Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Infect Dis ; 24(1): 673, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969993

RESUMEN

BACKGROUND: Redondoviridae is a newly discovered virus family linked to oral and respiratory conditions in people, while there is still debate about whether it is also coinfected with other respiratory viruses. This study aimed to determine the frequency of Redondovirus (ReDoV) in nasopharyngeal samples and to investigate any possible links to SARS-CoV-2 infections. METHODS: A polymerase chain reaction (PCR) test was conducted on 731 nasopharyngeal samples from individuals referred to medical centers in Tehran, Iran, for SARS-CoV-2 testing to investigate the prevalence of ReDoV. An oral interview was performed to complete information on dental issues and the individuals' demographics, symptoms, and vaccination history. RESULTS: The prevalence of ReDoV was 25.99%, and 15.26% had a coinfection with SARS-CoV-2. No notable correlation was found regarding ReDoVs and SARS-CoV-2 infections (p > 0.05). Women had a higher ReDoV positivity rate of 18.47% compared to men at 7.52% (p = 0.12), and there was no significant correlation between age groups and ReDoV presence. Nonetheless, a significant association was noted between ReDoVs and dental/gum issues (p < 0.0001, OR: 13.0326). A phylogenetic analysis showed that ReDoVs originated from various human-related clusters. CONCLUSIONS: These results highlight the potential for detecting ReDoVs in nasopharyngeal samples of people with gum or dental issues. Additionally, conducting more ReDoV epidemiological research and proposing oral health as a possible marker for ReDoV infections is important.


Asunto(s)
COVID-19 , Humanos , Femenino , Masculino , Estudios Transversales , Adulto , Irán/epidemiología , Persona de Mediana Edad , Adolescente , Adulto Joven , Prevalencia , COVID-19/epidemiología , COVID-19/virología , Niño , Nasofaringe/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Coinfección/virología , Coinfección/epidemiología , Anciano , Preescolar , Lactante
2.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37047275

RESUMEN

The virome of the human oral cavity and the relationships between viruses and diseases such as periodontitis are scarcely deciphered. Redondoviruses were reported in the human oral cavity in 2019, including in periodontitis patients. Here, we aimed at detecting redondoviruses and at searching for a potential viral host in human saliva. Non-stimulated saliva was collected between December 2020 and June 2021. These samples were tested using real-time PCR regarding the presence of redondovirus and Entamoeba gingivalis DNA. Similarity searches were performed using BLAST against eukaryotic and prokaryotic sequences from GenBank. The redondovirus DNA was detected in 46% of the 28 human saliva samples. In addition, short fragments of redondovirus genomes were detected in silico within Entamoeba sequences. Finally, Entamoeba gingivalis DNA was detected in 46% of the 28 saliva samples, with a strong correlation between redondovirus DNA and E. gingivalis DNA detections, in 93% of the cases. Regarded together, these findings and previous ones strongly support the presence of redondoviruses in the human oral cavity and their association to E. gingivalis as their likely host.


Asunto(s)
Amoeba , Entamoeba , Periodontitis , Humanos , Entamoeba/genética , Saliva , Porphyromonas gingivalis/genética
3.
J Virol ; 95(21): e0081721, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34406857

RESUMEN

Redondoviridae is a newly established family of circular Rep-encoding single-stranded (CRESS) DNA viruses found in the human ororespiratory tract. Redondoviruses were previously found in ∼15% of respiratory specimens from U.S. urban subjects; levels were elevated in individuals with periodontitis or critical illness. Here, we report higher redondovirus prevalence in saliva samples: four rural African populations showed 61 to 82% prevalence, and an urban U.S. population showed 32% prevalence. Longitudinal, limiting-dilution single-genome sequencing revealed diverse strains of both redondovirus species (Brisavirus and Vientovirus) in single individuals, persistence over time, and evidence of intergenomic recombination. Computational analysis of viral genomes identified a recombination hot spot associated with a conserved potential DNA stem-loop structure. To assess the possible role of this site in recombination, we carried out in vitro studies which showed that this potential stem-loop was cleaved by the virus-encoded Rep protein. In addition, in reconstructed reactions, a Rep-DNA covalent intermediate was shown to mediate DNA strand transfer at this site. Thus, redondoviruses are highly prevalent in humans, found in individuals on multiple continents, heterogeneous even within individuals and encode a Rep protein implicated in facilitating recombination. IMPORTANCERedondoviridae is a recently established family of DNA viruses predominantly found in the human respiratory tract and associated with multiple clinical conditions. In this study, we found high redondovirus prevalence in saliva from urban North American individuals and nonindustrialized African populations in Botswana, Cameroon, Ethiopia, and Tanzania. Individuals on both continents harbored both known redondovirus species. Global prevalence of both species suggests that redondoviruses have long been associated with humans but have remained undetected until recently due to their divergent genomes. By sequencing single redondovirus genomes in longitudinally sampled humans, we found that redondoviruses persisted over time within subjects and likely evolve by recombination. The Rep protein encoded by redondoviruses catalyzes multiple reactions in vitro, consistent with a role in mediating DNA replication and recombination. In summary, we identify high redondovirus prevalence in humans across multiple continents, longitudinal heterogeneity and persistence, and potential mechanisms of redondovirus evolution by recombination.


Asunto(s)
Infecciones por Virus ADN/virología , Virus ADN/clasificación , Virus ADN/genética , Virus ADN/metabolismo , Boca/virología , Sistema Respiratorio/virología , Saliva/virología , África/epidemiología , Biodiversidad , Enfermedad Crítica , Infecciones por Virus ADN/epidemiología , Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Genoma Viral , Humanos , Metagenómica , Periodontitis/virología , Filogenia , Prevalencia , Población Rural , Estados Unidos/epidemiología , Proteínas Virales/metabolismo
4.
Cell Host Microbe ; 31(1): 58-68.e5, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36459997

RESUMEN

Redondoviruses are circular Rep-encoding single-stranded DNA (CRESS) viruses of high prevalence in healthy humans. Redondovirus abundance is increased in oro-respiratory samples from individuals with periodontitis, acute illness, and severe COVID-19. We investigated potential host cells supporting redondovirus replication in oro-respiratory samples and uncovered the oral amoeba Entamoeba gingivalis as a likely host. Redondoviruses are closely related to viruses of Entamoeba and contain reduced GC nucleotide content, consistent with Entamoeba hosts. Redondovirus and E. gingivalis co-occur in metagenomic data from oral disease and healthy human cohorts. When grown in xenic cultures with feeder bacteria, E. gingivalis was robustly positive for redondovirus RNA and DNA. A DNA proximity-ligation assay (Hi-C) on xenic culture cells showed enriched cross-linking of redondovirus and Entamoeba DNA, supporting E. gingivalis as the redondovirus host. While bacteria are established hosts for bacteriophages within the human virome, this work shows that eukaryotic commensals also contribute an abundant human-associated virus.


Asunto(s)
Bacteriófagos , COVID-19 , Entamoeba , Periodontitis , Virus , Humanos , Entamoeba/genética , Bacterias
5.
Viruses ; 14(11)2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36366580

RESUMEN

OBJECTIVES: Torquetenovirus (TTV) and Redondovirus (ReDoV) are the most prevalent viruses found in the human respiratory virome in viral metagenomics studies. A large-scale epidemiological study was performed to investigate their prevalence and loads in saliva samples according to SARS-CoV-2 status. METHODS: Saliva samples from 448 individuals (73% SARS-CoV-2 negative and 27% SARS-CoV-2 positive) aged 23-88 years were tested. SARS-CoV-2 and TTV were determined in saliva by specific qualitative and quantitative real-time PCRs, respectively. A sub-cohort of 377 subjects was additionally tested for the presence and load of ReDoV in saliva, and a different sub-cohort of 120 subjects for which paired saliva and plasma samples were available was tested for TTV and ReDoV viremia at the same timepoints as saliva. RESULTS: TTV in saliva was 72% prevalent in the entire cohort, at a mean DNA load of 4.6 log copies/mL, with no difference regardless of SARS-CoV-2 status. ReDoV was found in saliva from 61% of the entire cohort and was more prevalent in the SARS-CoV-2-negative subgroup (65% vs. 52%, respectively). In saliva, the total mean load of ReDoV was very similar to the one of TTV, with a value of 4.4 log copies/mL. The mean viral loads in subjects infected with a single virus, namely, those infected with TTV or ReDoV alone, was lower than in dually infected samples, and Tukey's multiple-comparison test showed that ReDoV single-infected samples resulted in the only true outlier (p = 0.004). Differently from TTV, ReDoV was not detected in any blood samples. CONCLUSIONS: This study establishes the prevalence and mean value of TTV and ReDoV in saliva samples and demonstrates the existence of differences between these two components of the human virome.


Asunto(s)
COVID-19 , Infecciones por Virus ADN , Torque teno virus , Humanos , Torque teno virus/genética , SARS-CoV-2/genética , Saliva , COVID-19/epidemiología , Carga Viral , ADN Viral/análisis
6.
medRxiv ; 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33851179

RESUMEN

Rationale: Viral infection of the respiratory tract can be associated with propagating effects on the airway microbiome, and microbiome dysbiosis may influence viral disease. Objective: To define the respiratory tract microbiome in COVID-19 and relationship disease severity, systemic immunologic features, and outcomes. Methods and Measurements: We examined 507 oropharyngeal, nasopharyngeal and endotracheal samples from 83 hospitalized COVID-19 patients, along with non-COVID patients and healthy controls. Bacterial communities were interrogated using 16S rRNA gene sequencing, commensal DNA viruses Anelloviridae and Redondoviridae were quantified by qPCR, and immune features were characterized by lymphocyte/neutrophil (L/N) ratios and deep immune profiling of peripheral blood mononuclear cells (PBMC). Main Results: COVID-19 patients had upper respiratory microbiome dysbiosis, and greater change over time than critically ill patients without COVID-19. Diversity at the first time point correlated inversely with disease severity during hospitalization, and microbiome composition was associated with L/N ratios and PBMC profiles in blood. Intubated patients showed patient-specific and dynamic lung microbiome communities, with prominence of Staphylococcus. Anelloviridae and Redondoviridae showed more frequent colonization and higher titers in severe disease. Machine learning analysis demonstrated that integrated features of the microbiome at early sampling points had high power to discriminate ultimate level of COVID-19 severity. Conclusions: The respiratory tract microbiome and commensal virome are disturbed in COVID-19, correlate with systemic immune parameters, and early microbiome features discriminate disease severity. Future studies should address clinical consequences of airway dysbiosis in COVID-19, possible use as biomarkers, and role of bacterial and viral taxa identified here in COVID-19 pathogenesis.

7.
mBio ; 12(4): e0177721, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34399607

RESUMEN

Viral infection of the respiratory tract can be associated with propagating effects on the airway microbiome, and microbiome dysbiosis may influence viral disease. Here, we investigated the respiratory tract microbiome in coronavirus disease 2019 (COVID-19) and its relationship to disease severity, systemic immunologic features, and outcomes. We examined 507 oropharyngeal, nasopharyngeal, and endotracheal samples from 83 hospitalized COVID-19 patients as well as non-COVID patients and healthy controls. Bacterial communities were interrogated using 16S rRNA gene sequencing, and the commensal DNA viruses Anelloviridae and Redondoviridae were quantified by qPCR. We found that COVID-19 patients had upper respiratory microbiome dysbiosis and greater change over time than critically ill patients without COVID-19. Oropharyngeal microbiome diversity at the first time point correlated inversely with disease severity during hospitalization. Microbiome composition was also associated with systemic immune parameters in blood, as measured by lymphocyte/neutrophil ratios and immune profiling of peripheral blood mononuclear cells. Intubated patients showed patient-specific lung microbiome communities that were frequently highly dynamic, with prominence of Staphylococcus. Anelloviridae and Redondoviridae showed more frequent colonization and higher titers in severe disease. Machine learning analysis demonstrated that integrated features of the microbiome at early sampling points had high power to discriminate ultimate level of COVID-19 severity. Thus, the respiratory tract microbiome and commensal viruses are disturbed in COVID-19 and correlate with systemic immune parameters, and early microbiome features discriminate disease severity. Future studies should address clinical consequences of airway dysbiosis in COVID-19, its possible use as biomarkers, and the role of bacterial and viral taxa identified here in COVID-19 pathogenesis. IMPORTANCE COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the respiratory tract, results in highly variable outcomes ranging from minimal illness to death, but the reasons for this are not well understood. We investigated the respiratory tract bacterial microbiome and small commensal DNA viruses in hospitalized COVID-19 patients and found that each was markedly abnormal compared to that in healthy people and differed from that in critically ill patients without COVID-19. Early airway samples tracked with the level of COVID-19 illness reached during hospitalization, and the airway microbiome also correlated with immune parameters in blood. These findings raise questions about the mechanisms linking SARS-CoV-2 infection and other microbial inhabitants of the airway, including whether the microbiome might regulate severity of COVID-19 disease and/or whether early microbiome features might serve as biomarkers to discriminate disease severity.


Asunto(s)
Bacterias/clasificación , Disbiosis/microbiología , Pulmón/microbiología , Nasofaringe/microbiología , Orofaringe/microbiología , SARS-CoV-2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anelloviridae/clasificación , Anelloviridae/genética , Anelloviridae/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , COVID-19/patología , Femenino , Humanos , Recuento de Linfocitos , Masculino , Microbiota , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Índice de Severidad de la Enfermedad
8.
J Clin Virol ; 131: 104586, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32841923

RESUMEN

BACKGROUND: Redondovirus (ReDoV) is a recently discovered circular, Rep-encoding single-stranded DNA (CRESS-DNA) virus in humans. Its pathogenesis and clinical associations are still completely unknown. METHODS: The presence of ReDoV DNA was investigated in biological specimens of 543 Italian subjects by in-house developed PCR assays. RESULTS: The overall ReDoV prevalence was about 4% (23 of 543 samples). The virus was detected in 22 of 209 (11 %) respiratory samples. One stool sample was also ReDoV positive. Viral DNA was not found in blood samples from immunocompetent and immunosuppressed subjects and cerebrospinal fluids from patients with neurological diseases. Genomic nucleotide differences were detected among the ReDoV isolates by sequencing a 582-nucleotide fragment of the capsid gene of the viral genome. CONCLUSIONS: The results demonstrate that ReDoV is mainly present in the respiratory tract of infected people. Further investigations are needed to reveal possible clinical implications of this new CRESS-DNA virus in humans.


Asunto(s)
Infecciones por Virus ADN/virología , Virus ADN/aislamiento & purificación , Infecciones del Sistema Respiratorio/virología , Adulto , Anciano , Proteínas de la Cápside/genética , Infecciones por Virus ADN/epidemiología , Virus ADN/clasificación , Virus ADN/genética , ADN Viral/genética , Heces/virología , Femenino , Variación Genética , Genoma Viral/genética , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Filogenia , Prevalencia , Infecciones del Sistema Respiratorio/epidemiología , Estudios Retrospectivos , Análisis de Secuencia de ADN
9.
Cell Host Microbe ; 25(5): 719-729.e4, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31071295

RESUMEN

The global virome is largely uncharacterized but is now being unveiled by metagenomic DNA sequencing. Exploring the human respiratory virome, in particular, can provide insights into oro-respiratory diseases. Here, we use metagenomics to identify a family of small circular DNA viruses-named Redondoviridae-associated with human diseases. We first identified two redondovirus genomes from bronchoalveolar lavage samples from human lung donors. We then queried thousands of metagenomic samples and recovered 17 additional complete redondovirus genomes. Detections were exclusively in human samples and mostly from respiratory tract and oro-pharyngeal sites, where Redondoviridae was the second most prevalent eukaryotic DNA virus family. Redondovirus sequences were associated with periodontal disease, and abundances decreased with treatment. Some critically ill patients in a medical intensive care unit were found to harbor high levels of redondoviruses in respiratory samples. These results suggest that redondoviruses colonize human oro-respiratory sites and can bloom in several human disorders.


Asunto(s)
Enfermedad Crítica , Infecciones por Virus ADN/virología , Virus ADN/clasificación , Virus ADN/aislamiento & purificación , Boca/virología , Periodontitis/virología , Sistema Respiratorio/virología , Adulto , Anciano , Anciano de 80 o más Años , Virus ADN/genética , Virus ADN/patogenicidad , ADN Circular/genética , ADN Viral/genética , Femenino , Humanos , Masculino , Metagenómica , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA