Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(11): 2735-2745.e12, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38723628

RESUMEN

Hepatitis B virus (HBV) is a small double-stranded DNA virus that chronically infects 296 million people. Over half of its compact genome encodes proteins in two overlapping reading frames, and during evolution, multiple selective pressures can act on shared nucleotides. This study combines an RNA-based HBV cell culture system with deep mutational scanning (DMS) to uncouple cis- and trans-acting sequence requirements in the HBV genome. The results support a leaky ribosome scanning model for polymerase translation, provide a fitness map of the HBV polymerase at single-nucleotide resolution, and identify conserved prolines adjacent to the HBV polymerase termination codon that stall ribosomes. Further experiments indicated that stalled ribosomes tether the nascent polymerase to its template RNA, ensuring cis-preferential RNA packaging and reverse transcription of the HBV genome.


Asunto(s)
Virus de la Hepatitis B , Transcripción Reversa , Humanos , Genoma Viral/genética , Virus de la Hepatitis B/genética , Mutación , Ribosomas/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Línea Celular
2.
Proc Natl Acad Sci U S A ; 121(24): e2400378121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38830096

RESUMEN

Epitranscriptomic RNA modifications have emerged as important regulators of the fate and function of viral RNAs. One prominent modification, the cytidine methylation 5-methylcytidine (m5C), is found on the RNA of HIV-1, where m5C enhances the translation of HIV-1 RNA. However, whether m5C functionally enhances the RNA of other pathogenic viruses remains elusive. Here, we surveyed a panel of commonly found RNA modifications on the RNA of hepatitis B virus (HBV) and found that HBV RNA is enriched with m5C as well as ten other modifications, at stoichiometries much higher than host messenger RNA (mRNA). Intriguingly, m5C is mostly found on the epsilon hairpin, an RNA element required for viral RNA encapsidation and reverse transcription, with these m5C mainly deposited by the cellular methyltransferase NSUN2. Loss of m5C from HBV RNA due to NSUN2 depletion resulted in a partial decrease in viral core protein (HBc) production, accompanied by a near-complete loss of the reverse transcribed viral DNA. Similarly, mutations introduced to remove the methylated cytidines resulted in a loss of HBc production and reverse transcription. Furthermore, pharmacological disruption of m5C deposition led to a significant decrease in HBV replication. Thus, our data indicate m5C methylations as a critical mediator of the epsilon elements' function in HBV virion production and reverse transcription, suggesting the therapeutic potential of targeting the m5C methyltransfer process on HBV epsilon as an antiviral strategy.


Asunto(s)
Citidina , Virus de la Hepatitis B , ARN Viral , Transcripción Reversa , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Virus de la Hepatitis B/fisiología , ARN Viral/genética , ARN Viral/metabolismo , Citidina/análogos & derivados , Citidina/metabolismo , Citidina/genética , Humanos , Transcripción Reversa/genética , Metilación , Replicación Viral/genética , Epigénesis Genética , Virión/metabolismo , Virión/genética , Transcriptoma
3.
RNA ; 30(7): 807-823, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38580456

RESUMEN

Ribosomes translate mRNA into proteins and are essential for every living organism. In eukaryotes, both ribosomal subunits are rapidly assembled in a strict hierarchical order, starting in the nucleolus with the transcription of a common precursor ribosomal RNA (pre-rRNA). This pre-rRNA encodes three of the four mature rRNAs, which are formed by several, consecutive endonucleolytic and exonucleolytic processing steps. Historically, northern blots are used to analyze the variety of different pre-rRNA species, only allowing rough length estimations. Although this limitation can be overcome with primer extension, both approaches often use radioactivity and are time-consuming and costly. Here, we present "Riboprobing," a linker ligation-based workflow followed by reverse transcription and PCR for easy and fast detection and characterization of pre-rRNA species and their 5' as well as 3' ends. Using standard molecular biology laboratory equipment, "Riboprobing" allows reliable discrimination of pre-rRNA species not resolved by northern blot (e.g., 27SA2, 27SA3, and 27SB pre-rRNA). The method can successfully be used for the analysis of total cell extracts as well as purified pre-ribosomes for a straightforward evaluation of the impact of mutant gene versions or inhibitors. In the course of method development, we identified and characterized a hitherto undescribed aberrant pre-rRNA arising from LiCl inhibition. This pre-rRNA fragment spans from processing site A1 to E, forming a small RNP that lacks most early joining assembly factors. This finding expands our knowledge of how the cell deals with severe pre-rRNA processing defects and demonstrates the strict requirement for the 5'ETS (external transcribed spacer) for the assembly process.


Asunto(s)
Precursores del ARN , ARN Ribosómico , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Flujo de Trabajo , Procesamiento Postranscripcional del ARN
4.
RNA ; 30(8): 967-976, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38684316

RESUMEN

Human T-cell leukemia virus type 1 (HTLV-1) is the only oncogenic human retrovirus discovered to date. All retroviruses are believed to use a host cell tRNA to prime reverse transcription (RT). In HTLV-1, the primer-binding site (PBS) in the genomic RNA is complementary to the 3' 18 nucleotides (nt) of human tRNAPro The human genome encodes 20 cytoplasmic tRNAPro genes representing seven isodecoders, all of which share the same 3' 18 nt sequence but vary elsewhere. Whether all tRNAPro isodecoders are used to prime RT in cells is unknown. A previous study showed that a 3' 18 nt tRNAPro-derived fragment (tRFPro) is packaged into HTLV-1 particles and can serve as an RT primer in vitro. The role of this tRNA fragment in the viral life cycle is unclear. In retroviruses, N1-methylation of the tRNA primer at position A58 (m1A) is essential for successful plus-strand transfer. Using primer-extension assays performed in chronically HTLV-1-infected cells, we found that A58 of tRNAPro is m1A-modified, implying that full-length tRNAPro is capable of facilitating successful plus-strand transfer. Analysis of HTLV-1 RT primer extension products indicated that full-length tRNAPro is likely to be the primer. To determine which tRNAPro isodecoder is used as the RT primer, we sequenced the minus-strand strong-stop RT product containing the intact tRNA primer and established that HTLV-1 primes RT using a specific tRNAPro UGG isodecoder. Further studies are required to understand how this primer is annealed to the highly structured HTLV-1 PBS and to investigate the role of tRFPro in the viral life cycle.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , ARN de Transferencia de Prolina , Transcripción Reversa , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , ARN de Transferencia de Prolina/genética , ARN de Transferencia de Prolina/metabolismo , ARN Viral/genética , ARN Viral/metabolismo
5.
Biochem Biophys Res Commun ; 711: 149909, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38615573

RESUMEN

RNA analysis has shown great value in forensic science, such as body fluids and tissue identification, postmortem interval estimation, biological age prediction, etc. Currently, most RNA follow-up experiments involve reverse transcription (RT) procedures. It has been shown that the RT step is variable and has a greater impact on subsequent data analysis, especially for forensic trace samples. However, the pattern of variation between different RNA template inputs and complementary DNA (cDNA) yield is unclear. In this study, a series of 2-fold gradient dilutions of RNA standards (1 µg/µL - 0.24 ng/µL) and forensic samples (including blood samples, saliva samples, bloodstains, and saliva stains) were reverse-transcribed using EasyQuick RT MasterMix. The obtained cDNA was quantified by droplet digital PCR (ddPCR) to assess the RT yield of the ACTB gene. The results showed that the 125 ng RNA template had the highest RT yield in a 10 µL RT reaction system with the selected kit. For all stain samples, the RT yield improved as the amount of RNA template input increased since RNA quantities were below 125 ng. As many commercialized reverse transcription kits using different kinds of enzymes are available for forensic RNA research, we recommend that systematic experiments should be performed in advance to determine the amount of RNA input at the optimum RT yield when using any kit for reverse transcription experiments.


Asunto(s)
ARN , Humanos , ARN/genética , ARN/análisis , Transcripción Reversa , Saliva/metabolismo , Saliva/química , Genética Forense/métodos , Genética Forense/normas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Estándares de Referencia , ADN Complementario/genética , Manchas de Sangre , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/normas
6.
Biochem Biophys Res Commun ; 725: 150252, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38878758

RESUMEN

Reverse transcription of human immunodeficiency virus type 1 (HIV-1) initiates from the 3' end of human tRNALys3. The primer tRNALys3 is selectively packaged into the virus in the form of a complex with human lysyl-tRNA synthetase (LysRS). To facilitate reverse transcription initiation, part of the 5' leader (5'L) of HIV-1 genomic RNA (gRNA) evolves a tRNA anticodon-like element (TLE), which binds LysRS and releases tRNALys3 for primer annealing and reverse transcription initiation. Although TLE has been identified as a key element in 5'L responsible for LysRS binding, how the conformations and various hairpin structures of 5'L regulate 5'L-LysRS interaction is not fully understood. Here, these factors have been individually investigated using direct and competitive fluorescence anisotropy binding experiments. Our data showed that the conformation of 5'L significantly influences its binding affinity with LysRS. The 5'L conformation favoring gRNA dimerization and packaging exhibits much weaker binding affinity with LysRS compared to the alternative 5'L conformation that is not selected for packaging. Additionally, dimerization of 5'L impairs LysRS-5'L interaction. Furthermore, among various regions of 5'L, both the primer binding site/TLE domain and the stem-loop 3 are important for LysRS interaction, whereas the dimerization initiation site and the splicing donor plays a minor role. In contrast, the presence of the transacting responsive and the polyadenylation signal hairpins slightly inhibit LysRS binding. These findings reveal that the conformation and various regions of the 5'L of HIV-1 genome regulate its interaction with human LysRS and the reverse transcription primer release process.


Asunto(s)
Genoma Viral , VIH-1 , Lisina-ARNt Ligasa , Conformación de Ácido Nucleico , Transcripción Reversa , Lisina-ARNt Ligasa/metabolismo , Lisina-ARNt Ligasa/química , Lisina-ARNt Ligasa/genética , Humanos , VIH-1/genética , VIH-1/enzimología , ARN Viral/metabolismo , ARN Viral/química , ARN Viral/genética , Regiones no Traducidas 5' , Unión Proteica
7.
BMC Microbiol ; 24(1): 68, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38413863

RESUMEN

OBJECTIVES: In the current study, for the first time, we reported a novel HCV molecular diagnostic approach termed reverse transcription loop-mediated isothermal amplification integrated with a gold nanoparticles-based lateral flow biosensor (RT-LAMP-AuNPs-LFB), which we developed for rapid, sensitive, specific, simple, and visual identification of HCV. METHODS: A set of LAMP primer was designed according to 5'untranslated region (5'UTR) gene from the major HCV genotypes 1b, 2a, 3b, 6a, and 3a, which are prevalent in China. The HCV-RT-LAMP-AuNPs-LFB assay conditions, including HCV-RT-LAMP reaction temperature and time were optimized. The sensitivity, specificity, and selectivity of our assay were evaluated in the current study. The feasibility of HCV-RT-LAMP-AuNPs-LFB was confirmed through clinical serum samples from patients with suspected HCV infections. RESULTS: An unique set of HCV-RT-LAMP primers were successfully designed targeting on the 5'UTR gene. The optimal detection process, including crude nucleic acid extraction (approximately 5 min), RT-LAMP reaction (67℃, 30 min), and visual interpretation of AuNPs-LFB results (~ 2 min), could be performed within 40 min without specific instruments. The limit of detection was determined to be 20 copies per test. The HCV-RT-LAMP-AuNPs-LFB assay exhibited high specificity and anti-interference. CONCLUSIONS: These preliminary results confirmed that the HCV-RT-LAMP-AuNPs-LFB assay is a sensitive, specific, rapid, visual, and cost-saving assay for identification of HCV. This diagnostic approach has great potential value for point-of-care (POC) diagnostic of HCV, especially in resource-challenged regions.


Asunto(s)
Técnicas Biosensibles , Hepatitis C , Nanopartículas del Metal , Humanos , Hepacivirus/genética , Oro , Sensibilidad y Especificidad , Regiones no Traducidas 5' , Hepatitis C/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas Biosensibles/métodos
8.
Anal Biochem ; 692: 115576, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38796118

RESUMEN

Regular monitoring of Norovirus presence in environmental and food samples is crucial due to its high transmission rates and outbreak potential. For detecting Norovirus GI, reverse transcription qPCR method is commonly used, but its sensitivity can be affected by assay performance. This study shows significantly reduced assay performance in digital PCR or qPCR when using primers targeting Norovirus GI genome 5291-5319 (NC_001959), located on the hairpin of the predicted RNA structure. It is highly recommended to avoid this region in commercial kit development or diagnosis to minimizing potential risk of false negatives.


Asunto(s)
Norovirus , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Norovirus/genética , Norovirus/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , ARN Viral/genética , ARN Viral/análisis , Humanos , Infecciones por Caliciviridae/diagnóstico , Infecciones por Caliciviridae/virología
9.
Arch Microbiol ; 206(5): 240, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698140

RESUMEN

Hop stunt viroid (HSVd), a small, single stranded, circular, non-coding infectious RNA known to cause infection in various economically important crop plants. In the present investigation, a study was conducted in the southern part of Karnataka districts of India to detect the possible association of HSVd infection in mulberry plants. A total of 41 mulberry plants showing typical viroid-like symptoms along with asymptomatic samples were collected and screened using conventional Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) using a specific set of HSVd-Fw/ HSVd-Re primers. Out of 41 samples, the study confirmed the presence of HSVd in six samples of mulberry collected from Ramanagara (1 sample), Chikkaballapur (3 samples) and Doddaballapura (2 samples) regions with an expected HSVd amplicon size of ∼ 290-300 nucleotides. The mechanical transmission of HSVd was also confirmed on cucumber (cv. Suyo) seedlings through bioassay, which was reconfirmed by RT-PCR. The amplicons were cloned, sequenced, and the representative nucleotide sequences were deposited in the NCBI GenBank. Subsequently, molecular phylogenetic analysis showed that HSVd mulberry isolates from this study were most closely related to grapevine isolates, indicating a common origin. On the other hand, it was shown to belong to a different group from mulberry isolates so far reported from Iran, Italy, Lebanon, and China. The secondary structure analysis of HSVd mulberry Indian isolates exhibited substitutions in the terminal left, pathogenicity, and variable regions compared to those of the Indian grapevine isolates. As far as this study is concerned, HSVd was detected exclusively in some mulberry plants with viral-like symptoms, but the pathogenesis and symptom expression needs to be further investigated to establish the relationship between HSVd and the disease symptoms in the mulberry plants.


Asunto(s)
Morus , Filogenia , Enfermedades de las Plantas , Virus de Plantas , Viroides , Morus/virología , Viroides/genética , Viroides/aislamiento & purificación , Viroides/clasificación , India , Enfermedades de las Plantas/virología , ARN Viral/genética , Conformación de Ácido Nucleico
10.
Mol Cell Probes ; 77: 101975, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39111403

RESUMEN

Recently, it has been discovered surprisingly that tRNA can be cleaved into specific small fragments under certain conditions. Most importantly, these tRNA-derived fragments (tRFs) participate in the regulation of gene expression, playing pivotal roles in various physiological and pathological processes and thus attracting widespread attention. Detecting tRF expression in tissues and cells often involves using tRF-specific stem-loop primers for reverse transcription. However, the high specificity offered by this method limits it to transcribing only one specific tRF sequence per reaction, necessitating separate reverse transcription and qPCR steps for multiple tRFs, leading to substantially increased time and resource consumption. This becomes especially challenging in precious samples with limited RNA availability. To address these issues, there is an urgent need for a universal and cost-effective tRF identification method. This study introduces a versatile tRF detection approach based on the uniform polyadenylation of all tRFs, allowing reverse transcription with a universal oligo(dT) primer. This method enables simultaneous reverse transcription of all target tRFs in one reaction, greatly facilitating subsequent qPCR analysis. Furthermore, it demonstrates exceptional sensitivity and specificity, offering significant value in tRF-related research.

11.
RNA Biol ; 21(1): 1-32, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38100535

RESUMEN

Viruses remain a global threat to animals, plants, and humans. The type 1 human immunodeficiency virus (HIV-1) is a member of the retrovirus family and carries an RNA genome, which is reverse transcribed into viral DNA and further integrated into the host-cell DNA for viral replication and proliferation. The RNA structures from the HIV-1 genome provide valuable insights into the mechanisms underlying the viral replication cycle. Moreover, these structures serve as models for designing novel therapeutic approaches. Here, we review structural data on RNA from the HIV-1 genome as well as computational studies based on these structural data. The review is organized according to the type of structured RNA element which contributes to different steps in the viral replication cycle. This is followed by an overview of the HIV-1 transactivation response element (TAR) RNA as a model system for understanding dynamics and interactions in the viral RNA systems. The review concludes with a description of computational studies, highlighting the impact of biomolecular simulations in elucidating the mechanistic details of various steps in the HIV-1's replication cycle.


Asunto(s)
VIH-1 , Animales , Humanos , VIH-1/genética , Duplicado del Terminal Largo de VIH , Replicación Viral , ARN Viral/genética , ARN Viral/química
12.
Anal Bioanal Chem ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046502

RESUMEN

Reverse transcription-digital PCR (RT-dPCR) is attracting attention as a method that enables SI-traceable RNA quantification without calibration, but its accuracy and bias have not been thoroughly studied. In this study, the accurate quantification of RNA by the RT-dPCR method was investigated using NMIJ CRM 6204-b, an RNA certified reference material whose certified value was assigned by orthogonal chemical measurement methods. Moreover, a two-step RT-dPCR method was adopted to examine in detail the conditions for the RT reaction process, which was expected to be the major uncertainty component in the RT-dPCR measurement. Optimization experiments revealed that the type of reverse transcriptase, the concentration of template RNA, and the type and concentration of primers in the RT reaction affected the value quantified by RT-dPCR. Under the optimal conditions, the value quantified by RT-dPCR, 76.4 ng/µL ± 6.7 ng/µï»¿L (the quantified value ± expanded uncertainty (k = 2)), was consistent with the certified value, 68.2 ng/µï»¿L ± 5.8 ng/µï»¿L, of NMIJ CRM 6204-b RNA 1000-A within the expanded uncertainty. From the results of the uncertainty evaluation, the relative combined uncertainty of the RT-dPCR method was 4.42%, and the major uncertainty components in the RT-dPCR method were the preparation of RT solution (3.68%), the inter-day difference (1.80%), and the RT reaction (1.30%). Together, the results suggested that the contribution of the RT reaction process to the total uncertainty was greater than that of the dPCR process.

13.
Anal Bioanal Chem ; 416(13): 3161-3171, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38558309

RESUMEN

Since RNA is an important biomarker of many infectious pathogens, RNA detection of pathogenic organisms is crucial for disease diagnosis and environmental and food safety. By simulating the base mismatch during DNA replication, this study presents a novel three-way junction structure-mediated reverse transcription-free exponential amplification reaction (3WJ-RTF-EXPAR) for the rapid and sensitive detection of pathogen RNA. The target RNA served as a switch to initiate the reaction by forming a three-way junction (3WJ) structure with the ex-trigger strand and the ex-primer strand. The generated trigger strand could be significantly amplified through EXPAR to open the stem-loop structure of the molecular beacon to emit fluorescence signal. The proofreading activity of Vent DNA polymerase, in combination with the unique structure of 2+1 bases at the 3'-end of the ex-primer strand, could enhance the role of target RNA as a reaction switch to reduce non-specific amplification and ensure excellent specificity to differentiate target pathogen from those causing similar symptoms. Furthermore, detection of target RNA showed a detection limit of 1.0×104 copies/mL, while the time consumption was only 20 min, outperforming qRT-LAMP and qRT-PCR, the most commonly used RNA detection methods in clinical practice. All those indicates the great application prospects of this method in clinical diagnostic.


Asunto(s)
Límite de Detección , Técnicas de Amplificación de Ácido Nucleico , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/análisis , ARN Viral/genética , ARN Bacteriano/análisis , ARN Bacteriano/genética , Humanos
14.
Appl Microbiol Biotechnol ; 108(1): 414, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985204

RESUMEN

Airborne animal viral pathogens can rapidly spread and become a global threat, resulting in substantial socioeconomic and health consequences. To prevent and control potential epidemic outbreaks, accurate, fast, and affordable point-of-care (POC) tests are essential. As a proof-of-concept, we have developed a molecular system based on the loop-mediated isothermal amplification (LAMP) technique for avian metapneumovirus (aMPV) detection, an airborne communicable agent mainly infecting turkeys and chickens. For this purpose, a colorimetric system was obtained by coupling the LAMP technique with specific DNA-functionalized AuNPs (gold nanoparticles). The system was validated using 50 different samples (pharyngeal swabs and tracheal tissue) collected from aMPV-infected and non-infected chickens and turkeys. Viral detection can be achieved in about 60 min with the naked eye, with 100% specificity and 87.88% sensitivity for aMPV. In summary, this novel molecular detection system allows suitable virus testing in the field, with accuracy and limit of detection (LOD) values highly close to qRT-PCR-based diagnosis. Furthermore, this system can be easily scalable to a platform for the detection of other viruses, addressing the current gap in the availability of POC tests for viral detection in poultry farming. KEY POINTS: •aMPV diagnosis using RT-LAMP is achieved with high sensitivity and specificity. •Fifty field samples have been visualized using DNA-nanoprobe validation. •The developed system is a reliable, fast, and cost-effective option for POCT.


Asunto(s)
Pollos , Oro , Metapneumovirus , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Infecciones por Paramyxoviridae , Enfermedades de las Aves de Corral , Sensibilidad y Especificidad , Metapneumovirus/genética , Metapneumovirus/aislamiento & purificación , Animales , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/economía , Pollos/virología , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/economía , Infecciones por Paramyxoviridae/diagnóstico , Infecciones por Paramyxoviridae/veterinaria , Infecciones por Paramyxoviridae/virología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/diagnóstico , Oro/química , Pavos , Nanopartículas del Metal/química , Límite de Detección , Colorimetría/métodos , ADN Viral/genética
15.
BMC Vet Res ; 20(1): 203, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755641

RESUMEN

BACKGROUND: Avian influenza virus (AIV) not only causes huge economic losses to the poultry industry, but also threatens human health. Reverse transcription recombinase-aided amplification (RT-RAA) is a novel isothermal nucleic acid amplification technology. This study aimed to improve the detection efficiency of H5, H7, and H9 subtypes of AIV and detect the disease in time. This study established RT-RAA-LFD and real-time fluorescence RT-RAA (RF-RT-RAA) detection methods, which combined RT-RAA with lateral flow dipstick (LFD) and exo probe respectively, while primers and probes were designed based on the reaction principle of RT-RAA. RESULTS: The results showed that RT-RAA-LFD could specifically amplify H5, H7, and H9 subtypes of AIV at 37 °C, 18 min, 39 °C, 20 min, and 38 °C, 18 min, respectively. The sensitivity of all three subtypes for RT-RAA-LFD was 102 copies/µL, which was 10 ∼100 times higher than that of reverse transcription polymerase chain reaction (RT-PCR) agarose electrophoresis method. RF-RT-RAA could specifically amplify H5, H7, and H9 subtypes of AIV at 40 °C, 20 min, 38 °C, 16 min, and 39 °C, 17 min, respectively. The sensitivity of all three subtypes for RF-RT-RAA was 101 copies/µL, which was consistent with the results of real-time fluorescence quantification RT-PCR, and 100 ∼1000 times higher than that of RT-PCR-agarose electrophoresis method. The total coincidence rate of the two methods and RT-PCR-agarose electrophoresis in the detection of clinical samples was higher than 95%. CONCLUSIONS: RT-RAA-LFD and RF-RT-RAA were successfully established in this experiment, with quick response, simple operation, strong specificity, high sensitivity, good repeatability, and stability. They are suitable for the early and rapid diagnosis of Avian influenza and they have positive significance for the prevention, control of the disease, and public health safety.


Asunto(s)
Pollos , Virus de la Influenza A , Gripe Aviar , Técnicas de Amplificación de Ácido Nucleico , Recombinasas , Transcripción Reversa , Animales , Gripe Aviar/virología , Gripe Aviar/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Técnicas de Amplificación de Ácido Nucleico/métodos , Virus de la Influenza A/genética , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Recombinasas/metabolismo , Sensibilidad y Especificidad , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/diagnóstico
16.
Biochemistry (Mosc) ; 89(3): 462-473, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38648766

RESUMEN

Structural organization of HIV-1 integrase is based on a tetramer formed by two protein dimers. Within this tetramer, the catalytic domain of one subunit of the first dimer interacts with the N-terminal domain of the second dimer subunit. It is the tetrameric structure that allows both ends of the viral DNA to be correctly positioned relative to the cellular DNA and to realize catalytic functions of integrase, namely 3'-processing and strand transfer. However, during the HIV-1 replicative cycle, integrase is responsible not only for the integration stage, it is also involved in reverse transcription and is necessary at the stage of capsid formation of the newly formed virions. It has been suggested that HIV-1 integrase is a structurally dynamic protein and its biological functions depend on its structure. Accordingly, studying interactions between the domains of integrase that provide its tetrameric structure is important for understanding its multiple functions. In this work, we investigated the role of three amino acids of the catalytic domain, I182, R187, and K188, located in the contact region of two integrase dimers in the tetramer structure, in reverse transcription and integration. It has been shown that the R187 residue is extremely important for formation of the correct integrase structure, which is necessary at all stages of its functional activity. The I182 residue is necessary for successful integration and is not important for reverse transcription, while the K188 residue, on the contrary, is involved in formation of the integrase structure, which is important for the effective reverse transcription.


Asunto(s)
Dominio Catalítico , Integrasa de VIH , VIH-1 , Transcripción Reversa , Integración Viral , Integrasa de VIH/metabolismo , Integrasa de VIH/química , Integrasa de VIH/genética , VIH-1/enzimología , Humanos
17.
Neurosurg Rev ; 47(1): 246, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38811382

RESUMEN

Moyamoya disease (MMD) is a chronic, progressive cerebrovascular occlusive disease. Ring finger protein 213 (RNF213) is a susceptibility gene of MMD. Previous studies have shown that the expression levels of angiogenic factors increase in MMD patients, but the relationship between the susceptibility gene RNF213 and these angiogenic mediators is still unclear. The aim of the present study was to investigate the pathogenesis of MMD by examining the effect of RNF213 gene knockdown on the expression of matrix metalloproteinase-9 (MMP-9) and basic fibroblast growth factor (bFGF) in rat bone marrow-derived mesenchymal stem cells (rBMSCs). Firstly, 40 patients with MMD and 40 age-matched normal individuals (as the control group) were enrolled in the present study to detect the levels of MMP-9 and bFGF in serum by ELISA. Secondly, Sprague-Dawley male rat BMSCs were isolated and cultured using the whole bone marrow adhesion method, and subsequent phenotypic analysis was performed by flow cytometry. Alizarin red and oil red O staining methods were used to identify osteogenic and adipogenic differentiation, respectively. Finally, third generation rBMSCs were transfected with lentivirus recombinant plasmid to knockout expression of the RNF213 gene. After successful transfection was confirmed by reverse transcription-quantitative PCR and fluorescence imaging, the expression levels of bFGF and MMP-9 mRNA in rBMSCs and the levels of bFGF and MMP-9 protein in the supernatant of the culture medium were detected on the 7th and 14th days after transfection. There was no significant difference in the relative expression level of bFGF among the three groups on the 7th day. For the relative expression level of MMP-9, there were significant differences on the 7th day and 14th day. In addition, there was no statistically significant difference in the expression of bFGF in the supernatant of the RNF213 shRNA group culture medium, while there was a significant difference in the expression level of MMP-9. The knockdown of the RNF213 gene affects the expression of bFGF and MMP-9. However, further studies are needed to determine how they participate in the pathogenesis of MMD. The findings of the present study provide a theoretical basis for clarifying the pathogenesis and clinical treatment of MMD.


Asunto(s)
Adenosina Trifosfatasas , Factor 2 de Crecimiento de Fibroblastos , Metaloproteinasa 9 de la Matriz , Células Madre Mesenquimatosas , Enfermedad de Moyamoya , Ratas Sprague-Dawley , Ubiquitina-Proteína Ligasas , Adulto , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Células de la Médula Ósea , Células Cultivadas , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Predisposición Genética a la Enfermedad , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Células Madre Mesenquimatosas/metabolismo , Enfermedad de Moyamoya/genética , Enfermedad de Moyamoya/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación hacia Arriba
18.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000271

RESUMEN

The human immunodeficiency virus type 1 (HIV-1) capsid is a protein core formed by multiple copies of the viral capsid (CA) protein. Inside the capsid, HIV-1 harbours all the viral components required for replication, including the genomic RNA and viral enzymes reverse transcriptase (RT) and integrase (IN). Upon infection, the RT transforms the genomic RNA into a double-stranded DNA molecule that is subsequently integrated into the host chromosome by IN. For this to happen, the viral capsid must open and release the viral DNA, in a process known as uncoating. Capsid plays a key role during the initial stages of HIV-1 replication; therefore, its stability is intimately related to infection efficiency, and untimely uncoating results in reverse transcription defects. How and where uncoating takes place and its relationship with reverse transcription is not fully understood, but the recent development of novel biochemical and cellular approaches has provided unprecedented detail on these processes. In this review, we present the latest findings on the intricate link between capsid stability, reverse transcription and uncoating, the different models proposed over the years for capsid uncoating, and the role played by other cellular factors on these processes.


Asunto(s)
Proteínas de la Cápside , Cápside , VIH-1 , Transcripción Reversa , Desencapsidación Viral , VIH-1/genética , VIH-1/fisiología , Humanos , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Replicación Viral , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , ARN Viral/metabolismo , ARN Viral/genética , Transcriptasa Inversa del VIH/metabolismo , Transcriptasa Inversa del VIH/genética
19.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474020

RESUMEN

Versatility, sensitivity, and accuracy have made the real-time polymerase chain reaction (qPCR) a crucial tool for research, as well as diagnostic applications. However, for point-of-care (PoC) use, traditional qPCR faces two main challenges: long run times mean results are not available for half an hour or more, and the requisite high-temperature denaturation requires more robust and power-demanding instrumentation. This study addresses both issues and revises primer and probe designs, modified buffers, and low ∆T protocols which, together, speed up qPCR on conventional qPCR instruments and will allow for the development of robust, point-of-care devices. Our approach, called "FlashPCR", uses a protocol involving a 15-second denaturation at 79 °C, followed by repeated cycling for 1 s at 79 °C and 71 °C, together with high Tm primers and specific but simple buffers. It also allows for efficient reverse transcription as part of a one-step RT-qPCR protocol, making it universally applicable for both rapid research and diagnostic applications.


Asunto(s)
Transcripción Reversa , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sensibilidad y Especificidad
20.
Biochemistry (Mosc) ; 88(11): 1754-1762, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38105196

RESUMEN

Reverse transcriptases (RT), or RNA-dependent DNA polymerases, are unorthodox enzymes that originally added a new angle to the conventional view of the unidirectional flow of genetic information in the cell from DNA to RNA to protein. First discovered in vertebrate retroviruses, RTs were since re-discovered in most eukaryotes, bacteria, and archaea, spanning essentially all domains of life. For retroviruses, RTs provide the ability to copy the RNA genome into DNA for subsequent incorporation into the host genome, which is essential for their replication and survival. In cellular organisms, most RT sequences originate from retrotransposons, the type of self-replicating genetic elements that rely on reverse transcription to copy and paste their sequences into new genomic locations. Some retroelements, however, can undergo domestication, eventually becoming a valuable addition to the overall repertoire of cellular enzymes. They can be beneficial yet accessory, like the diversity-generating elements, or even essential, like the telomerase reverse transcriptases. Nowadays, ever-increasing numbers of domesticated RT-carrying genetic elements are being discovered. It may be argued that domesticated RTs and reverse transcription in general is more widespread in cellular organisms than previously thought, and that many important cellular functions, such as chromosome end maintenance, may evolve from an originally selfish process of converting RNA into DNA.


Asunto(s)
ADN Polimerasa Dirigida por ARN , Transcripción Reversa , ADN Polimerasa Dirigida por ARN/genética , ARN , Retroelementos , ARN Polimerasas Dirigidas por ADN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA