Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Trends Immunol ; 45(4): 225-227, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538486

RESUMEN

Snakebite envenomings kill ~100 000 victims each year and leave many more with permanent sequelae. Antivenoms have been available for more than 125 years but are in need of innovation. A new study by Khalek et al. highlights broadly neutralizing human monoclonal antibodies (mAbs) that might be used to develop recombinant antivenoms with superior therapeutic benefits.


Asunto(s)
Antivenenos , Mordeduras de Serpientes , Humanos , Animales , Antivenenos/uso terapéutico , Mordeduras de Serpientes/tratamiento farmacológico , Anticuerpos Monoclonales/uso terapéutico , Serpientes
2.
Appl Microbiol Biotechnol ; 105(3): 1017-1030, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33443635

RESUMEN

In the pharmaceutical industry, nanobodies show promising properties for its application in serotherapy targeting the highly diffusible scorpion toxins. The production of recombinant nanobodies in Escherichia coli has been widely studied in shake flask cultures in rich medium. However, there are no upstream bioprocess studies of nanobody production in defined minimal medium and the effect of the induction temperature on the production kinetics. In this work, the effect of the temperature during the expression of the chimeric bispecific nanobody CH10-12 form, showing high scorpion antivenom potential, was studied in bioreactor cultures of E. coli. High biomass concentrations (25 g cdw/L) were achieved in fed-batch mode, and the expression of the CH10-12 nanobody was induced at temperatures 28, 29, 30, 33, and 37°C with a constant glucose feed. For the bispecific form NbF12-10, the induction was performed at 29°C. Biomass and carbon dioxide yields were reported for each culture phase, and the maintenance coefficient was obtained for each strain. Nanobody production in the CH10-12 strain was higher at low temperatures (lower than 30°C) and declined with the increase of the temperature. At 29°C, the CH10-12, NbF12-10, and WK6 strains were compared. Strains CH10-12 and NbF12-10 had a productivity of 0.052 and 0.021 mg/L/h of nanobody, respectively, after 13 h of induction. The specific productivity of the nanobodies was modeled as a function of the induction temperature and the specific growth rates. Experimental results confirm that low temperatures increase the productivity of the nanobody.Key points• Nanobodies with scorpion antivenom activity produced using two recombinant strains.• Nanobodies production was achieved in fed-batch cultures at different induction temperatures.• Low induction temperatures result in high volumetric productivities of the nanobody CH10-12.


Asunto(s)
Antivenenos , Escherichia coli , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Escherichia coli/genética , Proteínas Recombinantes/genética , Temperatura
3.
Heliyon ; 10(3): e25531, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333815

RESUMEN

Snakebite envenoming (SBE) is a global public health concern, primarily due to the lack of effective antivenom for treating snakebites inflicted by medically significant venomous snakes prevalent across various geographic locations. The rising demand for safe, cost-effective, and potent snakebite treatments highlights the urgent need to develop alternative therapeutics targeting relevant toxins. This development could provide promising discoveries to create novel recombinant solutions, leveraging human monoclonal antibodies, synthetic peptides and nanobodies. Such technologies as recombinant DNA, peptide and epitope mapping phage display etc) have the potential to exceed the traditional use of equine polyclonal antibodies, which have long been used in antivenom production. Recombinant antivenom can be engineered to target certain toxins that play a critical role in snakebite pathology. This approach has the potential to produce antivenom with improved efficacy and safety profiles. However, there are limitations and challenges associated with these emerging technologies. Therefore, identifying the limitations is critical for overcoming the associated challenges and optimizing the development of recombinant antivenoms. This review is aimed at presenting a thorough overview of diverse technologies used in the development of recombinant antivenom, emphasizing their limitations and offering insights into prospects for advancing recombinant antivenoms.

4.
Toxins (Basel) ; 16(8)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39195771

RESUMEN

Snake venoms are cocktails of biologically active molecules that have evolved to immobilize prey, but can also induce a severe pathology in humans that are bitten. While animal-derived polyclonal antivenoms are the primary treatment for snakebites, they often have limitations in efficacy and can cause severe adverse side effects. Building on recent efforts to develop improved antivenoms, notably through monoclonal antibodies, requires a comprehensive understanding of venom toxins. Among these toxins, snake venom metalloproteinases (SVMPs) play a pivotal role, particularly in viper envenomation, causing tissue damage, hemorrhage and coagulation disruption. One of the current challenges in the development of neutralizing monoclonal antibodies against SVMPs is the large size of the protein and the lack of existing knowledge of neutralizing epitopes. Here, we screened a synthetic human antibody library to isolate monoclonal antibodies against an SVMP from saw-scaled viper (genus Echis) venom. Upon characterization, several antibodies were identified that effectively blocked SVMP-mediated prothrombin activation. Cryo-electron microscopy revealed the structural basis of antibody-mediated neutralization, pinpointing the non-catalytic cysteine-rich domain of SVMPs as a crucial target. These findings emphasize the importance of understanding the molecular mechanisms of SVMPs to counter their toxic effects, thus advancing the development of more effective antivenoms.


Asunto(s)
Anticuerpos Neutralizantes , Protrombina , Animales , Humanos , Anticuerpos Neutralizantes/inmunología , Protrombina/inmunología , Protrombina/química , Antivenenos/farmacología , Antivenenos/inmunología , Antivenenos/química , Venenos de Víboras/inmunología , Venenos de Víboras/química , Venenos de Víboras/toxicidad , Cisteína/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Metaloproteasas/química , Metaloproteasas/inmunología , Dominios Proteicos , Viperidae
5.
Biotechnol J ; 19(10): e202400348, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39380504

RESUMEN

Oligoclonal antibodies, which are carefully defined mixtures of monoclonal antibodies, are valuable for the treatment of complex diseases, such as infectionss and cancer. In addition to these areas of medicine, they could be utilized for the treatment of snakebite envenoming, where recombinantly produced monoclonal human antibodies could overcome many of the drawbacks accompanying traditional antivenoms. However, producing multiple individual batches of monoclonal antibodies in an industrial setting is associated with significant costs. Therefore, it is attractive to produce oligoclonal antibodies by mixing multiple antibody-producing cell lines in a single batch to have only one upstream and downstream process. In this study, we selected four antibodies that target different toxins found in the venoms of various elapid snake species, such as mambas and cobras, and generated stable antibody-producing cell lines. Upon co-cultivation, we found the cell line ratios to be stable over 7 days. The purified oligoclonal antibody cocktail contained the anticipated antibody concentrations and bound to the target toxins as expected. These results thus provide a proof of concept for the strategy of mixing multiple cell lines in a single batch to manufacture tailored antivenoms recombinantly, which could be utilized for the treatment of snakebite envenoming and in other fields where oligoclonal antibody mixtures could find utility.


Asunto(s)
Anticuerpos Monoclonales , Antivenenos , Proteínas Recombinantes , Antivenenos/inmunología , Animales , Humanos , Anticuerpos Monoclonales/inmunología , Proteínas Recombinantes/genética , Mordeduras de Serpientes/tratamiento farmacológico , Mordeduras de Serpientes/terapia , Cricetulus , Células CHO , Venenos Elapídicos/química , Venenos Elapídicos/inmunología , Elapidae
6.
Artículo en Inglés | MEDLINE | ID: mdl-38116472

RESUMEN

Snakebite envenoming is a significant global health challenge, and for over a century, traditional plasma-derived antivenoms from hyperimmunized animals have been the primary treatment against this infliction. However, these antivenoms have several inherent limitations, including the risk of causing adverse reactions when administered to patients, batch-to-batch variation, and high production costs. To address these issues and improve treatment outcomes, the development of new types of antivenoms is crucial. During this development, key aspects such as improved clinical efficacy, enhanced safety profiles, and greater affordability should be in focus. To achieve these goals, modern biotechnological methods can be applied to the discovery and development of therapeutic agents that can neutralize medically important toxins from multiple snake species. This review highlights some of these agents, including monoclonal antibodies, nanobodies, and selected small molecules, that can achieve broad toxin neutralization, have favorable safety profiles, and can be produced on a large scale with standardized manufacturing processes. Considering the inherent strengths and limitations related to the pharmacokinetics of these different agents, a combination of them might be beneficial in the development of new types of antivenom products with improved therapeutic properties. While the implementation of new therapies requires time, it is foreseeable that the application of biotechnological advancements represents a promising trajectory toward the development of improved therapies for snakebite envenoming. As research and development continue to advance, these new products could emerge as the mainstay treatment in the future.

7.
MAbs ; 14(1): 2085536, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35699567

RESUMEN

The monocled cobra (Naja kaouthia) is among the most feared snakes in Southeast Asia due to its toxicity, which is predominantly derived from long-chain α-neurotoxins. The only specific treatment for snakebite envenoming is antivenom based on animal-derived polyclonal antibodies. Despite the lifesaving importance of these medicines, major limitations in safety, supply consistency, and efficacy create a need for improved treatments. Here, we describe the discovery and subsequent optimization of a recombinant human monoclonal immunoglobulin G antibody against α-cobratoxin using phage display technology. Affinity maturation by light chain-shuffling resulted in a significant increase in in vitro neutralization potency and in vivo efficacy. The optimized antibody prevented lethality when incubated with N. kaouthia whole venom prior to intravenous injection. This study is the first to demonstrate neutralization of whole snake venom by a single recombinant monoclonal antibody, thus providing a tantalizing prospect of bringing recombinant antivenoms based on human monoclonal or oligoclonal antibodies to the clinic.


Asunto(s)
Elapidae , Mordeduras de Serpientes , Animales , Anticuerpos Monoclonales/farmacología , Antivenenos/farmacología , Venenos Elapídicos/toxicidad , Humanos , Mordeduras de Serpientes/tratamiento farmacológico
8.
Front Immunol ; 10: 1598, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354735

RESUMEN

Each year, millions of humans fall victim to animal envenomings, which may either be deadly or cause permanent disability to the effected individuals. The Nobel Prize-winning discovery of serum therapy for the treatment of bacterial infections (tetanus and diphtheria) paved the way for the introduction of antivenom therapies for envenomings caused by venomous animals. These antivenoms are based on polyclonal antibodies derived from the plasma of hyperimmunized animals and remain the only specific treatment against animal envenomings. Following the initial development of serum therapy for snakebite envenoming by French scientists in 1894, other countries with high incidences of animal envenomings, including Brazil, Australia, South Africa, Costa Rica, and Mexico, started taking up antivenom production against local venomous animals over the course of the twentieth century. These undertakings revolutionized envenoming therapy and have saved innumerous patients worldwide during the last 100 years. This review describes in detail the above-mentioned historical events surrounding the discovery and the application of serum therapy for envenomings, as well as it provides an overview of important developments and scientific breakthroughs that were of importance for antibody-based therapies in general. This begins with discoveries concerning the characterization of antibodies, including the events leading up to the elucidation of the antibody structure. These discoveries further paved the way for other milestones in antibody-based therapies, such as the introduction of hybridoma technology in 1975. Hybridoma technology enabled the expression and isolation of monoclonal antibodies, which in turn formed the basis for the development of phage display technology and transgenic mice, which can be harnessed to directly obtain fully human monoclonal antibodies. These developments were driven by the ultimate goal of producing potent neutralizing monoclonal antibodies with optimal pharmacokinetic properties and low immunogenicity. This review then provides an outline of the most recent achievements in antivenom research, which include the application of new biotechnologies, the development of the first human monoclonal antibodies that can neutralize animal toxins, and efforts toward creating fully recombinant antivenoms. Lastly, future perspectives in the field of envenoming therapies are discussed, including rational engineering of antibody cross-reactivity and the use of oligoclonal antibody mixtures.


Asunto(s)
Alérgenos/inmunología , Desensibilización Inmunológica/métodos , Hipersensibilidad/terapia , Ponzoñas/inmunología , Animales , Antivenenos , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Hipersensibilidad/inmunología , Premio Nobel , Serpientes/inmunología
9.
Toxins (Basel) ; 10(6)2018 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-29890762

RESUMEN

Antibody discovery has become increasingly important in almost all areas of modern medicine. Different antibody discovery approaches exist, but one that has gained increasing interest in the field of toxinology and antivenom research is phage display technology. In this review, the lifecycle of the M13 phage and the basics of phage display technology are presented together with important factors influencing the success rates of phage display experiments. Moreover, the pros and cons of different antigen display methods and the use of naïve versus immunized phage display antibody libraries is discussed, and selected examples from the field of antivenom research are highlighted. This review thus provides in-depth knowledge on the principles and use of phage display technology with a special focus on discovery of antibodies that target animal toxins.


Asunto(s)
Técnicas de Visualización de Superficie Celular , Animales , Anticuerpos , Antígenos , Bacteriófago M13 , Humanos
11.
N Biotechnol ; 45: 19-27, 2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-28552814

RESUMEN

In this review, the different approaches that have been employed with the aim of developing novel antivenoms against animal envenomings are presented and discussed. Reported efforts have focused on the use of innovative immunization strategies, small molecule inhibitors against enzymatic toxins, endogenous animal proteins with toxin-neutralizing capabilities, and recombinant monoclonal antibodies. Harnessing either of these approaches, antivenom development may benefit from an in-depth understanding of venom compositions and the medical importance of individual venom toxins. Focus is thus also directed towards the different omics technologies (particularly venomics, antivenomics, and toxicovenomics) that are being used to uncover novel animal toxins, shed light on venom complexity, and provide directions for how to determine the medical relevance of individual toxins within whole venoms. Finally, techniques for assessing antivenom specificity and cross-reactivity are reviewed, with special focus on antivenomics and high-density peptide microarray technology.


Asunto(s)
Antivenenos/química , Proteómica , Animales
12.
Toxins (Basel) ; 10(12)2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30551565

RESUMEN

Snakebite envenoming is a neglected tropical disease that each year claims the lives of 80,000⁻140,000 victims worldwide. The only effective treatment against envenoming involves intravenous administration of antivenoms that comprise antibodies that have been isolated from the plasma of immunized animals, typically horses. The drawbacks of such conventional horse-derived antivenoms include their propensity for causing allergenic adverse reactions due to their heterologous and foreign nature, an inability to effectively neutralize toxins in distal tissue, a low content of toxin-neutralizing antibodies, and a complex manufacturing process that is dependent on husbandry and procurement of snake venoms. In recent years, an opportunity to develop a fundamentally novel type of antivenom has presented itself. By using modern antibody discovery strategies, such as phage display selection, and repurposing small molecule enzyme inhibitors, next-generation antivenoms that obviate the drawbacks of existing plasma-derived antivenoms could be developed. This article describes the conceptualization of a novel therapeutic development strategy for biosynthetic oligoclonal antivenom (BOA) for snakebites based on recombinantly expressed oligoclonal mixtures of human monoclonal antibodies, possibly combined with repurposed small molecule enzyme inhibitors.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antivenenos/uso terapéutico , Mordeduras de Serpientes/tratamiento farmacológico , Animales , Humanos , Proteínas Recombinantes/uso terapéutico
13.
Trop Med Infect Dis ; 3(2)2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30274438

RESUMEN

With the inclusion of snakebite envenoming on the World Health Organization's list of Neglected Tropical Diseases, an incentive has been established to promote research and development effort in novel snakebite antivenom therapies. Various technological approaches are being pursued by different research groups, including the use of small molecule inhibitors against enzymatic toxins as well as peptide- and oligonucleotide-based aptamers and antibody-based biotherapeutics against both enzymatic and non-enzymatic toxins. In this article, the most recent advances in these fields are presented, and the advantages, disadvantages, and feasibility of using different toxin-neutralizing molecules are reviewed. Particular focus within small molecules is directed towards the inhibitors varespladib, batimastat, and marimastat, while in the field of antibody-based therapies, novel recombinant polyclonal plantivenom technology is discussed.

14.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;29: e20230057, 2023. ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1528977

RESUMEN

Abstract Snakebite envenoming is a significant global health challenge, and for over a century, traditional plasma-derived antivenoms from hyperimmunized animals have been the primary treatment against this infliction. However, these antivenoms have several inherent limitations, including the risk of causing adverse reactions when administered to patients, batch-to-batch variation, and high production costs. To address these issues and improve treatment outcomes, the development of new types of antivenoms is crucial. During this development, key aspects such as improved clinical efficacy, enhanced safety profiles, and greater affordability should be in focus. To achieve these goals, modern biotechnological methods can be applied to the discovery and development of therapeutic agents that can neutralize medically important toxins from multiple snake species. This review highlights some of these agents, including monoclonal antibodies, nanobodies, and selected small molecules, that can achieve broad toxin neutralization, have favorable safety profiles, and can be produced on a large scale with standardized manufacturing processes. Considering the inherent strengths and limitations related to the pharmacokinetics of these different agents, a combination of them might be beneficial in the development of new types of antivenom products with improved therapeutic properties. While the implementation of new therapies requires time, it is foreseeable that the application of biotechnological advancements represents a promising trajectory toward the development of improved therapies for snakebite envenoming. As research and development continue to advance, these new products could emerge as the mainstay treatment in the future.


Asunto(s)
Mordeduras de Serpientes/tratamiento farmacológico , Antivenenos/uso terapéutico , Serpientes
15.
Toxicon ; 146: 151-175, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29534892

RESUMEN

Antibody technologies are being increasingly applied in the field of toxinology. Fuelled by the many advances in immunology, synthetic biology, and antibody research, different approaches and antibody formats are being investigated for the ability to neutralize animal toxins. These different molecular formats each have their own therapeutic characteristics. In this review, we provide an overview of the advances made in the development of toxin-targeting antibodies, and discuss the benefits and drawbacks of different antibody formats in relation to their ability to neutralize toxins, pharmacokinetic features, propensity to cause adverse reactions, formulation, and expression for research and development (R&D) purposes and large-scale manufacturing. A research trend seems to be emerging towards the use of human antibody formats as well as camelid heavy-domain antibody fragments due to their compatibility with the human immune system, beneficial therapeutic properties, and the ability to manufacture these molecules cost-effectively.


Asunto(s)
Anticuerpos/química , Antivenenos/farmacología , Ponzoñas/inmunología , Animales , Anticuerpos/farmacología , Antivenenos/química , Camelus , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología
16.
Toxicon ; 126: 79-89, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28017694

RESUMEN

Antivenoms against bites and stings from snakes, spiders, and scorpions are associated with immunological side effects and high cost of production, since these therapies are still derived from the serum of hyper-immunized production animals. Biotechnological innovations within envenoming therapies are thus warranted, and phage display technology may be a promising avenue for bringing antivenoms into the modern era of biologics. Although phage display technology represents a robust and high-throughput approach for the discovery of antibody-based antitoxins, several pitfalls may present themselves when animal toxins are used as targets for phage display selection. Here, we report selected critical challenges from our own phage display experiments associated with biotinylation of antigens, clone picking, and the presence of amber codons within antibody fragment structures in some phage display libraries. These challenges may be detrimental to the outcome of phage display experiments, and we aim to help other researchers avoiding these pitfalls by presenting their solutions.


Asunto(s)
Antivenenos/química , Técnicas de Visualización de Superficie Celular/métodos , Venenos de Serpiente/química , Biotinilación , Fragmentos de Inmunoglobulinas/química , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA