Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 32(7): 2130-2149, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38796707

RESUMEN

Lafora disease is a rare and fatal form of progressive myoclonic epilepsy typically occurring early in adolescence. The disease results from mutations in the EPM2A gene, encoding laforin, or the EPM2B gene, encoding malin. Laforin and malin work together in a complex to control glycogen synthesis and prevent the toxicity produced by misfolded proteins via the ubiquitin-proteasome system. Disruptions in either protein cause alterations in this complex, leading to the formation of Lafora bodies containing abnormal, insoluble, and hyperphosphorylated forms of glycogen. We used the Epm2a-/- knockout mouse model of Lafora disease to apply gene therapy by administering intracerebroventricular injections of a recombinant adeno-associated virus carrying the human EPM2A gene. We evaluated the effects of this treatment through neuropathological studies, behavioral tests, video-electroencephalography, electrophysiological recordings, and proteomic/phosphoproteomic analysis. Gene therapy ameliorated neurological and histopathological alterations, reduced epileptic activity and neuronal hyperexcitability, and decreased the formation of Lafora bodies. Moreover, differential quantitative proteomics and phosphoproteomics revealed beneficial changes in various molecular pathways altered in Lafora disease. Our results represent proof of principle for gene therapy with the coding region of the human EPM2A gene as a treatment for EPM2A-related Lafora disease.


Asunto(s)
Dependovirus , Modelos Animales de Enfermedad , Terapia Genética , Enfermedad de Lafora , Ratones Noqueados , Proteínas Tirosina Fosfatasas no Receptoras , Enfermedad de Lafora/terapia , Enfermedad de Lafora/genética , Enfermedad de Lafora/metabolismo , Animales , Terapia Genética/métodos , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Ratones , Dependovirus/genética , Humanos , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Electroencefalografía , Proteómica/métodos
2.
Epilepsia ; 65(3): 709-724, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38231304

RESUMEN

OBJECTIVE: KCTD7-related progressive myoclonic epilepsy (PME) is a rare autosomal-recessive disorder. This study aimed to describe the clinical details and genetic variants in a large international cohort. METHODS: Families with molecularly confirmed diagnoses of KCTD7-related PME were identified through international collaboration. Furthermore, a systematic review was done to identify previously reported cases. Salient demographic, epilepsy, treatment, genetic testing, electroencephalographic (EEG), and imaging-related variables were collected and summarized. RESULTS: Forty-two patients (36 families) were included. The median age at first seizure was 14 months (interquartile range = 11.75-22.5). Myoclonic seizures were frequently the first seizure type noted (n = 18, 43.9%). EEG and brain magnetic resonance imaging findings were variable. Many patients exhibited delayed development with subsequent progressive regression (n = 16, 38.1%). Twenty-one cases with genetic testing available (55%) had previously reported variants in KCTD7, and 17 cases (45%) had novel variants in KCTD7 gene. Six patients died in the cohort (age range = 1.5-21 years). The systematic review identified 23 eligible studies and further identified 59 previously reported cases of KCTD7-related disorders from the literature. The phenotype for the majority of the reported cases was consistent with a PME (n = 52, 88%). Other reported phenotypes in the literature included opsoclonus myoclonus ataxia syndrome (n = 2), myoclonus dystonia (n = 2), and neuronal ceroid lipofuscinosis (n = 3). Eight published cases died over time (14%, age range = 3-18 years). SIGNIFICANCE: This study cohort and systematic review consolidated the phenotypic spectrum and natural history of KCTD7-related disorders. Early onset drug-resistant epilepsy, relentless neuroregression, and severe neurological sequalae were common. Better understanding of the natural history may help future clinical trials.


Asunto(s)
Epilepsias Mioclónicas , Epilepsias Mioclónicas Progresivas , Síndrome de Unverricht-Lundborg , Adolescente , Niño , Preescolar , Humanos , Lactante , Adulto Joven , Electroencefalografía , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas Progresivas/genética , Canales de Potasio/genética , Convulsiones
3.
BMC Neurol ; 24(1): 9, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166833

RESUMEN

BACKGROUND: Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a rare genetic disorder characterized by progressive cognitive decline and myoclonic epilepsy, caused by pathogenic variants of SERPINI1. We reported a case of genetically confirmed FENIB with de novo H338R mutation in the SERPINI1, in which frontal deficits including inattention and disinhibition, and relevant atrophy in the vmPFC on brain MRI were observed in the early stage of the disease. CASE PRESENTATION: A 23-year-old Japanese man presented with progressive inattention and disinhibition over 4 years followed by myoclonic epilepsy. The whole-genome sequencing and filtering analysis showed de novo heterozygous H338R mutation in the SERPINI1, confirming the diagnosis of FENIB. Single-case voxel-based morphometry using brain magnetic resonance imaging obtained at the initial visit revealed focal gray matter volume loss in the ventromedial prefrontal cortices, which is presumed to be associated with inattention and disinhibition. CONCLUSION: Frontal deficits including inattention and disinhibition can be the presenting symptoms of patients with FENIB. Single-case voxel-based morphometry may be useful for detecting regional atrophy of the frontal lobe in FENIB. Detecting these abnormalities in the early stage of disease may be key findings for differentiating FENIB from other causes of progressive myoclonic epilepsy.


Asunto(s)
Epilepsias Mioclónicas , Serpinas , Masculino , Humanos , Adulto Joven , Adulto , Neuroserpina , Epilepsias Mioclónicas/diagnóstico por imagen , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/patología , Cuerpos de Inclusión/patología , Imagen por Resonancia Magnética/métodos
4.
Neurobiol Dis ; 185: 106258, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37573956

RESUMEN

The progressive myoclonic epilepsies (PMEs) are a group of rare neurodegenerative diseases characterized by myoclonus, epileptic seizures, and progressive neurological deterioration with cerebellar involvement. They include storage diseases like Gaucher disease, Lafora disease, and forms of neuronal ceroid lipofuscinosis (NCL). To date, 13 NCLs have been reported (CLN1-CLN8, CLN10-CLN14), associated with mutations in different genes. These forms, which affect both children and adults, are characterized by seizures, cognitive and motor impairments, and in most cases visual loss. In NCLs, as in other PMEs, central nervous system (CNS) neurodegeneration is widespread and involves different subpopulations of neurons. One of the most affected regions is the cerebellar cortex, where motor and non-motor information is processed and transmitted to deep cerebellar nuclei through the axons of Purkinje cells (PCs). PCs, being GABAergic, have an inhibitory effect on their target neurons, and provide the only inhibitory output of the cerebellum. Degeneration of PCs has been linked to motor impairments and epileptic seizures. Seizures occur when some insult upsets the normal balance in the CNS between excitatory and inhibitory impulses, causing hyperexcitability. Here we review the role of PCs in epilepsy onset and progression following their PME-related loss. In particular, we focus on the involvement of PCs in seizure phenotype in NCLs, highlighting findings from case reports and studies of animal models in which epilepsy can be linked to PC loss.


Asunto(s)
Epilepsia , Epilepsias Mioclónicas Progresivas , Lipofuscinosis Ceroideas Neuronales , Animales , Lipofuscinosis Ceroideas Neuronales/genética , Células de Purkinje , Epilepsias Mioclónicas Progresivas/genética , Convulsiones
5.
Am J Hum Genet ; 106(4): 549-558, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32169168

RESUMEN

De novo variants (DNVs) cause many genetic diseases. When DNVs are examined in the whole coding regions of genes in next-generation sequencing analyses, pathogenic DNVs often cluster in a specific region. One such region is the last exon and the last 50 bp of the penultimate exon, where truncating DNVs cause escape from nonsense-mediated mRNA decay [NMD(-) region]. Such variants can have dominant-negative or gain-of-function effects. Here, we first developed a resource of rates of truncating DNVs in NMD(-) regions under the null model of DNVs. Utilizing this resource, we performed enrichment analysis of truncating DNVs in NMD(-) regions in 346 developmental and epileptic encephalopathy (DEE) trios. We observed statistically significant enrichment of truncating DNVs in semaphorin 6B (SEMA6B) (p value: 2.8 × 10-8; exome-wide threshold: 2.5 × 10-6). The initial analysis of the 346 individuals and additional screening of 1,406 and 4,293 independent individuals affected by DEE and developmental disorders collectively identified four truncating DNVs in the SEMA6B NMD(-) region in five individuals who came from unrelated families (p value: 1.9 × 10-13) and consistently showed progressive myoclonic epilepsy. RNA analysis of lymphoblastoid cells established from an affected individual showed that the mutant allele escaped NMD, indicating stable production of the truncated protein. Importantly, heterozygous truncating variants in the NMD(+) region of SEMA6B are observed in general populations, and SEMA6B is most likely loss-of-function tolerant. Zebrafish expressing truncating variants in the NMD(-) region of SEMA6B orthologs displayed defective development of brain neurons and enhanced pentylenetetrazole-induced seizure behavior. In summary, we show that truncating DNVs in the final exon of SEMA6B cause progressive myoclonic epilepsy.


Asunto(s)
Exoma/genética , Exones/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Epilepsias Mioclónicas Progresivas/genética , Semaforinas/genética , Adolescente , Adulto , Alelos , Animales , Femenino , Heterocigoto , Humanos , Masculino , Degradación de ARNm Mediada por Codón sin Sentido/genética , Convulsiones/genética , Adulto Joven , Pez Cebra/genética
6.
Epilepsia ; 64(8): e164-e169, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36810721

RESUMEN

The progressive myoclonus epilepsies (PMEs) are a heterogeneous group of neurodegenerative disorders, typically presenting in late childhood. An etiologic diagnosis is achieved in about 80% of patients with PME, and genome-wide molecular studies on remaining, well-selected, undiagnosed cases can further dissect the underlying genetic heterogeneity. Through whole-exome sequencing (WES), we identified pathogenic truncating variants in the IRF2BPL gene in two, unrelated patients presenting with PME. IRF2BPL belongs to the transcriptional regulators family and it is expressed in multiple human tissues, including the brain. Recently missense and nonsense mutations in IRF2BPL were found in patients presenting with developmental delay and epileptic encephalopathy, ataxia, and movement disorders, but none with clear PME. We identified 13 other patients in the literature with myoclonic seizures and IRF2BPL variants. There was no clear genotype-phenotype correlation. With the description of these cases, the IRF2BPL gene should be considered in the list of genes to be tested in the presence of PME, in addition to patients with neurodevelopmental or movement disorders.


Asunto(s)
Epilepsias Mioclónicas , Trastornos del Movimiento , Epilepsias Mioclónicas Progresivas , Humanos , Niño , Epilepsias Mioclónicas Progresivas/genética , Convulsiones/genética , Genotipo , Proteínas Portadoras/genética , Proteínas Nucleares/genética
7.
Epilepsia ; 64(1): 208-217, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36398398

RESUMEN

OBJECTIVE: Progressive myoclonic epilepsy type 1 (EPM1) is caused by biallelic alterations in the CSTB gene, most commonly dodecamer repeat expansions. Although transcranial magnetic stimulation (TMS)-induced long-interval intracortical inhibition (LICI) was previously reported to be normal in EPM1, short-interval intracortical inhibition (SICI) was reduced. We explored the association between these measures and the clinical and genetic features in a separate group of patients with EPM1. METHODS: TMS combined with electromyography was performed under neuronavigation. LICI was induced with an inter-stimulus interval (ISI) of 100 ms, and SICI with ISIs of 2 and 3 ms, and their means (mSICIs) were expressed as the ratio of conditioned to unconditioned stimuli. LICI and mSICI were compared between patients and controls. Nonparametric correlation was used to study the association between inhibition and parameters of clinical severity, including the Unified Myoclonus Rating Scale (UMRS); among patients with EPM1 due to biallelic expansion repeats, also the association with the number of repeats was assessed. RESULTS: The study protocol was completed in 19 patients (15 with biallelic expansion repeats and 4 compound heterozygotes), and 7 healthy, age- and sex-matched control participants. Compared to controls, patients demonstrated significantly less SICI (median mSICI ratio 1.18 vs 0.38; p < .001). Neither LICI nor SICI was associated with parameters of clinical severity. In participants with biallelic repeat expansions, the number of repeats in the more affected allele (greater repeat number [GRN]) correlated with LICI (rho = 0.872; p < .001) and SICI (rho = 0.689; p = .006). SIGNIFICANCE: Our results strengthen the finding of deranged γ-aminobutyric acid (GABA)ergic inhibition in EPM1. LICI and SICI may have use as markers of GABAergic impairment in future trials of disease-modifying treatment in this condition. Whether a higher number of expansion repeats leads to greater GABAergic impairment warrants further study.


Asunto(s)
Corteza Motora , Inhibición Neural , Humanos , Inhibición Neural/genética , Electromiografía , Genotipo , Estimulación Magnética Transcraneal/métodos , Corteza Motora/fisiología , Potenciales Evocados Motores/fisiología
8.
J Biol Chem ; 296: 100150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33277363

RESUMEN

Malstructured glycogen accumulates over time in Lafora disease (LD) and precipitates into Lafora bodies (LBs), leading to neurodegeneration and intractable fatal epilepsy. Constitutive reduction of glycogen synthase-1 (GYS1) activity prevents murine LD, but the effect of GYS1 reduction later in disease course is unknown. Our goal was to knock out Gys1 in laforin (Epm2a)-deficient LD mice after disease onset to determine whether LD can be halted in midcourse, or even reversed. We generated Epm2a-deficient LD mice with tamoxifen-inducible Cre-mediated Gys1 knockout. Tamoxifen was administered at 4 months and disease progression assessed at 12 months. We verified successful knockout at mRNA and protein levels using droplet digital PCR and Western blots. Glycogen determination and periodic acid-Schiff-diastase staining were used to analyze glycogen and LB accumulation. Immunohistochemistry using astrocytic (glial fibrillary acidic protein) and microglial (ionized calcium-binding adapter molecule 1) markers was performed to investigate neuroinflammation. In the disease-relevant organ, the brain, Gys1 mRNA levels were reduced by 85% and GYS1 protein depleted. Glycogen accumulation was halted at the 4-month level, while LB formation and neuroinflammation were significantly, though incompletely, prevented. Skeletal muscle analysis confirmed that Gys1 knockout inhibits glycogen and LB accumulation. However, tamoxifen-independent Cre recombination precluded determination of disease halting or reversal in this tissue. Our study shows that Gys1 knockdown is a powerful means to prevent LD progression, but this approach did not reduce brain glycogen or LBs to levels below those at the time of intervention. These data suggest that endogenous mechanisms to clear brain LBs are absent or, possibly, compromised in laforin-deficient murine LD.


Asunto(s)
Gliosis/prevención & control , Glucógeno Sintasa/fisiología , Inflamación/prevención & control , Enfermedad de Lafora/patología , Músculo Esquelético/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Animales , Femenino , Gliosis/metabolismo , Gliosis/patología , Inflamación/metabolismo , Inflamación/patología , Enfermedad de Lafora/tratamiento farmacológico , Enfermedad de Lafora/genética , Enfermedad de Lafora/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/patología , Moduladores Selectivos de los Receptores de Estrógeno/administración & dosificación , Tamoxifeno/administración & dosificación
9.
BMC Neurol ; 22(1): 122, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35346091

RESUMEN

BACKGROUND: Biallelic pathogenic variants in the SCARB2 gene have been associated with action myoclonus-renal failure (AMRF) syndrome. Even though SCARB2 associated phenotype has been reported to include typical neurological characteristics, depending on the localization and the feature of the pathogenic variants, clinical course and the presentations have been shown to differ. CASE PRESENTATION: Whole exome sequencing (WES) analysis revealed a homozygous truncating variant (p.N45MfsX88) in SCARB2 gene in the index case, and subsequent sanger sequencing analysis validated the variant in all affected family members from a Turkish family with the clinical characteristics associated with AMRF and related disorders. Intrafamilial clinical heterogeneity with common features including dysarthria, tremor and proteinuria, and distinct features such as peripheral neuropathy (PNP), myoclonus and seizures between the affected cases, was observed in the family. In-depth literature review enabled the detailed investigation of the reported variants associated with AMRF and suggested that while the type of the variant did not have a major impact on the course of the clinical characteristics, only the C terminal localization of the pathogenic variant significantly affected the clinical presentation, particularly the age at onset (AO) of the disease. CONCLUSIONS: In this study we showed that biallelic SCARB2 pathogenic variants might cause a spectrum of common and distinct features associated with AMRF. Of those features while the common features include myoclonus (100%), ataxia (96%), tonic clonic seizures (82%), dysarthria (68%), tremor (65%), and renal impairment (62%), the uncommon features involve PNP (17%), hearing loss (6.8%), and cognitive impairment (13.7%). AO has been found to be significantly higher in the carriers of the p.G462DfsX34 pathogenic variant. SCARB2 pathogenic variants have not been only implicated in AMRF but also in the pathogenesis of Parkinson's disease (PD) and Gaucher disease (GD), suggesting the importance of genetic and functional studies in the clinical and the diagnostic settings. Given the proven role of SCARB2 gene in the pathogenesis of AMRF, PD and GD with a wide spectrum of clinical symptoms, investigation of the possible modifiers, such as progranulin and HSP7, has a great importance.


Asunto(s)
Epilepsias Mioclónicas Progresivas , Estudios de Asociación Genética , Humanos , Proteínas de Membrana de los Lisosomas/genética , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas Progresivas/patología , Fenotipo , Receptores Depuradores/genética
10.
J Biol Chem ; 295(43): 14698-14709, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32817315

RESUMEN

The soluble α-polyglucan glycogen is a central metabolite enabling transient glucose storage to suit cellular energy needs. Glycogen storage diseases (GSDs) comprise over 15 entities caused by generalized or tissue-specific defects in enzymes of glycogen metabolism. In several, e.g. in Lafora disease caused by the absence of the glycogen phosphatase laforin or its interacting partner malin, degradation-resistant abnormally structured insoluble glycogen accumulates. Sensitive quantification methods for soluble and insoluble glycogen are critical to research, including therapeutic studies, in such diseases. This paper establishes methodological advancements relevant to glycogen metabolism investigations generally, and GSDs. Introducing a pre-extraction incubation method, we measure degradation-resistant glycogen in as little as 30 mg of skeletal muscle or a single hippocampus from Lafora disease mouse models. The digestion-resistant glycogen correlates with the disease-pathogenic insoluble glycogen and can readily be detected in very young mice where glycogen accumulation has just begun. Second, we establish a high-sensitivity glucose assay with detection of ATP depletion, enabling 1) quantification of α-glucans in cell culture using a medium-throughput assay suitable for assessment of candidate glycogen synthesis inhibitors, and 2) discovery of α-glucan material in healthy human cerebrospinal fluid, establishing a novel methodological platform for biomarker analyses in Lafora disease and other GSDs.


Asunto(s)
Glucanos/análisis , Glucanos/líquido cefalorraquídeo , Animales , Técnicas de Cultivo de Célula , Femenino , Enfermedad del Almacenamiento de Glucógeno/líquido cefalorraquídeo , Enfermedad del Almacenamiento de Glucógeno/patología , Células HEK293 , Hipocampo/patología , Humanos , Enfermedad de Lafora/líquido cefalorraquídeo , Enfermedad de Lafora/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/patología
11.
J Neurogenet ; 35(2): 74-83, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33970744

RESUMEN

KCTD7 is a member of the potassium channel tetramerization domain-containing protein family and has been associated with progressive myoclonic epilepsy (PME), characterized by myoclonus, epilepsy, and neurological deterioration. Here we report four affected individuals from two unrelated families in which we identified KCTD7 compound heterozygous single nucleotide variants through exome sequencing. RNAseq was used to detect a non-annotated splicing junction created by a synonymous variant in the second family. Whole-cell patch-clamp analysis of neuroblastoma cells overexpressing the patients' variant alleles demonstrated aberrant potassium regulation. While all four patients experienced many of the common clinical features of PME, they also showed variable phenotypes not previously reported, including dysautonomia, brain pathology findings including a significantly reduced thalamus, and the lack of myoclonic seizures. To gain further insight into the pathogenesis of the disorder, zinc finger nucleases were used to generate kctd7 knockout zebrafish. Kctd7 homozygous mutants showed global dysregulation of gene expression and increased transcription of c-fos, which has previously been correlated with seizure activity in animal models. Together these findings expand the known phenotypic spectrum of KCTD7-associated PME, report a new animal model for future studies, and contribute valuable insights into the disease.


Asunto(s)
Epilepsias Mioclónicas Progresivas/genética , Canales de Potasio/genética , Animales , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Mutación , Epilepsias Mioclónicas Progresivas/fisiopatología , Linaje , Fenotipo , Pez Cebra
12.
Epilepsia ; 62(5): 1256-1267, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33735526

RESUMEN

OBJECTIVE: Mutations in KCNC1 can cause severe neurological dysfunction, including intellectual disability, epilepsy, and ataxia. The Arg320His variant, which occurs in the voltage-sensing domain of the channel, causes a highly penetrant and specific form of progressive myoclonus epilepsy with severe ataxia, designated myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK). KCNC1 encodes the voltage-gated potassium channel KV 3.1, a channel that is important for enabling high-frequency firing in interneurons, raising the possibility that MEAK is associated with reduced interneuronal function. METHODS: To determine how this variant triggers MEAK, we expressed KV 3.1bR320H in cortical interneurons in vitro and investigated the effects on neuronal function and morphology. We also performed electrophysiological recordings of oocytes expressing KV 3.1b to determine whether the mutation introduces gating pore currents. RESULTS: Expression of the KV 3.1bR320H variant profoundly reduced excitability of mature cortical interneurons, and cells expressing these channels were unable to support high-frequency firing. The mutant channel also had an unexpected effect on morphology, severely impairing neurite development and interneuron viability, an effect that could not be rescued by blocking KV 3 channels. Oocyte recordings confirmed that in the adult KV 3.1b isoform, R320H confers a dominant negative loss-of-function effect by slowing channel activation, but does not introduce potentially toxic gating pore currents. SIGNIFICANCE: Overall, our data suggest that, in addition to the regulation of high-frequency firing, KV 3.1 channels play a hitherto unrecognized role in neuronal development. MEAK may be described as a developmental dendritopathy.


Asunto(s)
Dendritas/patología , Epilepsias Mioclónicas Progresivas/fisiopatología , Neurogénesis/genética , Canales de Potasio Shaw/genética , Animales , Humanos , Interneuronas/patología , Ratones , Ratones Endogámicos C57BL , Mutación , Epilepsias Mioclónicas Progresivas/genética
13.
Hum Mutat ; 41(9): 1469-1487, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32449975

RESUMEN

Farber disease and spinal muscular atrophy with progressive myoclonic epilepsy are a spectrum of rare lysosomal storage disorders characterized by acid ceramidase deficiency (ACD), resulting from pathogenic variants in N-acylsphingosine amidohydrolase 1 (ASAH1). Other than simple listings provided in literature reviews, a curated, comprehensive list of ASAH1 mutations associated with ACD clinical phenotypes has not yet been published. This publication includes mutations in ASAH1 collected through the Observational and Cross-Sectional Cohort Study of the Natural History and Phenotypic Spectrum of Farber Disease (NHS), ClinicalTrials.gov identifier NCT03233841, in combination with an up-to-date curated list of published mutations. The NHS is the first to collect retrospective and prospective data on living and deceased patients with ACD presenting as Farber disease, who had or had not undergone hematopoietic stem cell transplantation. Forty-five patients representing the known clinical spectrum of Farber disease (living patients aged 1-28 years) were enrolled. The curation of known ASAH1 pathogenic variants using a single reference transcript includes 10 previously unpublished from the NHS and 63 that were previously reported. The publication of ASAH1 variants will be greatly beneficial to patients undergoing genetic testing in the future by providing a significantly expanded reference list of disease-causing variants.


Asunto(s)
Ceramidasa Ácida/genética , Lipogranulomatosis de Farber/genética , Atrofia Muscular Espinal/genética , Epilepsias Mioclónicas Progresivas/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Humanos , Lactante , Ratones Noqueados , Mutación , Adulto Joven
14.
Neurol Sci ; 41(8): 2267-2270, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32342326

RESUMEN

EPM2A has been certified as a causative gene in patients with Lafora disease (LD), which is a rare autosomal recessive and severe form of progressive myoclonus epilepsy. LD classically starts in adolescence, characterized by various types of seizure with myoclonic seizure as the main type. Typically within 10 years, intractable seizure attack, rapidly progressing dementia, and a vegetative state were present. LD is particularly frequently found in Mediterranean countries. Here, we report a Chinese family with a novel compound heterozygous mutation in the EPM2A gene, characterized by recurrent vomiting, intractable epilepsy, and progressive cognitive decline.


Asunto(s)
Enfermedad de Lafora , Adolescente , China , Humanos , Enfermedad de Lafora/genética , Masculino , Mutación/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , Convulsiones , Ubiquitina-Proteína Ligasas
15.
Neurol Sci ; 41(11): 3345-3348, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32440981

RESUMEN

INTRODUCTION: Berardinelli-Seip syndrome or congenital generalized lipodystrophy type 2 is a rare genetic disorder characterized by selective loss of subcutaneous adipose tissue associated with peripheral insulin resistance and its complications. Nonprogressive mental retardation, dystonia, ataxia, and pyramidal signs are commonly present, whereas epilepsy has only occasionally been observed. CASE REPORT: We report the case of two sisters, 11 and 18 years old respectively, with an overlapping clinical phenotype compatible with Berardinelli-Seip syndrome and progressive myoclonic epilepsy. Molecular analysis identified an autosomal recessive c.1048C > t;(p(Arg350*)) pathogenic mutation of exon 8 of the BSCL2 gene, which was present in a homozygous state in both patients. CONCLUSIONS: Our paper contributes to further delineate a complex phenotype associated with BSCL2 mutation, underlining how seipin has a central and partially still unknown role that goes beyond adipose tissue metabolism, with a prominent involvement in central nervous system pathology.


Asunto(s)
Subunidades gamma de la Proteína de Unión al GTP , Lipodistrofia Generalizada Congénita , Epilepsias Mioclónicas Progresivas , Tejido Adiposo , Adolescente , Niño , Subunidades gamma de la Proteína de Unión al GTP/genética , Humanos , Lipodistrofia Generalizada Congénita/complicaciones , Lipodistrofia Generalizada Congénita/diagnóstico , Lipodistrofia Generalizada Congénita/genética , Epilepsias Mioclónicas Progresivas/genética , Fenotipo
16.
J Biol Chem ; 293(19): 7087-7088, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29514979

RESUMEN

The synthesis of glycogen allows for efficient intracellular storage of glucose molecules in a soluble form that can be rapidly released to enter glycolysis in response to energy demand. Intensive studies of glucose and glycogen metabolism, predominantly in skeletal muscle and liver, have produced innumerable insights into the mechanisms of hormone action, resulting in the award of several Nobel Prizes over the last one hundred years. Glycogen is actually present in all cells and tissues, albeit at much lower levels than found in muscle or liver. However, metabolic and physiological roles of glycogen in other tissues are poorly understood. This series of Minireviews summarizes what is known about the enzymes involved in brain glycogen metabolism and studies that have linked glycogen metabolism to multiple brain functions involving metabolic communication between astrocytes and neurons. Recent studies unexpectedly linking some forms of epilepsy to mutations in two poorly understood proteins involved in glycogen metabolism are also reviewed.


Asunto(s)
Encéfalo/metabolismo , Glucógeno/metabolismo , Encéfalo/enzimología , Glucógeno/biosíntesis , Glucogenólisis , Glucólisis , Humanos , Literatura de Revisión como Asunto , Transmisión Sináptica
17.
J Biol Chem ; 293(19): 7117-7125, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29483193

RESUMEN

Lafora disease (LD) is a fatal, autosomal recessive, glycogen-storage disorder that manifests as severe epilepsy. LD results from mutations in the gene encoding either the glycogen phosphatase laforin or the E3 ubiquitin ligase malin. Individuals with LD develop cytoplasmic, aberrant glycogen inclusions in nearly all tissues that more closely resemble plant starch than human glycogen. This Minireview discusses the unique window into glycogen metabolism that LD research offers. It also highlights recent discoveries, including that glycogen contains covalently bound phosphate and that neurons synthesize glycogen and express both glycogen synthase and glycogen phosphorylase.


Asunto(s)
Glucógeno/metabolismo , Enfermedad de Lafora/metabolismo , Neuronas/metabolismo , Animales , Conformación de Carbohidratos , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Glucógeno/biosíntesis , Glucógeno/química , Glucógeno Fosforilasa/genética , Humanos , Enfermedad de Lafora/genética , Enfermedad de Lafora/patología , Enfermedad de Lafora/terapia , Fosfatos/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas no Receptoras/genética , Ubiquitina-Proteína Ligasas/genética
18.
Acta Neurol Scand ; 138(2): 122-129, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29573400

RESUMEN

OBJECTIVES: Perampanel is an antiepileptic drug (AED) approved for add-on treatment of focal seizures (with or without generalization) and primary generalized tonic-clonic (GTC) seizures. Our objective was to explore the effectiveness and tolerability of adjunctive perampanel in patients with drug-resistant myoclonic seizures, after failure of other AEDs. MATERIALS AND METHODS: Retrospective, multicenter, observational study. Data were collected from individual patient clinical files and analysed using appropriate descriptive statistics and inferential analyses. RESULTS: Data are reported for 31 patients with mean age 36.4 years, who had an average epilepsy duration of 18 years, previously taken an average of 5.03 AEDs, and were taking an average of 2.4 AEDs on perampanel initiation. Patients exhibited myoclonic, GTC, absence, tonic and focal seizures, and most had associated cognitive decline and/or ataxia. Median time on perampanel was 6 months, most common dose was 6 mg, and overall retention rate was 84%. The responder rate for myoclonic seizures was defined via reduction of days with myoclonic seizures per month. At 6 months, 15 (48.4%) of the 31 patients were classed as myoclonic seizure responders, 10 (32.3%) were myoclonic seizure free, and 39% saw improvements in functional ability. Of 17 patients with GTC seizures at baseline, 9 (53%) were responders at 6 months, and 8 (47.1%) were seizure free. The most frequent side effects were psychiatric disorders, instability, dizziness and irritability, and mostly resolved with dose reduction. Five patients discontinued perampanel due to side effects. CONCLUSIONS: Perampanel caused clinically meaningful improvements in patients with drug-resistant myoclonic seizures. It was generally well tolerated, but psychiatric and neurological side effects sometimes required follow-up and dose reduction.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsias Mioclónicas/tratamiento farmacológico , Piridonas/uso terapéutico , Adulto , Anciano , Quimioterapia Combinada , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nitrilos , Estudios Retrospectivos , Convulsiones/tratamiento farmacológico , Resultado del Tratamiento , Adulto Joven
19.
Medicina (B Aires) ; 78(6): 436-439, 2018.
Artículo en Español | MEDLINE | ID: mdl-30504111

RESUMEN

Lafora's disease is infrequent. However, it is one of the most common causes of progressive myoclonus epilepsy. We present the case of a 19-year-old woman, without comorbidities and normal development that started at 8 years with seizures and that from 15 years, had progressive cognitive deterioration. She was admitted to our institution with a diagnosis of super refractory status epilepticus. The diagnosis of Lafora's disease was made through pathological anatomy, later a genetic test was performed that reported a pathogenic variant of the EPM2A gene, confirming the diagnosis. We present a cause of progressive myoclonic epilepsy, with an ominous prognosis and a treatment oriented to palliative measures, so it is important to analyze the differential diagnoses with other entities, in order to establish a prognosis, offer better quality of life, adequate medical care and provide genetic counseling to family members.


Asunto(s)
Enfermedad de Lafora/complicaciones , Epilepsias Mioclónicas Progresivas/etiología , Biopsia , Diagnóstico Diferencial , Electroencefalografía , Femenino , Humanos , Enfermedad de Lafora/genética , Enfermedad de Lafora/patología , Mutación/genética , Epilepsias Mioclónicas Progresivas/genética , Proteínas Tirosina Fosfatasas no Receptoras , Adulto Joven
20.
Hum Mutat ; 38(6): 611-614, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28251733

RESUMEN

At least 15% of the disease-causing mutations affect mRNA splicing. Many splicing mutations are missed in a clinical setting due to limitations of in silico prediction algorithms or their location in noncoding regions. Whole-transcriptome sequencing is a promising new tool to identify these mutations; however, it will be a challenge to obtain disease-relevant tissue for RNA. Here, we describe an individual with a sporadic atypical spinal muscular atrophy, in whom clinical DNA sequencing reported one pathogenic ASAH1 mutation (c.458A>G;p.Tyr153Cys). Transcriptome sequencing on patient leukocytes identified a highly significant and atypical ASAH1 isoform not explained by c.458A>G(p<10-16 ). Subsequent Sanger-sequencing identified the splice mutation responsible for the isoform (c.504A>C;p.Lys168Asn) and provided a molecular diagnosis of autosomal-recessive spinal muscular atrophy with progressive myoclonic epilepsy. Our findings demonstrate the utility of RNA sequencing from blood to identify splice-impacting disease mutations for nonhematological conditions, providing a diagnosis for these otherwise unsolved patients.


Asunto(s)
Ceramidasa Ácida/genética , Atrofia Muscular Espinal/sangre , Epilepsias Mioclónicas Progresivas/sangre , Empalme del ARN/genética , Ceramidasa Ácida/sangre , Preescolar , Humanos , Masculino , Atrofia Muscular Espinal/complicaciones , Atrofia Muscular Espinal/genética , Mutación , Epilepsias Mioclónicas Progresivas/complicaciones , Epilepsias Mioclónicas Progresivas/genética , Patología Molecular , Análisis de Secuencia de ADN , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA