, we presented the latest researches in hydrogel applications of localized tumor therapy and highlighted the recent progress of hydrogel-based therapy in preventing postoperative tumor recurrence and improving tissue repair, thus proposing a new trend of hydrogel-based technology in localized tumor therapy. And this review aims to provide a novel reference and inspire thoughts for a more accurate and individualized cancer treatment.


Asunto(s)
Antineoplásicos/administración & dosificación , Preparaciones de Acción Retardada/química , Sistemas de Liberación de Medicamentos/métodos , Hidrogeles/química , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Preparaciones de Acción Retardada/uso terapéutico , Liberación de Fármacos , Humanos , Hidrogeles/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA