RESUMEN
Circular RNAs (circRNAs) are an intriguing class of RNA due to their covalently closed structure, high stability, and implicated roles in gene regulation. Here, we used an exome capture RNA sequencing protocol to detect and characterize circRNAs across >2,000 cancer samples. When compared against Ribo-Zero and RNase R, capture sequencing significantly enhanced the enrichment of circRNAs and preserved accurate circular-to-linear ratios. Using capture sequencing, we built the most comprehensive catalog of circRNA species to date: MiOncoCirc, the first database to be composed primarily of circRNAs directly detected in tumor tissues. Using MiOncoCirc, we identified candidate circRNAs to serve as biomarkers for prostate cancer and were able to detect circRNAs in urine. We further detected a novel class of circular transcripts, termed read-through circRNAs, that involved exons originating from different genes. MiOncoCirc will serve as a valuable resource for the development of circRNAs as diagnostic or therapeutic targets across cancer types.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Neoplasias/genética , ARN/genética , Biomarcadores de Tumor/genética , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/genética , ARN/metabolismo , ARN Circular , Análisis de Secuencia de ARN/métodos , Secuenciación del Exoma/métodosRESUMEN
The critical role of RNA, its use and targetability concerning different aspects of human health are gaining more attention because our understanding of the versatility of RNA has dramatically evolved over the last decades. We now appreciate that RNA is far more critical than a messenger molecule and possesses many complicated functions. As a multifunctional molecule with its sequence, flexible structures and enzymatic abilities, RNA is genuinely powerful. Mammalian transcriptomes consist of a dynamically regulated plethora of coding and noncoding RNA types. However, some aspects of RNA metabolism remain to be explored. In this Viewpoint, we focus on the transcriptome's unconventional and possibly overlooked aspects to emphasize the importance of RNA in mammalian systems.
Asunto(s)
Mamíferos , Transcriptoma , Animales , Humanos , Transcriptoma/genética , ARN Mensajero/genética , Regiones no Traducidas 3' , Mamíferos/genéticaRESUMEN
Read-through transcripts result from the continuous transcription of adjacent, similarly oriented genes, with the splicing out of the intergenic region. They have been found in several neoplastic and normal tissues, but their pathophysiological significance is unclear. We used high-throughput sequencing of cDNA fragments (RNA-Seq) to identify read-through transcripts in the non-involved lung tissue of 64 surgically treated lung adenocarcinoma patients. A total of 52 distinct read-through species was identified, with 24 patients having at least one read-through event, up to a maximum of 17 such transcripts in one patient. Sanger sequencing validated 28 of these transcripts and identified an additional 15, for a total of 43 distinct read-through events involving 35 gene pairs. Expression levels of 10 validated read-through transcripts were measured by quantitative PCR in pairs of matched non-involved lung tissue and lung adenocarcinoma tissue from 45 patients. Higher expression levels were observed in normal lung tissue than in the tumor counterpart, with median relative quantification ratios between normal and tumor varying from 1.90 to 7.78; the difference was statistically significant (P < 0.001, Wilcoxon's signed-rank test for paired samples) for eight transcripts: ELAVL1-TIMM44, FAM162B-ZUFSP, IFNAR2-IL10RB, INMT-FAM188B, KIAA1841-C2orf74, NFATC3-PLA2G15, SIRPB1-SIRPD, and SHANK3-ACR. This report documents the presence of read-through transcripts in apparently normal lung tissue, with inter-individual differences in patterns and abundance. It also shows their down-regulation in tumors, suggesting that these chimeric transcripts may function as tumor suppressors in lung tissue.