Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 515
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(2): 390-405, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37847057

RESUMEN

The sense of body ownership (i.e. the feeling that our body or its parts belong to us) plays a key role in bodily self-consciousness and is believed to stem from multisensory integration. Experimental paradigms such as the rubber hand illusion have been developed to allow the controlled manipulation of body ownership in laboratory settings, providing effective tools for investigating malleability in the sense of body ownership and the boundaries that distinguish self from other. Neuroimaging studies of body ownership converge on the involvement of several cortical regions, including the premotor cortex and posterior parietal cortex. However, relatively less attention has been paid to subcortical structures that may also contribute to body ownership perception, such as the cerebellum and putamen. Here, on the basis of neuroimaging and neuropsychological observations, we provide an overview of relevant subcortical regions and consider their potential role in generating and maintaining a sense of ownership over the body. We also suggest novel avenues for future research targeting the role of subcortical regions in making sense of the body as our own.


Asunto(s)
Ilusiones , Corteza Motora , Percepción del Tacto , Humanos , Imagen Corporal/psicología , Propiedad , Lóbulo Parietal , Ilusiones/psicología , Percepción Visual , Mano , Propiocepción
2.
Brain ; 147(6): 2203-2213, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38797521

RESUMEN

Stuttering affects approximately 1 in 100 adults and can result in significant communication problems and social anxiety. It most often occurs as a developmental disorder but can also be caused by focal brain damage. These latter cases may lend unique insight into the brain regions causing stuttering. Here, we investigated the neuroanatomical substrate of stuttering using three independent datasets: (i) case reports from the published literature of acquired neurogenic stuttering following stroke (n = 20, 14 males/six females, 16-77 years); (ii) a clinical single study cohort with acquired neurogenic stuttering following stroke (n = 20, 13 males/seven females, 45-87 years); and (iii) adults with persistent developmental stuttering (n = 20, 14 males/six females, 18-43 years). We used the first two datasets and lesion network mapping to test whether lesions causing acquired stuttering map to a common brain network. We then used the third dataset to test whether this lesion-based network was relevant to developmental stuttering. In our literature dataset, we found that lesions causing stuttering occurred in multiple heterogeneous brain regions, but these lesion locations were all functionally connected to a common network centred around the left putamen, including the claustrum, amygdalostriatal transition area and other adjacent areas. This finding was shown to be specific for stuttering (PFWE < 0.05) and reproducible in our independent clinical cohort of patients with stroke-induced stuttering (PFWE < 0.05), resulting in a common acquired stuttering network across both stroke datasets. Within the common acquired stuttering network, we found a significant association between grey matter volume and stuttering impact for adults with persistent developmental stuttering in the left posteroventral putamen, extending into the adjacent claustrum and amygdalostriatal transition area (PFWE < 0.05). We conclude that lesions causing acquired neurogenic stuttering map to a common brain network, centred to the left putamen, claustrum and amygdalostriatal transition area. The association of this lesion-based network with symptom severity in developmental stuttering suggests a shared neuroanatomy across aetiologies.


Asunto(s)
Encéfalo , Accidente Cerebrovascular , Tartamudeo , Humanos , Tartamudeo/patología , Tartamudeo/etiología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Adolescente , Anciano , Anciano de 80 o más Años , Adulto Joven , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/patología , Imagen por Resonancia Magnética , Mapeo Encefálico/métodos
3.
Annu Rev Psychol ; 75: 1-32, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37788571

RESUMEN

Motivational processes are complex and multifaceted, with both directional and activational aspects. Behavioral activation and exertion of effort are functions that enable organisms to overcome obstacles separating them from significant outcomes. In a complex environment, organisms make cost/benefit decisions, assessing work-related response costs and reinforcer preference. Animal studies have challenged the general idea that dopamine (DA) is best viewed as the reward transmitter and instead have illustrated the involvement of DA in activational and effort-related processes. Mesocorticolimbic DA is a key component of the effort-related motivational circuitry that includes multiple neurotransmitters and brain areas. Human studies have identified brain areas and transmitter systems involved in effort-based decision making and characterized the reduced selection of high-effort activities associated with motivational symptoms of depression and schizophrenia. Animal and human research on the neurochemistry of behavioral activation and effort-related processes makes an important conceptual contribution by illustrating the dissociable nature of distinct aspects of motivation.


Asunto(s)
Dopamina , Esfuerzo Físico , Animales , Humanos , Motivación , Recompensa , Toma de Decisiones/fisiología
4.
Neuroimage ; 293: 120629, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697588

RESUMEN

Covert speech (CS) refers to speaking internally to oneself without producing any sound or movement. CS is involved in multiple cognitive functions and disorders. Reconstructing CS content by brain-computer interface (BCI) is also an emerging technique. However, it is still controversial whether CS is a truncated neural process of overt speech (OS) or involves independent patterns. Here, we performed a word-speaking experiment with simultaneous EEG-fMRI. It involved 32 participants, who generated words both overtly and covertly. By integrating spatial constraints from fMRI into EEG source localization, we precisely estimated the spatiotemporal dynamics of neural activity. During CS, EEG source activity was localized in three regions: the left precentral gyrus, the left supplementary motor area, and the left putamen. Although OS involved more brain regions with stronger activations, CS was characterized by an earlier event-locked activation in the left putamen (peak at 262 ms versus 1170 ms). The left putamen was also identified as the only hub node within the functional connectivity (FC) networks of both OS and CS, while showing weaker FC strength towards speech-related regions in the dominant hemisphere during CS. Path analysis revealed significant multivariate associations, indicating an indirect association between the earlier activation in the left putamen and CS, which was mediated by reduced FC towards speech-related regions. These findings revealed the specific spatiotemporal dynamics of CS, offering insights into CS mechanisms that are potentially relevant for future treatment of self-regulation deficits, speech disorders, and development of BCI speech applications.


Asunto(s)
Electroencefalografía , Imagen por Resonancia Magnética , Habla , Humanos , Masculino , Imagen por Resonancia Magnética/métodos , Femenino , Habla/fisiología , Adulto , Electroencefalografía/métodos , Adulto Joven , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos
5.
J Neurochem ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783749

RESUMEN

The dorsal striatum is composed of the caudate nucleus and the putamen in human and non-human primates. These two regions receive different cortical projections and are functionally distinct. The caudate is involved in the control of goal-directed behaviors, while the putamen is implicated in habit learning and formation. Previous reports indicate that ethanol differentially influences neurotransmission in these two regions. Because neurotransmitters primarily signal through G protein-coupled receptors (GPCRs) to modulate neuronal activity, the present study aimed to determine whether ethanol had a region-dependent impact on the expression of proteins that are involved in the trafficking and function of GPCRs, including G protein subunits and their effectors, protein kinases, and elements of the cytoskeleton. Western blotting was performed to examine protein levels in the caudate and the putamen of male cynomolgus macaques that self-administered ethanol for 1 year under free access conditions, along with control animals that self-administered an isocaloric sweetened solution under identical operant conditions. Among the 18 proteins studied, we found that the levels of one protein (PKCß) were increased, and 13 proteins (Gαi1/3, Gαi2, Gαo, Gß1γ, PKCα, PKCε, CaMKII, GSK3ß, ß-actin, cofilin, α-tubulin, and tubulin polymerization promoting protein) were reduced in the caudate of alcohol-drinking macaques. However, ethanol did not alter the expression of any proteins examined in the putamen. These observations underscore the unique vulnerability of the caudate nucleus to changes in protein expression induced by chronic ethanol exposure. Whether these alterations are associated with ethanol-induced dysregulation of GPCR function and neurotransmission warrants future investigation.

6.
Hippocampus ; 34(7): 310-326, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38721743

RESUMEN

Classic research has shown a division in the neuroanatomical structures that support flexible (e.g., short-cutting) and habitual (e.g., familiar route following) navigational behavior, with hippocampal-caudate systems associated with the former and putamen systems with the latter. There is, however, disagreement about whether the neural structures involved in navigation process particular forms of spatial information, such as associations between constellations of cues forming a cognitive map, versus single landmark-action associations, or alternatively, perform particular reinforcement learning algorithms that allow the use of different spatial strategies, so-called model-based (flexible) or model-free (habitual) forms of learning. We sought to test these theories by asking participants (N = 24) to navigate within a virtual environment through a previously learned, 9-junction route with distinctive landmarks at each junction while undergoing functional magnetic resonance imaging (fMRI). In a series of probe trials, we distinguished knowledge of individual landmark-action associations along the route versus knowledge of the correct sequence of landmark-action associations, either by having absent landmarks, or "out-of-sequence" landmarks. Under a map-based perspective, sequence knowledge would not require hippocampal systems, because there are no constellations of cues available for cognitive map formation. Within a learning-based model, however, responding based on knowledge of sequence would require hippocampal systems because prior context has to be utilized. We found that hippocampal-caudate systems were more active in probes requiring sequence knowledge, supporting the learning-based model. However, we also found greater putamen activation in probes where navigation based purely on sequence memory could be planned, supporting models of putamen function that emphasize its role in action sequencing.


Asunto(s)
Hipocampo , Imagen por Resonancia Magnética , Navegación Espacial , Humanos , Navegación Espacial/fisiología , Hipocampo/fisiología , Hipocampo/diagnóstico por imagen , Masculino , Imagen por Resonancia Magnética/métodos , Femenino , Adulto Joven , Adulto , Cuerpo Estriado/fisiología , Cuerpo Estriado/diagnóstico por imagen , Mapeo Encefálico/métodos , Realidad Virtual , Señales (Psicología)
7.
Eur J Neurosci ; 59(7): 1407-1427, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38123503

RESUMEN

DYT1 dystonia is associated with decreased striatal dopamine release. In this study, we examined the possibility that ultrastructural changes of nigrostriatal dopamine terminals could contribute to this neurochemical imbalance using a serial block face/scanning electron microscope (SBF/SEM) and three-dimensional reconstruction to analyse striatal tyrosine hydroxylase-immunoreactive (TH-IR) terminals and their synapses in a DYT1(ΔE) knockin (DYT1-KI) mouse model of DYT1 dystonia. Furthermore, to study possible changes in vesicle packaging capacity of dopamine, we used transmission electron microscopy to assess the synaptic vesicle size in striatal dopamine terminals. Quantitative comparative analysis of 80 fully reconstructed TH-IR terminals in the WT and DYT1-KI mice indicate (1) no significant difference in the volume of TH-IR terminals; (2) no major change in the proportion of axo-spinous versus axo-dendritic synapses; (3) no significant change in the post-synaptic density (PSD) area of axo-dendritic synapses, while the PSDs of axo-spinous synapses were significantly smaller in DYT1-KI mice; (4) no significant change in the contact area between TH-IR terminals and dendritic shafts or spines, while the ratio of PSD area/contact area decreased significantly for both axo-dendritic and axo-spinous synapses in DYT1-KI mice; (5) no significant difference in the mitochondria volume; and (6) no significant difference in the synaptic vesicle area between the two groups. Altogether, these findings suggest that abnormal morphometric changes of nigrostriatal dopamine terminals and their post-synaptic targets are unlikely to be a major source of reduced striatal dopamine release in DYT1 dystonia.


Asunto(s)
Distonía Muscular Deformante , Distonía , Ratones , Animales , Dopamina/análisis , Distonía/genética , Distonía Muscular Deformante/genética , Cuerpo Estriado/química , Sinapsis/ultraestructura
8.
Mov Disord ; 39(1): 130-140, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38013497

RESUMEN

BACKGROUND: Multiple system atrophy (MSA) clinically manifests with either predominant nigrostriatal or cerebellopontine degeneration. This corresponds to two different phenotypes, one with predominant Parkinson's symptoms (MSA-P [multiple system atrophy-parkinsonian subtype]) and one with predominant cerebellar deficits (MSA-C [multiple system atrophy-cerebellar subtype]). Both nigrostriatal and cerebellar degeneration can lead to impaired dexterity, which is a frequent cause of disability in MSA. OBJECTIVE: The aim was to disentangle the contribution of nigrostriatal and cerebellar degeneration to impaired dexterity in both subtypes of MSA. METHODS: We thus investigated nigrostriatal and cerebellopontine integrity using diffusion microstructure imaging in 47 patients with MSA-P and 17 patients with MSA-C compared to 31 healthy controls (HC). Dexterity was assessed using the 9-Hole Peg Board (9HPB) performance. RESULTS: Nigrostriatal degeneration, represented by the loss of cells and neurites, leading to a larger free-fluid compartment, was present in MSA-P and MSA-C when compared to HCs. Whereas no intergroup differences were observed between the MSAs in the substantia nigra, MSA-P showed more pronounced putaminal degeneration than MSA-C. In contrast, a cerebellopontine axonal degeneration was observed in MSA-P and MSA-C, with stronger effects in MSA-C. Interestingly, the degeneration of cerebellopontine fibers is associated with impaired dexterity in both subtypes, whereas no association was observed with nigrostriatal degeneration. CONCLUSION: Cerebellar dysfunction contributes to impaired dexterity not only in MSA-C but also in MSA-P and may be a promising biomarker for disease staging. In contrast, no significant association was observed with nigrostriatal dysfunction. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Humanos , Atrofia de Múltiples Sistemas/complicaciones , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Sustancia Negra/diagnóstico por imagen
9.
Psychol Med ; : 1-11, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801091

RESUMEN

BACKGROUND: Individuals at risk for bipolar disorder (BD) have a wide range of genetic and non-genetic risk factors, like a positive family history of BD or (sub)threshold affective symptoms. Yet, it is unclear whether these individuals at risk and those diagnosed with BD share similar gray matter brain alterations. METHODS: In 410 male and female participants aged 17-35 years, we compared gray matter volume (3T MRI) between individuals at risk for BD (as assessed using the EPIbipolar scale; n = 208), patients with a DSM-IV-TR diagnosis of BD (n = 87), and healthy controls (n = 115) using voxel-based morphometry in SPM12/CAT12. We applied conjunction analyses to identify similarities in gray matter volume alterations in individuals at risk and BD patients, relative to healthy controls. We also performed exploratory whole-brain analyses to identify differences in gray matter volume among groups. ComBat was used to harmonize imaging data from seven sites. RESULTS: Both individuals at risk and BD patients showed larger volumes in the right putamen than healthy controls. Furthermore, individuals at risk had smaller volumes in the right inferior occipital gyrus, and BD patients had larger volumes in the left precuneus, compared to healthy controls. These findings were independent of course of illness (number of lifetime manic and depressive episodes, number of hospitalizations), comorbid diagnoses (major depressive disorder, attention-deficit hyperactivity disorder, anxiety disorder, eating disorder), familial risk, current disease severity (global functioning, remission status), and current medication intake. CONCLUSIONS: Our findings indicate that alterations in the right putamen might constitute a vulnerability marker for BD.

10.
Biol Cybern ; 118(1-2): 127-143, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38644417

RESUMEN

The cognitive impairment will gradually appear over time in Parkinson's patients, which is closely related to the basal ganglia-cortex network. This network contains two parallel circuits mediated by putamen and caudate nucleus, respectively. Based on the biophysical mean-field model, we construct a dynamic computational model of the parallel circuit in the basal ganglia-cortex network associated with Parkinson's disease dementia. The simulated results show that the decrease of power ratio in the prefrontal cortex is mainly caused by dopamine depletion in the caudate nucleus and is less related to that in the putamen, which indicates Parkinson's disease dementia may be caused by a lesion of the caudate nucleus rather than putamen. Furthermore, the underlying dynamic mechanism behind the decrease of power ratio is investigated by bifurcation analysis, which demonstrates that the decrease of power ratio is due to the change of brain discharge pattern from the limit cycle mode to the point attractor mode. More importantly, the spatiotemporal course of dopamine depletion in Parkinson's disease patients is well simulated, which states that with the loss of dopaminergic neurons projecting to the striatum, motor dysfunction of Parkinson's disease is first observed, whereas cognitive impairment occurs after a period of onset of motor dysfunction. These results are helpful to understand the pathogenesis of cognitive impairment and provide insights into the treatment of Parkinson's disease dementia.


Asunto(s)
Ganglios Basales , Demencia , Modelos Neurológicos , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/patología , Ganglios Basales/fisiopatología , Demencia/fisiopatología , Demencia/patología , Simulación por Computador , Vías Nerviosas/fisiopatología , Corteza Cerebral/fisiopatología , Dopamina/metabolismo
11.
Cereb Cortex ; 33(7): 3437-3453, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35965059

RESUMEN

Functional imaging studies of neurotypical adults report activation in the left putamen during speech production. The current study asked how stroke survivors with left putamen damage are able to produce correct spoken responses during a range of speech production tasks. Using functional magnetic resonance imaging, activation during correct speech production responses was assessed in 5 stroke patients with circumscribed left dorsal striatal lesions, 66 stroke patient controls who did not have focal left dorsal striatal lesions, and 54 neurotypical adults. As a group, patients with left dorsal striatal damage (our patients of interest) showed higher activation than neurotypical controls in the left superior parietal cortex during successful speech production. This effect was not specific to patients with left dorsal striatal lesions as we observed enhanced activation in the same region in some patient controls and also in more error-prone neurotypical participants. Our results strongly suggest that enhanced left superior parietal activation supports speech production in diverse challenging circumstances, including those caused by stroke damage. They add to a growing body of literature indicating how upregulation within undamaged parts of the neural systems already recruited by neurotypical adults contributes to recovery after stroke.


Asunto(s)
Habla , Accidente Cerebrovascular , Adulto , Humanos , Habla/fisiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Imagen por Resonancia Magnética , Lóbulo Parietal , Putamen
12.
J UOEH ; 46(2): 221-226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38839290

RESUMEN

A woman in her 30s who was being treated for a mental illness with several psychotropic drugs was admitted to the hospital after being found in a state of unconsciousness and respiratory arrest at home. She was pronounced dead 12 hours after she was discovered. Her autopsy revealed symmetrical hemorrhagic necrosis in the putamen on both sides of her cerebrum. Although many drugs were detected in her blood, all of those other than dextromethorphan (DXM) were within or below the therapeutic range. Her blood DXM was 1.73 µg/ml at admission and 1.61 µg/ml at autopsy, which were within the toxic range or coma-to-death range. The cause of death was diagnosed as DXM poisoning. DXM can cause hallucinations and euphoria if taken in excess, but since it is available as an over-the-counter drug at general pharmacies, an increasing number of young people are overdosing on it, mistakenly believing it to be a safe drug with few side effects. We believe that further social measures against DXM are necessary in Japan, such as disseminating correct knowledge in society and regulating over-the-counter sales.


Asunto(s)
Autopsia , Dextrometorfano , Humanos , Dextrometorfano/envenenamiento , Femenino , Adulto , Resultado Fatal
13.
Neurobiol Dis ; 176: 105945, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36481436

RESUMEN

Degeneration of neurons and circuits across the striatum shows stereotyped time-course and spatial topography patterns that are distinct for Huntington's disease, Parkinson's disease, or the Tauopathies. These patterns of neurodegeneration in humans have not yet been systematically related to developmental, connectional, cellular, and chemical factors studied in human and non-human primates, that may underlie potential differences in selective vulnerability across striatal sectors. Relating primate anatomy to human pathology could provide new venues for identifying molecular, cellular, and connectional factors linked to the degeneration of striatal neurons and circuits. This review describes and summarizes several developmental, cellular, structural, and connectional features of the primate striatum in relation to patterns of neurodegeneration in the striatum of humans and of non-human primate models. We review (1) the types of neurons in the primate striatum, (2) the cyto-, myelo-, and chemoarchitecture of the primate striatum, (3) the developmental origin of the striatum in light of modern patterning studies, (4) the organization of corticostriatal projections in relation to cortical types, and (5) the topography and time-course of neuron loss, glial reaction, and protein aggregation induced by neurodegenerative diseases in humans and in non-human primate models across striatal sectors and their corresponding cortical areas. We summarize current knowledge about key aspects of primate striatal anatomy and human pathology and indicate knowledge gaps that should be addressed in future studies. We aim to identify factors for selective vulnerability to neurodegeneration of striatal neurons and circuits and obtain hints that could help elucidate striatal pathology in humans.


Asunto(s)
Enfermedad de Huntington , Neostriado , Animales , Humanos , Neostriado/patología , Cuerpo Estriado/patología , Primates/fisiología , Neuronas/metabolismo , Enfermedad de Huntington/metabolismo , Vías Nerviosas/patología
14.
Neurobiol Dis ; 184: 106226, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37451474

RESUMEN

Loss of dopaminergic midbrain neurons perturbs l-serine and d-serine homeostasis in the post-mortem caudate putamen (CPu) of Parkinson's disease (PD) patients. However, it is unclear whether the severity of dopaminergic nigrostriatal degeneration plays a role in deregulating serine enantiomers' metabolism. Here, through high-performance liquid chromatography (HPLC), we measured the levels of these amino acids in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and MPTP-plus-probenecid (MPTPp)-treated mice to determine whether and how dopaminergic midbrain degeneration affects the levels of serine enantiomers in various basal ganglia subregions. In addition, in the same brain regions, we measured the levels of key neuroactive amino acids modulating glutamatergic neurotransmission, including l-glutamate, glycine, l-aspartate, d-aspartate, and their precursors l-glutamine, l-asparagine. In monkeys, MPTP treatment produced severe denervation of nigrostriatal dopaminergic fibers (⁓75%) and increased the levels of serine enantiomers in the rostral putamen (rPut), but not in the subthalamic nucleus, and the lateral and medial portion of the globus pallidus. Moreover, this neurotoxin significantly reduced the protein expression of the astrocytic serine transporter ASCT1 and the glycolytic enzyme GAPDH in the rPut of monkeys. Conversely, concentrations of d-serine and l-serine, as well as ASCT1 and GAPDH expression were unaffected in the striatum of MPTPp-treated mice, which showed only mild dopaminergic degeneration (⁓30%). These findings unveil a link between the severity of dopaminergic nigrostriatal degeneration and striatal serine enantiomers concentration, ASCT1 and GAPDH expression. We hypothesize that the up-regulation of d-serine and l-serine levels occurs as a secondary response within a homeostatic loop to support the metabolic and neurotransmission demands imposed by the degeneration of dopaminergic neurons.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Serina , Ratones , Animales , Serina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Dopamina/metabolismo , Cuerpo Estriado/metabolismo , Mesencéfalo/metabolismo , Aminoácidos/metabolismo , Putamen/metabolismo , Homeostasis
15.
Hum Brain Mapp ; 44(1): 203-217, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36562546

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) has been used in the clinical treatment of Parkinson's disease (PD). Most of rTMS studies on PD used high-frequency stimulation; however, excessive nonvoluntary movement may represent abnormally cortical excitability, which is likely to be suppressed by low-frequency rTMS. Decreased neural activity in the basal ganglia on functional magnetic resonance imaging (fMRI) is a characteristic of PD. In the present study, we found that low-frequency (1 Hz) rTMS targeting individual finger-tapping activation elevated the amplitude of local neural activity (percentage amplitude fluctuation, PerAF) in the putamen as well as the functional connectivity (FC) of the stimulation target and basal ganglia in healthy participants. These results provide evidence for our hypothesis that low-frequency rTMS over the individual task activation site can modulate deep brain functions, and that FC might serve as a bridge transmitting the impact of rTMS to the deep brain regions. It suggested that a precisely localized individual task activation site can act as a target for low-frequency rTMS when it is used as a therapeutic tool for PD.


Asunto(s)
Enfermedad de Parkinson , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Putamen/diagnóstico por imagen , Encéfalo , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/tratamiento farmacológico , Movimiento , Imagen por Resonancia Magnética/métodos
16.
Mov Disord ; 38(9): 1645-1654, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37342973

RESUMEN

BACKGROUND: It has been suggested that the loss of nigrostriatal dopaminergic axon terminals occurs before the loss of dopaminergic neurons in the substantia nigra (SN) in Parkinson's disease (PD). This study aimed to use free-water imaging to evaluate microstructural changes in the dorsoposterior putamen (DPP) of idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) patients, which is considered a prodromal stage of synucleinopathies. METHODS: Free water values in the DPP, dorsoanterior putamen (DAP), and posterior SN were compared between the healthy controls (n = 48), iRBD (n = 43) and PD (n = 47) patients. In iRBD patients, the relationships between baseline and longitudinal free water values and clinical manifestations or dopamine transporter (DAT) striatal binding ratio (SBR) were analyzed. RESULTS: Free water values were significantly higher in the DPP and posterior substantia nigra (pSN), but not in the DAP, in the iRBD and PD groups than in controls. In iRBD patients, free water values in the DPP were progressively increased and correlated with the progression of clinical manifestations and the striatal DAT SBR. Baseline free water in the DPP was negatively correlated with striatal DAT SBR and hyposmia and positively correlated with motor deficits. CONCLUSIONS: This study demonstrates that free water values in the DPP are increased cross-sectionally and longitudinally and associated with clinical manifestations and the function of the dopaminergic system in the prodromal stage of synucleinopathies. Our findings indicate that free-water imaging of the DPP has the potential to be a valid marker of early diagnosis and progression of synucleinopathies. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Sinucleinopatías , Humanos , Trastorno de la Conducta del Sueño REM/diagnóstico , Putamen/metabolismo , Síntomas Prodrómicos , Enfermedad de Parkinson/complicaciones , Dopamina/metabolismo , Agua
17.
Cerebellum ; 22(5): 810-817, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35982370

RESUMEN

The exact pathophysiology of cognitive impairment in multiple system atrophy (MSA) is unclear. In our longitudinal study, we aimed to analyze (I) the relationships between cognitive functions and some subcortical structures, such as putamen and cerebellum assessed by voxel-based morphometry (VBM) and T1-weighted/T2-weighted (T1w/T2w) ratio, and (II) the neuroimaging predictors of the progression of cognitive deficits. Twenty-six patients with MSA underwent a comprehensive neuropsychological battery, motor examination, and brain MRI at baseline (T0) and 1-year follow-up (T1). Patients were then divided according to cognitive status into MSA with normal cognition (MSA-NC) and MSA with mild cognitive impairment (MCI). At T1, we divided the sample according to worsening/non worsening of cognitive status compared to baseline evaluation. Logistic regression analysis showed that age (ß = - 9.45, p = .02) and T1w/T2w value in the left putamen (ß = 230.64, p = .01) were significant predictors of global cognitive status at T0, explaining 65% of the variance. Logistic regression analysis showed that ∆-values of WM density in the cerebellum/brainstem (ß = 2188.70, p = .02) significantly predicted cognitive worsening at T1, explaining 64% of the variance. Our results suggest a role for the putamen and cerebellum in the cognitive changes of MSA, probably due to their connections with the cortex. The putaminal T1w/T2w ratio may deserve further studies as a marker of cognitive impairment in MSA.


Asunto(s)
Disfunción Cognitiva , Atrofia de Múltiples Sistemas , Humanos , Atrofia de Múltiples Sistemas/complicaciones , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Putamen/diagnóstico por imagen , Putamen/patología , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Espectroscopía de Resonancia Magnética
18.
Eur Radiol ; 33(10): 7160-7167, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37121929

RESUMEN

OBJECTIVES: The precise segmentation of atrophic structures remains challenging in neurodegenerative diseases. We determined the performance of a Deep Neural Patchwork (DNP) in comparison to established segmentation algorithms regarding the ability to delineate the putamen in multiple system atrophy (MSA), Parkinson's disease (PD), and healthy controls. METHODS: We retrospectively included patients with MSA and PD as well as healthy controls. A DNP was trained on manual segmentations of the putamen as ground truth. For this, the cohort was randomly split into a training (N = 131) and test set (N = 120). The DNP's performance was compared with putaminal segmentations as derived by Automatic Anatomic Labelling, Freesurfer and Fastsurfer. For validation, we assessed the diagnostic accuracy of the resulting segmentations in the delineation of MSA vs. PD and healthy controls. RESULTS: A total of 251 subjects (61 patients with MSA, 158 patients with PD, and 32 healthy controls; mean age of 61.5 ± 8.8 years) were included. Compared to the dice-coefficient of the DNP (0.96), we noted significantly weaker performance for AAL3 (0.72; p < .001), Freesurfer (0.82; p < .001), and Fastsurfer (0.84, p < .001). This was corroborated by the superior diagnostic performance of MSA vs. PD and HC of the DNP (AUC 0.93) versus the AUC of 0.88 for AAL3 (p = 0.02), 0.86 for Freesurfer (p = 0.048), and 0.85 for Fastsurfer (p = 0.04). CONCLUSION: By utilization of a DNP, accurate segmentations of the putamen can be obtained even if substantial atrophy is present. This allows for more precise extraction of imaging parameters or shape features from the putamen in relevant patient cohorts. CLINICAL RELEVANCE STATEMENT: Deep learning-based segmentation of the putamen was superior to currently available algorithms and is beneficial for the diagnosis of multiple system atrophy. KEY POINTS: • A Deep Neural Patchwork precisely delineates the putamen and performs equal to human labeling in multiple system atrophy, even when pronounced putaminal volume loss is present. • The Deep Neural Patchwork-based segmentation was more capable to differentiate between multiple system atrophy and Parkinson's disease than the AAL3 atlas, Freesurfer, or Fastsurfer.


Asunto(s)
Aprendizaje Profundo , Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Humanos , Persona de Mediana Edad , Anciano , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Putamen/diagnóstico por imagen , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos
19.
Neuropsychobiology ; 82(6): 359-372, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37717563

RESUMEN

INTRODUCTION: Social anxiety disorder (SAD) is characterized by abnormal processing of performance-related social stimuli. Previous studies have shown altered emotional experiences and activations of different sub-regions of the striatum during processing of social stimuli in patients with SAD. However, whether and to what extent social comparisons affect behavioural and neural responses to feedback stimuli in patients with SAD is unknown. MATERIALS AND METHODS: To address this issue, emotional ratings and functional magnetic resonance imaging (fMRI) responses were assessed while patients suffering from SAD and healthy controls (HC) were required to perform a choice task and received performance feedback (correct, incorrect, non-informative) that varied in relation to the performance of fictitious other participants (a few, half, or most of others had the same outcome). RESULTS: Across all performance feedback conditions, fMRI analyses revealed reduced activations in bilateral putamen when feedback was assumed to be received by only a few compared to half of the other participants in patients with SAD. Nevertheless, analysis of rating data showed a similar modulation of valence and arousal ratings in patients with SAD and HC depending on social comparison-related feedback. CONCLUSIONS: This suggests altered neural processing of performance feedback depending on social comparisons in patients with SAD.


Asunto(s)
Fobia Social , Humanos , Fobia Social/diagnóstico por imagen , Fobia Social/psicología , Retroalimentación , Proyectos Piloto , Comparación Social , Putamen/diagnóstico por imagen , Imagen por Resonancia Magnética , Encéfalo
20.
Cereb Cortex ; 32(22): 5072-5082, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-35078212

RESUMEN

The morphological development of the fetal striatum during the second trimester has remained poorly described. We manually segmented the striatum using 7.0-T MR images of the fetal specimens ranging from 14 to 22 gestational weeks. The global development of the striatum was evaluated by volume measurement. The absolute volume (Vabs) of the caudate nucleus (CN) increased linearly with gestational age, while the relative volume (Vrel) showed a quadratic growth. Both Vabs and Vrel of putamen increased linearly. Through shape analysis, the changes of local structure in developing striatum were specifically demonstrated. Except for the CN tail, the lateral and medial parts of the CN grew faster than the middle regions, with a clear rostral-caudal growth gradient as well as a distinct "outside-in" growth gradient. For putamen, the dorsal and ventral regions grew obviously faster than the other regions, with a dorsal-ventral bidirectional developmental pattern. The right CN was larger than the left, whereas there was no significant hemispheric asymmetry in the putamen. By establishing the developmental trajectories, spatial heterochrony, and hemispheric dimorphism of human fetal striatum, these data bring new insight into the fetal striatum development and provide detailed anatomical references for future striatal studies.


Asunto(s)
Núcleo Caudado , Cuerpo Estriado , Embarazo , Femenino , Humanos , Segundo Trimestre del Embarazo , Cuerpo Estriado/diagnóstico por imagen , Núcleo Caudado/diagnóstico por imagen , Putamen/diagnóstico por imagen , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA