Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 916
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(7): 1636-1650, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38552611

RESUMEN

The precision oncology paradigm challenges the feasibility and data generalizability of traditional clinical trials. Consequently, an unmet need exists for practical approaches to test many subgroups, evaluate real-world drug value, and gather comprehensive, accessible datasets to validate novel biomarkers. Real-world data (RWD) are increasingly recognized to have the potential to fill this gap in research methodology. Established applications of RWD include informing disease epidemiology, pharmacovigilance, and healthcare quality assessment. Currently, concerns regarding RWD quality and comprehensiveness, privacy, and biases hamper their broader application. Nonetheless, RWD may play a pivotal role in supplementing clinical trials, enabling conditional reimbursement and accelerated drug access, and innovating trial conduct. Moreover, purpose-built RWD repositories may support the extension or refinement of drug indications and facilitate the discovery and validation of new biomarkers. This perspective explores the potential of leveraging RWD to advance oncology, highlights its benefits and challenges, and suggests a path forward in this evolving field.


Asunto(s)
Neoplasias , Humanos , Medicina de Precisión , Oncología Médica , Proyectos de Investigación , Biomarcadores
2.
Cell ; 186(16): 3476-3498.e35, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541199

RESUMEN

To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Proteogenómica , Femenino , Humanos , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética
3.
Cell ; 184(9): 2487-2502.e13, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33857424

RESUMEN

Precision oncology has made significant advances, mainly by targeting actionable mutations in cancer driver genes. Aiming to expand treatment opportunities, recent studies have begun to explore the utility of tumor transcriptome to guide patient treatment. Here, we introduce SELECT (synthetic lethality and rescue-mediated precision oncology via the transcriptome), a precision oncology framework harnessing genetic interactions to predict patient response to cancer therapy from the tumor transcriptome. SELECT is tested on a broad collection of 35 published targeted and immunotherapy clinical trials from 10 different cancer types. It is predictive of patients' response in 80% of these clinical trials and in the recent multi-arm WINTHER trial. The predictive signatures and the code are made publicly available for academic use, laying a basis for future prospective clinical studies.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Medicina de Precisión , Mutaciones Letales Sintéticas , Transcriptoma/efectos de los fármacos , Anciano , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/inmunología , Ensayos Clínicos como Asunto , Femenino , Estudios de Seguimiento , Humanos , Inmunoterapia , Masculino , Neoplasias/genética , Neoplasias/patología , Pronóstico , Estudios Prospectivos , Estudios Retrospectivos , Tasa de Supervivencia
4.
Cell ; 184(7): 1661-1670, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33798439

RESUMEN

When it comes to precision oncology, proteogenomics may provide better prospects to the clinical characterization of tumors, help make a more accurate diagnosis of cancer, and improve treatment for patients with cancer. This perspective describes the significant contributions of The Cancer Genome Atlas and the Clinical Proteomic Tumor Analysis Consortium to precision oncology and makes the case that proteogenomics needs to be fully integrated into clinical trials and patient care in order for precision oncology to deliver the right cancer treatment to the right patient at the right dose and at the right time.


Asunto(s)
Neoplasias/diagnóstico , Proteogenómica/métodos , Bases de Datos Genéticas , Descubrimiento de Drogas , Estudios de Asociación Genética , Humanos , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisión
5.
Annu Rev Biochem ; 88: 247-280, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30901264

RESUMEN

The complexity of human cancer underlies its devastating clinical consequences. Drugs designed to target the genetic alterations that drive cancer have improved the outcome for many patients, but not the majority of them. Here, we review the genomic landscape of cancer, how genomic data can provide much more than a sum of its parts, and the approaches developed to identify and validate genomic alterations with potential therapeutic value. We highlight notable successes and pitfalls in predicting the value of potential therapeutic targets and discuss the use of multi-omic data to better understand cancer dependencies and drug sensitivity. We discuss how integrated approaches to collecting, curating, and sharing these large data sets might improve the identification and prioritization of cancer vulnerabilities as well as patient stratification within clinical trials. Finally, we outline how future approaches might improve the efficiency and speed of translating genomic data into clinically effective therapies and how the use of unbiased genome-wide information can identify novel predictive biomarkers that can be either simple or complex.


Asunto(s)
Genómica , Mutación , Neoplasias/tratamiento farmacológico , Humanos , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisión
6.
Cell ; 173(2): 321-337.e10, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625050

RESUMEN

Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFß signaling, p53 and ß-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.


Asunto(s)
Bases de Datos Genéticas , Neoplasias/patología , Transducción de Señal/genética , Genes Relacionados con las Neoplasias , Humanos , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
7.
CA Cancer J Clin ; 74(3): 264-285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38174605

RESUMEN

The last decade has seen rapid progress in the use of genomic tests, including gene panels, whole-exome sequencing, and whole-genome sequencing, in research and clinical cancer care. These advances have created expansive opportunities to characterize the molecular attributes of cancer, revealing a subset of cancer-associated aberrations called driver mutations. The identification of these driver mutations can unearth vulnerabilities of cancer cells to targeted therapeutics, which has led to the development and approval of novel diagnostics and personalized interventions in various malignancies. The applications of this modern approach, often referred to as precision oncology or precision cancer medicine, are already becoming a staple in cancer care and will expand exponentially over the coming years. Although genomic tests can lead to better outcomes by informing cancer risk, prognosis, and therapeutic selection, they remain underutilized in routine cancer care. A contributing factor is a lack of understanding of their clinical utility and the difficulty of results interpretation by the broad oncology community. Practical guidelines on how to interpret and integrate genomic information in the clinical setting, addressed to clinicians without expertise in cancer genomics, are currently limited. Building upon the genomic foundations of cancer and the concept of precision oncology, the authors have developed practical guidance to aid the interpretation of genomic test results that help inform clinical decision making for patients with cancer. They also discuss the challenges that prevent the wider implementation of precision oncology.


Asunto(s)
Pruebas Genéticas , Genómica , Neoplasias , Medicina de Precisión , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/diagnóstico , Medicina de Precisión/métodos , Genómica/métodos , Pruebas Genéticas/métodos , Guías de Práctica Clínica como Asunto , Biomarcadores de Tumor/genética , Mutación
8.
CA Cancer J Clin ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814103

RESUMEN

Tumor-agnostic therapies represent a paradigm shift in oncology by altering the traditional means of characterizing tumors based on their origin or location. Instead, they zero in on specific genetic anomalies responsible for fueling malignant growth. The watershed moment for tumor-agnostic therapies arrived in 2017, with the US Food and Drug Administration's historic approval of pembrolizumab, an immune checkpoint inhibitor. This milestone marked the marriage of genomics and immunology fields, as an immunotherapeutic agent gained approval based on genomic biomarkers, specifically, microsatellite instability-high or mismatch repair deficiency (dMMR). Subsequently, the approval of NTRK inhibitors, designed to combat NTRK gene fusions prevalent in various tumor types, including pediatric cancers and adult solid tumors, further underscored the potential of tumor-agnostic therapies. The US Food and Drug Administration approvals of targeted therapies (BRAF V600E, RET fusion), immunotherapies (tumor mutational burden ≥10 mutations per megabase, dMMR) and an antibody-drug conjugate (Her2-positive-immunohistochemistry 3+ expression) with pan-cancer efficacy have continued, offering newfound hope to patients grappling with advanced solid tumors that harbor particular biomarkers. In this comprehensive review, the authors delve into the expansive landscape of tissue-agnostic targets and drugs, shedding light on the rationale underpinning this approach, the hurdles it faces, presently approved therapies, voices from the patient advocacy perspective, and the tantalizing prospects on the horizon. This is a welcome advance in oncology that transcends the boundaries of histology and location to provide personalized options.

9.
CA Cancer J Clin ; 71(2): 176-190, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33165928

RESUMEN

The application of genomic profiling assays using plasma circulating tumor DNA (ctDNA) is rapidly evolving in the management of patients with advanced solid tumors. Diverse plasma ctDNA technologies in both commercial and academic laboratories are in routine or emerging use. The increasing integration of such testing to inform treatment decision making by oncology clinicians has complexities and challenges but holds significant potential to substantially improve patient outcomes. In this review, the authors discuss the current role of plasma ctDNA assays in oncology care and provide an overview of ongoing research that may inform real-world clinical applications in the near future.


Asunto(s)
Biomarcadores de Tumor/sangre , ADN Tumoral Circulante/sangre , Oncología Médica/métodos , Neoplasias/diagnóstico , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Toma de Decisiones Clínicas , Humanos , Biopsia Líquida/métodos , Biopsia Líquida/normas , Biopsia Líquida/tendencias , Oncología Médica/normas , Oncología Médica/tendencias , Mutación , Estadificación de Neoplasias/métodos , Estadificación de Neoplasias/tendencias , Neoplasias/sangre , Neoplasias/genética , Neoplasias/terapia , Guías de Práctica Clínica como Asunto , Sociedades Médicas/normas , Estados Unidos
10.
Am J Hum Genet ; 111(5): 809-824, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38642557

RESUMEN

Advancements in genomic technologies have shown remarkable promise for improving health trajectories. The Human Genome Project has catalyzed the integration of genomic tools into clinical practice, such as disease risk assessment, prenatal testing and reproductive genomics, cancer diagnostics and prognostication, and therapeutic decision making. Despite the promise of genomic technologies, their full potential remains untapped without including individuals of diverse ancestries and integrating social determinants of health (SDOHs). The NHGRI launched the 2020 Strategic Vision with ten bold predictions by 2030, including "individuals from ancestrally diverse backgrounds will benefit equitably from advances in human genomics." Meeting this goal requires a holistic approach that brings together genomic advancements with careful consideration to healthcare access as well as SDOHs to ensure that translation of genetics research is inclusive, affordable, and accessible and ultimately narrows rather than widens health disparities. With this prediction in mind, this review delves into the two paramount applications of genetic testing-reproductive genomics and precision oncology. When discussing these applications of genomic advancements, we evaluate current accessibility limitations, highlight challenges in achieving representativeness, and propose paths forward to realize the ultimate goal of their equitable applications.


Asunto(s)
Genómica , Medicina de Precisión , Humanos , Genómica/métodos , Medicina de Precisión/métodos , Genoma Humano , Pruebas Genéticas , Neoplasias/genética , Accesibilidad a los Servicios de Salud
11.
CA Cancer J Clin ; 70(2): 125-137, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32031692

RESUMEN

With advancements in biomarkers and momentum in precision medicine, biomarker-guided trials such as basket trials and umbrella trials have been developed under the master protocol framework. A master protocol refers to a single, overarching design developed to evaluate multiple hypotheses with the general goal of improving the efficiency of trial evaluation. One type of master protocol is the basket trial, in which a targeted therapy is evaluated for multiple diseases that share common molecular alterations or risk factors that may help predict whether the patients will respond to the given therapy. Another variant of a master protocol is the umbrella trial, in which multiple targeted therapies are evaluated for a single disease that is stratified into multiple subgroups based on different molecular or other predictive risk factors. Both designs follow the core principle of precision medicine-to tailor intervention strategies based on the patient's risk factor(s) that can help predict whether they will respond to a specific treatment. There have been increasing numbers of basket and umbrella trials, but they are still poorly understood. This article reviews common characteristics of basket and umbrella trials, key trials and recent US Food and Drug Administration approvals for precision oncology, and important considerations for clinical readers when critically evaluating future publications on basket trials and umbrella trials and for researchers when designing these clinical trials.


Asunto(s)
Ensayos Clínicos como Asunto/métodos , Oncología Médica/métodos , Neoplasias/terapia , Humanos , Medicina de Precisión/métodos , Factores de Riesgo
12.
Annu Rev Med ; 75: 49-66, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285513

RESUMEN

Prostate-specific membrane antigen (PSMA) as a transmembrane protein is overexpressed by prostate cancer (PC) cells and is accessible for binding antibodies or low-molecular-weight radioligands due to its extracellular portion. Successful targeting of PSMA began with the development of humanized J591 antibody. Due to their faster clearance compared to antibodies, small-molecule radioligands for targeted imaging and therapy of PC have been favored in recent development efforts. PSMA positron emission tomography (PET) imaging has higher diagnostic performance than conventional imaging for initial staging of high-risk PC and biochemical recurrence detection/localization. However, it remains to be demonstrated how to integrate PSMA PET imaging for therapy response assessment and as an outcome endpoint measure in clinical trials. With the recent approval of 177Lu-PSMA-617 by the US Food and Drug Administration for metastatic castration-resistant PC progressing after chemotherapy, the high value of PSMA-targeted therapy was confirmed. Compared to standard of care, PSMA-based radioligand therapy led to a better outcome and a higher quality of life. This review, focusing on the advanced PC setting, provides an overview of different approved and nonapproved PSMA-targeted imaging and therapeutic modalities and discusses the future of PSMA-targeted theranostics, also with an outlook on non-radiopharmaceutical-based PSMA-targeted therapies.


Asunto(s)
Neoplasias de la Próstata , Calidad de Vida , Estados Unidos , Masculino , Humanos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/terapia , Tomografía de Emisión de Positrones , Medicina de Precisión
13.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38557676

RESUMEN

Understanding the intricate interactions of cancer cells with the tumor microenvironment (TME) is a pre-requisite for the optimization of immunotherapy. Mechanistic models such as quantitative systems pharmacology (QSP) provide insights into the TME dynamics and predict the efficacy of immunotherapy in virtual patient populations/digital twins but require vast amounts of multimodal data for parameterization. Large-scale datasets characterizing the TME are available due to recent advances in bioinformatics for multi-omics data. Here, we discuss the perspectives of leveraging omics-derived bioinformatics estimates to inform QSP models and circumvent the challenges of model calibration and validation in immuno-oncology.


Asunto(s)
Neoplasias , Farmacología , Humanos , Multiómica , Farmacología en Red , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Oncología Médica , Biología Computacional , Microambiente Tumoral
14.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783705

RESUMEN

Tumor mutational signatures have gained prominence in cancer research, yet the lack of standardized methods hinders reproducibility and robustness. Leveraging colorectal cancer (CRC) as a model, we explored the influence of computational parameters on mutational signature analyses across 230 CRC cell lines and 152 CRC patients. Results were validated in three independent datasets: 483 endometrial cancer patients stratified by mismatch repair (MMR) status, 35 lung cancer patients by smoking status and 12 patient-derived organoids (PDOs) annotated for colibactin exposure. Assessing various bioinformatic tools, reference datasets and input data sizes including whole genome sequencing, whole exome sequencing and a pan-cancer gene panel, we demonstrated significant variability in the results. We report that the use of distinct algorithms and references led to statistically different results, highlighting how arbitrary choices may induce variability in the mutational signature contributions. Furthermore, we found a differential contribution of mutational signatures between coding and intergenic regions and defined the minimum number of somatic variants required for reliable mutational signature assignment. To facilitate the identification of the most suitable workflows, we developed Comparative Mutational Signature analysis on Coding and Extragenic Regions (CoMSCER), a bioinformatic tool which allows researchers to easily perform comparative mutational signature analysis by coupling the results from several tools and public reference datasets and to assess mutational signature contributions in coding and non-coding genomic regions. In conclusion, our study provides a comparative framework to elucidate the impact of distinct computational workflows on mutational signatures.


Asunto(s)
Neoplasias Colorrectales , Biología Computacional , Mutación , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Biología Computacional/métodos , Flujo de Trabajo , Línea Celular Tumoral , Secuenciación del Exoma/métodos , Femenino , Algoritmos
15.
Proc Natl Acad Sci U S A ; 120(1): e2209856120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574653

RESUMEN

Breast cancer (BC) is a complex disease comprising multiple distinct subtypes with different genetic features and pathological characteristics. Although a large number of antineoplastic compounds have been approved for clinical use, patient-to-patient variability in drug response is frequently observed, highlighting the need for efficient treatment prediction for individualized therapy. Several patient-derived models have been established lately for the prediction of drug response. However, each of these models has its limitations that impede their clinical application. Here, we report that the whole-tumor cell culture (WTC) ex vivo model could be stably established from all breast tumors with a high success rate (98 out of 116), and it could reassemble the parental tumors with the endogenous microenvironment. We observed strong clinical associations and predictive values from the investigation of a broad range of BC therapies with WTCs derived from a patient cohort. The accuracy was further supported by the correlation between WTC-based test results and patients' clinical responses in a separate validation study, where the neoadjuvant treatment regimens of 15 BC patients were mimicked. Collectively, the WTC model allows us to accomplish personalized drug testing within 10 d, even for small-sized tumors, highlighting its potential for individualized BC therapy. Furthermore, coupled with genomic and transcriptomic analyses, WTC-based testing can also help to stratify specific patient groups for assignment into appropriate clinical trials, as well as validate potential biomarkers during drug development.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Perfilación de la Expresión Génica , Biomarcadores , Técnicas de Cultivo de Célula , Microambiente Tumoral
16.
Artículo en Inglés | MEDLINE | ID: mdl-38526805

RESUMEN

Immune checkpoint inhibitors have changed the treatment landscape for various malignancies; however, their benefit is limited to a subset of patients. The immune machinery includes both mediators of suppression/immune evasion, such as PD-1, PD-L1, CTLA-4, and LAG-3, all of which can be inhibited by specific antibodies, and immune-stimulatory molecules, such as T-cell co-stimulatory receptors that belong to the tumor necrosis factor receptor superfamily (TNFRSF), including OX40 receptor (CD134; TNFRSF4), 4-1BB (CD137; TNFRSF9), and glucocorticoid-induced TNFR-related (GITR) protein (CD357; TNFRSF18). In particular, OX40 and its binding ligand OX40L (CD134L; TNFSF4; CD252) are critical for immunoregulation. When OX40 on activated T cells binds OX40L on antigen-presenting cells, T-cell activation and immune stimulation are initiated via enhanced T-cell survival, proliferation and cytotoxicity, memory T-cell formation, and abrogation of regulatory T cell (Treg) immunosuppressive functions. OX40 agonists are in clinical trials both as monotherapy and in combination with other immunotherapy agents, in particular specific checkpoint inhibitors, for cancer treatment. To date, however, only a minority of patients respond. Transcriptomic profiling reveals that OX40 and OX40L expression vary between and within tumor types, and that only ~ 17% of cancer patients have high OX40 and low OX40L, one of the expression patterns that might be theoretically amenable to OX40 agonist enhancement. Taken together, the data suggest that the OX40/OX40L machinery is a critical part of the immune stimulatory system and that understanding endogenous expression patterns of these molecules and co-existing checkpoints merits further investigation in the context of a precision immunotherapy strategy for cancer therapy.

17.
J Pathol ; 262(4): 391-394, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38332742

RESUMEN

Prostate cancer is one of the most prevalent and, upon metastasis, deadliest cancers in men. Timely identification is essential for effective treatment. Furthermore, accurate determination of prostatic origin is crucial for personalized therapy once the cancer has spread. However, current prostate cancer screening methods are lacking. A recent article in The Journal of Pathology addresses this issue by utilizing an improved antibody to reevaluate HOXB13 as a lineage marker for prostate cancer. The study's findings support the concept that, despite decreased expression in advanced prostate cancer, HOXB13 remains highly suitable for determining prostatic origin due to its androgen receptor independence, high specificity, and sensitivity. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Antígeno Prostático Específico/metabolismo , Detección Precoz del Cáncer , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Próstata/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunoglobulinas
18.
Genes Chromosomes Cancer ; 63(4): e23236, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38656617

RESUMEN

OBJECTIVE: This study aims to evaluate the developments in the testing of Kirsten Rat Sarcoma viral oncogene homolog (KRAS) and v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) mutations across different cancer types and regions in Denmark from 2010 to 2022. STUDY DESIGN AND SETTING: Using comprehensive data from the Danish health registries, we linked molecular test results from the Danish Pathology Registry with cancer diagnoses from the Danish National Patient Registry between 2010 and 2022. We assessed the frequency and distribution of KRAS and BRAF mutations across all cancer types, years of testing, and the five Danish regions. RESULTS: The study included records of KRAS testing for 30 671 patients and BRAF testing for 30 860 patients. Most KRAS testing was performed in colorectal (78%) and lung cancer (18%), and BRAF testing in malignant melanoma (13%), colorectal cancer (67%), and lung cancer (12%). Testing rates and documentation mutational subtypes increased over time. Reporting of wildtype results varied between lung and colorectal cancer, with underreporting in lung cancer. Regional variations in testing and reporting were observed. CONCLUSION: Our study highlights substantial progress in KRAS and BRAF testing in Denmark from 2010 to 2022, evidenced by increased and more specific reporting of mutational test results, thereby improving the precision of cancer diagnosis and treatment. However, persistent regional variations and limited testing for cancer types beyond melanoma, colorectal, and lung cancer highlight the necessity for a nationwide assessment of the optimal testing approach.


Asunto(s)
Pruebas Genéticas , Proteínas Proto-Oncogénicas B-raf , Proteínas Proto-Oncogénicas p21(ras) , Femenino , Humanos , Masculino , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/diagnóstico , Dinamarca , Pruebas Genéticas/métodos , Pruebas Genéticas/estadística & datos numéricos , Pruebas Genéticas/normas , Mutación , Neoplasias/genética , Neoplasias/diagnóstico , Medicina de Precisión/métodos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Sistema de Registros
19.
Semin Cancer Biol ; 94: 62-80, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37302519

RESUMEN

The use of artificial intelligence (AI) to assist biomedical imaging have demonstrated its high accuracy and high efficiency in medical decision-making for individualized cancer medicine. In particular, optical imaging methods are able to visualize both the structural and functional information of tumors tissues with high contrast, low cost, and noninvasive property. However, no systematic work has been performed to inspect the recent advances on AI-aided optical imaging for cancer theranostics. In this review, we demonstrated how AI can guide optical imaging methods to improve the accuracy on tumor detection, automated analysis and prediction of its histopathological section, its monitoring during treatment, and its prognosis by using computer vision, deep learning and natural language processing. By contrast, the optical imaging techniques involved mainly consisted of various tomography and microscopy imaging methods such as optical endoscopy imaging, optical coherence tomography, photoacoustic imaging, diffuse optical tomography, optical microscopy imaging, Raman imaging, and fluorescent imaging. Meanwhile, existing problems, possible challenges and future prospects for AI-aided optical imaging protocol for cancer theranostics were also discussed. It is expected that the present work can open a new avenue for precision oncology by using AI and optical imaging tools.


Asunto(s)
Inteligencia Artificial , Neoplasias , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Medicina de Precisión , Tomografía de Coherencia Óptica/métodos , Oncología Médica
20.
Semin Cancer Biol ; 91: 1-15, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36801447

RESUMEN

Personalized treatment strategies for cancer frequently rely on the detection of genetic alterations which are determined by molecular biology assays. Historically, these processes typically required single-gene sequencing, next-generation sequencing, or visual inspection of histopathology slides by experienced pathologists in a clinical context. In the past decade, advances in artificial intelligence (AI) technologies have demonstrated remarkable potential in assisting physicians with accurate diagnosis of oncology image-recognition tasks. Meanwhile, AI techniques make it possible to integrate multimodal data such as radiology, histology, and genomics, providing critical guidance for the stratification of patients in the context of precision therapy. Given that the mutation detection is unaffordable and time-consuming for a considerable number of patients, predicting gene mutations based on routine clinical radiological scans or whole-slide images of tissue with AI-based methods has become a hot issue in actual clinical practice. In this review, we synthesized the general framework of multimodal integration (MMI) for molecular intelligent diagnostics beyond standard techniques. Then we summarized the emerging applications of AI in the prediction of mutational and molecular profiles of common cancers (lung, brain, breast, and other tumor types) pertaining to radiology and histology imaging. Furthermore, we concluded that there truly exist multiple challenges of AI techniques in the way of its real-world application in the medical field, including data curation, feature fusion, model interpretability, and practice regulations. Despite these challenges, we still prospect the clinical implementation of AI as a highly potential decision-support tool to aid oncologists in future cancer treatment management.


Asunto(s)
Inteligencia Artificial , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisión/métodos , Oncología Médica/métodos , Diagnóstico por Imagen/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA