Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474303

RESUMEN

Underwater activities are characterized by an imbalance between reactive oxygen/nitrogen species (RONS) and antioxidant mechanisms, which can be associated with an inflammatory response, depending on O2 availability. This review explores the oxidative stress mechanisms and related inflammation status (Oxy-Inflammation) in underwater activities such as breath-hold (BH) diving, Self-Contained Underwater Breathing Apparatus (SCUBA) and Closed-Circuit Rebreather (CCR) diving, and saturation diving. Divers are exposed to hypoxic and hyperoxic conditions, amplified by environmental conditions, hyperbaric pressure, cold water, different types of breathing gases, and air/non-air mixtures. The "diving response", including physiological adaptation, cardiovascular stress, increased arterial blood pressure, peripheral vasoconstriction, altered blood gas values, and risk of bubble formation during decompression, are reported.


Asunto(s)
Buceo , Oxígeno , Humanos , Buceo/fisiología , Nitrógeno , Hipoxia , Inflamación
2.
Undersea Hyperb Med ; 49(1): 1-12, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35226972

RESUMEN

High pressure is an environmental characteristic of the deep sea that may exert critical effects on the physiology and mental abilities of divers. In this study we evaluated the performance efficacy and mental ability of four divers during a 300-meter helium-oxygen saturation dive at sea. Spatial memory, 2D/3D mental rotation functioning, grip strength, and hand-eye coordination ability were examined for four divers during the pre-dive, compression, decompression, and post-dive phases. The results showed that both the reaction time and the correct responses for the mental rotation and hand-eye coordination were slightly fluctuated. In addition, there was a significant decline in the grip strength of the left hand. It is concluded that the performance efficacy and mental ability of divers were virtually unaffected during 300-meter helium-oxygen saturation diving at sea.


Asunto(s)
Buceo , Descompresión/métodos , Buceo/fisiología , Helio , Oxígeno , Tiempo de Reacción
3.
Eur J Appl Physiol ; 120(12): 2773-2784, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32975632

RESUMEN

PURPOSE: A prospective and controlled observational study was performed to determine if the central nervous system injury markers glial fibrillary acidic protein (GFAp), neurofilament light (NfL) and tau concentrations changed in response to a saturation dive. METHODS: The intervention group consisted of 14 submariners compressed to 401 kPa in a dry hyperbaric chamber. They remained pressurized for 36 h and were then decompressed over 70 h. A control group of 12 individuals was used. Blood samples were obtained from both groups before, during and after hyperbaric exposure, and from the intervention group after a further 25-26 h. RESULTS: There were no statistically significant changes in the concentrations of GFAp, NfL and tau in the intervention group. During hyperbaric exposure, GFAp decreased in the control group (mean/median - 15.1/ - 8.9 pg·mL-1, p < 0.01) and there was a significant difference in absolute change of GFAp and NfL between the groups (17.7 pg·mL-1, p = 0.02 and 2.34 pg·mL-1, p = 0.02, respectively). Albumin decreased in the control group (mean/median - 2.74 g/L/ - 0.95 g/L, p = 0.02), but there was no statistically significant difference in albumin levels between the groups. In the intervention group, haematocrit and mean haemoglobin values were slightly increased after hyperbaric exposure (mean/median 2.3%/1.5%, p = 0.02 and 4.9 g/L, p = 0.06, respectively). CONCLUSION: Hyperbaric exposure to 401 kPa for 36 h was not associated with significant increases in GFAp, NfL or tau concentrations. Albumin levels, changes in hydration or diurnal variation were unlikely to have confounded the results. Saturation exposure to 401 kPa seems to be a procedure not harmful to the central nervous system. TRIAL REGISTRATION: ClinicalTrials.gov NCT03192930.


Asunto(s)
Biomarcadores/metabolismo , Buceo/fisiología , Neuronas/metabolismo , Adulto , Albúminas/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Hemoglobinas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
4.
Occup Environ Med ; 76(11): 801-807, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31554647

RESUMEN

OBJECTIVES: The influence of commercial helium-oxygen saturation diving on divers' gut microbiotas was assessed to provide dietary suggestion. METHODS: Faecal samples of 47 divers working offshore were collected before (T1), during (T2) and after (T3) saturation diving. Their living and excursion depths were 55-134 metres underwater with a saturation duration of 12-31 days and PaO2 of 38-65 kPa. The faecal samples were examined through 16S ribosomal DNA amplicon sequencing based on the Illumina sequencing platform to analyse changes in the bacteria composition in the divers' guts. RESULTS: Although the α and ß diversity of the gut microbiota did not change significantly, we found that living in a hyperbaric environment of helium-oxygen saturation decreased the abundance of the genus Bifidobacterium, an obligate anaerobe, from 2.43%±3.83% at T1 to 0.79%±1.23% at T2 and 0.59%±0.79% at T3. Additionally, the abundance of some short-chain fatty acid (SCFA)-producing bacteria, such as Fusicatenibacter, Faecalibacterium, rectale group and Anaerostipes, showed a decreased trend in the order of before, during and after diving. On the contrary, the abundance of species, such as Lactococcus garvieae, Actinomyces odontolyticus, Peptoclostridium difficile, Butyricimonas virosa, Streptococcus mutans, Porphyromonas asaccharolytica and A. graevenitzii, showed an increasing trend, but most of them were pathogens. CONCLUSIONS: Occupational exposure to high pressure in a helium-oxygen saturation environment decreased the abundance of Bifidobacterium and some SCFA-producing bacteria, and increased the risk of pathogenic bacterial infection. Supplementation of the diver diet with probiotics or prebiotics during saturation diving might prevent these undesirable changes.


Asunto(s)
Buceo/fisiología , Microbioma Gastrointestinal , Helio/química , Oxígeno/química , Bacterias/clasificación , China , Humanos , Exposición Profesional
5.
Undersea Hyperb Med ; 45: 489-494, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30428237

RESUMEN

The Eurasian Tunnel is a 5.64-km crossroad tunnel that connects Europe and Asia. Located under the seabed for the first time, 3.34 km of the tunnel that crosses the Bosphorus was built by advanced tunneling techniques. An exclusively designed tunnel boring machine (TBM), which has an operating pressure of 11 bars and a diameter of 13.7 meters was used for boring the seabed tunnel. The deepest point was 106 meters below sea level. One bounce diving period and seven saturation diving periods were needed for the repair and maintenance of the TBM during the project. Total time spent under pressure was 5,763 hours. A saturation decompression chamber for four divers was used for the saturation interventions, and divers breathed trimix at storage and excursion depths. The longest saturation run was the second, with storage at 10 bars and excursions to 10.4 bars. Twenty-three professional divers who were all experienced in compressed-air work were assigned to work on the project. Four dive physicians provided medical support, which included screening of divers before and during the hyperbaric interventions as well as on-site supervision. There were no diving-related accidents. A minor hand trauma, an external otitis and occasional insomnia were non-diving-related health issues that occurred during saturation and bounce diving. To our knowledge, the Eurasian Tunnel was the first project to perform TBM repair operations at such depths under the seabed and the first saturation diving in Turkey. In this report, we aimed to share our experiences of hyperbaric medical consulting in support of this type of tunneling project.


Asunto(s)
Aire Comprimido , Descompresión/métodos , Buceo/fisiología , Arquitectura y Construcción de Instituciones de Salud/instrumentación , Arquitectura y Construcción de Instituciones de Salud/métodos , Estaciones de Transporte , Adulto , Asia , Dióxido de Carbono , Buceo/efectos adversos , Buceo/legislación & jurisprudencia , Europa (Continente) , Helio , Humanos , Humedad , Mantenimiento/métodos , Mantenimiento/organización & administración , Masculino , Persona de Mediana Edad , Nitrógeno , Enfermedades Profesionales/etiología , Exposición Profesional , Oxígeno , Presión Parcial , Admisión y Programación de Personal/organización & administración , Aptitud Física , Presión , Trastornos del Inicio y del Mantenimiento del Sueño/etiología , Factores de Tiempo , Turquía
6.
Diving Hyperb Med ; 54(1): 23-38, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38507907

RESUMEN

Introduction: This is a review of commercial heliox saturation decompression procedures. The scope does not include compression, storage depth or bell excursion dive procedures. The objectives are to: identify the sources of the procedures; trace their evolution; describe the current practice; and detect relevant trends. Methods: Eleven international commercial diving companies provided their diving manuals for review under a confidentiality agreement. Results: Modern commercial diving saturation procedures are derived from a small number of original procedures (United States Navy, Comex, and NORSOK). In the absence of relevant scientific studies since the late 80's, the companies have empirically adapted these procedures according to their needs and experience. Such adaptation has caused differences in decompression rates shallower than 60 msw, decompression rest stops and the decision to decompress linearly or stepwise. Nevertheless, the decompression procedures present a remarkable homogeneity in chamber PO2 and daily decompression rates when deeper than 60 msw. The companies have also developed common rules of good practice; no final decompression should start with an initial ascending excursion; a minimum hold is required before starting a final decompression after an excursion dive. Recommendation is made for the divers to exercise during decompression. Conclusions: We observed a trend towards harmonisation within the companies that enforce international procedures, and, between companies through cooperation inside the committees of the industry associations.


Asunto(s)
Enfermedad de Descompresión , Buceo , Humanos , Descompresión/efectos adversos , Oxígeno , Helio , Enfermedad de Descompresión/etiología
7.
Int Marit Health ; 75(2): 89-102, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38949219

RESUMEN

BACKGROUND: Saturation diving is a standard method of intervention for commercial diving during offshore operations. Current saturation procedures achieve a high level of safety with regards to decompression sickness but still put the divers under multiple stressors: 1) Environmental stress (long confinement, heat/cold, dense gases, high oxygen levels), 2) Work stress (muscular fatigue, psychological pressure, breathing equipment, etc.), 3) venous gas emboli associated with decompression, 4) Inflammation related to oxidative stress and microparticles. We present the results of a saturation divers monitoring campaign performed in the North Sea Danish sector, on the Tyra field, during 2022. The study was supported by TotalEnergies, the field operator, and performed by Boskalis Subsea Services, the diving contractor, onboard the diving support vessel Boka Atlantis. The objective was twofold: document the level of diving stress during saturation operations in the Danish sector, and compare the performances of two saturation procedures, the Boskalis and the NORSOK procedures. MATERIALS AND METHODS: Fourteen divers volunteered for the study. The monitoring package include weight and temperature measurements, psychomotor tests (objective evaluation) and questionnaires (subjective evaluation), Doppler bubble detection and bioimpedance. The results were presented in a radar diagram that provides a general view of the situation. RESULTS: The data were analysed along 3 dimensions: work and environmental, desaturation bubbles, oxidative stress and inflammation. The results showed little or no variations from the reference values. No bubbles were detected after excursion dives and the final decompression, except for two divers with a grade 1 after arriving at surface. No statistical difference could be found between the Boskalis and the NORSOK saturation procedures. CONCLUSIONS: At a depth of 40-50 msw corresponding to the Danish sector, the two saturation procedures monitored induce no or little stress to the divers. The divers know how to manage their diet, equilibrate their hydration and pace their effort. Data available on divers' post saturation period show a recovery over the 24-48 hours following the end of the decompression. Further research should focus on diving deeper than 100 msw where a greater stress can be anticipated.


Asunto(s)
Enfermedad de Descompresión , Buceo , Humanos , Buceo/efectos adversos , Buceo/fisiología , Mar del Norte , Adulto , Masculino , Saturación de Oxígeno/fisiología , Persona de Mediana Edad , Estrés Fisiológico , Dinamarca , Monitoreo Fisiológico/métodos
8.
Artículo en Inglés | MEDLINE | ID: mdl-23990832

RESUMEN

OBJECTIVE: Skin and ear infections, primarily caused by Pseudomonas aeruginosa (P. aeruginosa), are recurrent problems for saturation divers, whereas infections caused by P. aeruginosa are seldom observed in healthy people outside saturation chambers. Cystic fibrosis (CF) patients suffer from pulmonary infections by P. aeruginosa, and it has been demonstrated that CF patients have high levels of autoantibodies against Heat shock protein 60 (HSP60) compared to controls, probably due to cross-reacting antibodies induced by P. aeruginosa. The present study investigated whether rats immunised with P. aeruginosa produced autoantibodies against their own HSP60 and whether diving influenced the level of circulating anti-HSP60 antibodies. METHODS: A total of 24 rats were randomly assigned to one of three groups ('immunised', 'dived' and 'immunised and dived'). The rats in group 1 and 3 were immunised with the bacteria P. aeruginosa, every other week. Groups 2 and 3 were exposed to simulated air dives to 400 kPa (4 ata) with 45 min bottom time, every week for 7 weeks. Immediately after surfacing, the rats were anaesthetised and blood was collected from the saphenous vein. The amount of anti-HSP60 rat antibodies in the serum was analysed by enzyme linked immunosorbent assay. RESULTS: The immunised rats (group 1) showed a significant increase in the level of autoantibodies against HSP60, whereas no autoantibodies were detected in the dived rats (group 2). The rats both immunised and dived (group 3) show no significant increase in circulating autoantibodies against HSP60. A possible explanation may be that HSP60 is expressed during diving and that cross-reacting antibodies are bound.

9.
Healthcare (Basel) ; 10(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35326931

RESUMEN

In 2012, a severe accident happened during the mission of a professional saturation diver working at a depth of 90 m in the North Sea. The dynamic positioning system of the diver support vessel crashed, and the ship drifted away from the working place, while one diver's umbilical became snagged on a steel platform and was severed. After 33 min, he was rescued into the diving bell, without exhibiting any obvious neurological injury. In 2019, the media and a later 'documentary' film suggested that a miracle had happened to permit survival of the diver once his breathing gas supply was limited to only 5 min. Based on the existing data and phone calls with the diver concerned (Dc), the present case report tries to reconstruct, on rational grounds, how Dc could have survived after he was cut off from breathing gas, hot water, light and communication while 90 m deep at the bottom of the sea. Dc carried bail-out heliox (86/14) within two bottles (2 × 12 L × 300 bar: 7200 L). Calculating Dc's varying per-minute breathing gas consumption over time, both the decreased viscosity of the helium mix and the pressure-related increase in viscosity did not exhibit a breathing gas gap. Based on the considerable respiratory heat loss, the core temperature was calculated to be as low as 28.8 °C to 27.2 °C after recovery in the diving bell. In accordance with the literature, such values would be associated with impaired or lost consciousness, respectively. Relocating Dc on the drilling template by using a remotely operated vehicle (ROV), the transport of the victim to the bell and subsequent care in the hyperbaric chamber must be regarded as exemplary. We conclude that, based on rational arguments and available literature data, Dc's healthy survival is not a miracle, as it can be convincingly explained by means of reliable data. Remaining with a breathing gas supply sufficient for five minutes only would not have ended in a miracle but would have ended in death by suffocation. Nevertheless, survival of such an accident may appear surprising, and probably the limit for a healthy outcome was very close. We conclude, in addition, that highly effective occupational safety measures, in particular the considerable bail-out heliox reserve, secured the healthy survival. Nevertheless, the victim's survival is likely to be due to his excellent diving training, together with many years of diving routine. The rescue action of the second diver and Dc's retrieval by the ROV operator are also suggestive of the behavior of carefully selected crew members with the high degree of professional qualification needed to correctly function in a hostile environment.

10.
Diving Hyperb Med ; 52(4)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36525682

RESUMEN

INTRODUCTION: Saturation diving is a specialised method of intervention in offshore commercial diving. Emergencies may require the crew to be evacuated from the diving support vessel. Because saturation divers generally need several days to reach surface, the emergency evacuation of divers is based on dedicated hyperbaric rescue systems. There are still potential situations for which these systems cannot be used or deployed, and where an emergency decompression provides an alternative solution. METHODS: Our objective was to describe historical cases and assess the benefit of emergency decompressions, with the collection of data from the authors' direct experience and networks, providing witness or first-hand information. RESULTS: We documented three cases of emergency decompression following bell evacuations, and six cases of accelerated decompression performed in the chamber or hyperbaric rescue chamber. Review of these cases showed: 1) the complicated nature of such emergencies that make decisions difficult; 2) the variety of solutions implemented; and 3) the surprisingly safe and successful outcomes of several operations. Analysis of the accelerated decompression occurrences allowed derivation of the options used; upward initial excursion, increased chamber partial pressure of oxygen associated to increased ascent rates, and inert gas switching. We identified four published procedures for accelerated decompression. CONCLUSIONS: Despite modern hyperbaric rescue systems, accelerated decompression remains an essential tool in case of emergency. The diving industry needs clear guidance on what can be achieved, depending on the saturation depth and the level of emergency.


Asunto(s)
Enfermedad de Descompresión , Buceo , Humanos , Descompresión/métodos , Urgencias Médicas , Oxígeno , Enfermedad de Descompresión/terapia
11.
Front Public Health ; 10: 765197, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35570940

RESUMEN

Saturation divers work and live under high physiological and social demands for weeks on end. Even though physiological research has contributed insights to the work conditions of saturation divers, research on the qualities of the divers' psychosocial work environment is lacking. This study aimed to explore which job demands and resources are viewed as characteristic among saturation divers working within an isolated and confined environment. Based on data from 6 in-depth semi-structured interviews, template analysis was applied to map unique characteristics. By using the theoretical framework of the job demands-resources model, we found that the work environment in saturation diving was characterized by shifting demands and big contrasts, requiring adaptability in each individual diver. One major demand described by the informants was an unpredictable future, somewhat due to the changes in the oil and gas industry. Another important demand was the conflict between family and work/leisure when committing to work for extended periods in isolated environments. The monotony that characterizes the work environment is a challenge that must be managed. High wages, periods of leisure, and a prestigious job provide external motivation, while personal resources such as mental endurance and flexibility, a willingness to learn, and keeping up small personal routines, may benefit the divers' mental health. This is also affected by the quality of team climate-with features such as being sociable and considerate, having a dark sense of humor and having trust in one another.


Asunto(s)
Buceo , Buceo/fisiología , Lugar de Trabajo
12.
Front Physiol ; 13: 911167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721530

RESUMEN

Background: Whether deep saturation diving causes injury to lung function remains controversial and the mechanism is unclear. The present study aimed to evaluate the effects of a 500 m simulated single saturation dive on lung function. Methods: A retrospective study was performed in nine professional divers who spent 176 h in a high-pressure environment simulating a depth of 500-m saturation dive (51 atm, 5.02 Mpa). Pulmonary function parameters were investigated and compared before and on 3 days after the dive. Results: Nine professional divers aged (36 ± 7) years were enrolled. Three days after the dive, the parameters related to expiratory flow (forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC)) were decreased; the parameters related to small airway function (forced expiratory flow at 50%, 75% of FVC exhaled and forced mid-expiratory flow) were decreased compared with those before the dive (both p < 0.05). Additionally, after the dive, the parameters related to pulmonary diffusion function were decreased compared with those before the dive (both p < 0.05). The parameters related to lung volume (residual volume, vital capacity and total lung volume) and those related to respiratory exertion (peak expiratory flow and forced expiratory flow at 75% of FVC exhaled) were not significantly different between after and before the dive. Two divers with small airway dysfunction before the dive had obstructive ventilatory dysfunction after the dive. Additionally, mild obstructive ventilatory dysfunction in three divers before the dive became severe after the dive. After a bronchial dilation test, five divers showed improvement of FEV1, which ranged from 0.10 to 0.55 L. Chest radiographs and echocardiography of all divers were normal after diving. Conclusion: 500 m simulated saturation diving induces a decrease in small airway function and diffusion function. This injury may be associated with small airway and diffusion membrane lesions.

13.
Front Physiol ; 13: 971757, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246118

RESUMEN

Excessive fluid loss triggered by hyperbaric pressure, water immersion and hot water suits causes saturation divers to be at risk of dehydration. Dehydration is associated with reductions in mental and physical performance, resulting in less effective work and an increased risk of work-related accidents. In this study we examined the hydration status of 11 male divers over 19 days of a commercial saturation diving campaign to a working depth of 74 m, using two non-invasive methods: Bioelectrical impedance analysis (BIA) and urine specific gravity (USG). Measurements were made daily before and after bell runs, and the BIA data was used to calculated total body water (TBW). We found that BIA and USG were weakly negatively correlated, probably reflecting differences in what they measure. TBW was significantly increased after bell runs for all divers, but more so for bellmen than for in-water divers. There were no progressing changes in TBW over the 19-day study period, indicating that the divers' routines were sufficient for maintaining their hydration levels on short and long term.

14.
Int Marit Health ; 72(1): 46-48, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33829472

RESUMEN

Evolution of "safe diving practices" introduced by the diving industry and regulatory authorities in the North Sea over the past 3 or 4 decades has improved the safety records of oilfield commercial diving considerably. However, accidents still occur. In an accident occurring underwater, the outcome is often fatal. For a diving doctor providing emergency medical advice to the industry, when a diving superintendent calls to say "I have a problem" indicates an emergency and a life and death situation for a diver in water. Making a quick decision after comprehending the situations is important to tackle the problem.


Asunto(s)
Buceo , Explosiones , Accidentes , Humanos , Inconsciencia
15.
Front Physiol ; 12: 687605, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149460

RESUMEN

Commercial saturation divers are exposed to unique environmental conditions and are required to conduct work activity underwater. Consequently, divers' physiological status is shown to be perturbed and therefore, appropriate strategies and guidance are required to manage the stress and adaptive response. This study aimed to evaluate the daily energy expenditure (DEE) of commercial saturation divers during a 21-day diving operation in the North Sea. Ten saturation divers were recruited during a diving operation with a living depth of 72 metres seawater (msw) and a maximum working dive depth of 81 msw. Doubly labelled water (DLW) was used to calculate DEE during a 10-day measurement period. Energy intake was also recorded during this period by maintaining a dietary log. The mean DEE calculated was 3030.9 ± 513.0 kcal/day, which was significantly greater than the mean energy intake (1875.3 ± 487.4 kcal; p = 0.005). There was also a strong positive correction correlation between DEE and total time spent performing underwater work (r = 0.7, p = 0.026). The results suggested saturation divers were in a negative energy balance during the measurement period with an intraindividual variability in the energy cost present that may be influenced by time spent underwater.

16.
Diving Hyperb Med ; 51(1): 94-97, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33761548

RESUMEN

In the offshore oil industry, Multipurpose Support Vessels with extensive diving capability are used for inspection, maintenance and repair of subsea pipelines. The diving industry has developed systemic safety checks and strict regulatory control after a number of fatal accidents in early years. However, accidents do continue to occur and, when involving divers in the water, are often fatal. Hydrogen sulphide (H2S), called 'sour gas' in an oil field, is produced by the action of anaerobic bacteria on sulphate containing organic matter. A highly toxic gas, it remains a constant danger for offshore oil industry workers who must remain vigilant. Crude oil and gas produced in these oilfields is called 'sour crude' and pipelines carry this crude with varying content of dissolved H2S to shore for processing. Divers are routinely called to attend to leaking pipelines and come in contact with this crude. Their hot water suits and umbilical lines are often covered with crude containing dissolved H2S. There is always a possibility that these may enter and contaminate the bell environment. Such a case leading to fatality is reported here.


Asunto(s)
Buceo , Sulfuro de Hidrógeno , Descompresión , Humanos , Fenómenos Físicos
17.
Biosci Microbiota Food Health ; 40(4): 168-175, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631328

RESUMEN

The fecal microbiota and short-chain fatty acids (SCFAs) play important roles in the human body. This study examined how hyperbaric conditions affect the fecal microbiota and fecal SCFAs. Fecal samples were obtained from 12 divers at three points during deep-diving training (before the diving training, at 2.1 MPa, and after decompression). At 2.1 MPa, the changes in the frequency of Clostridium cluster IV and fecal iso-valerate levels were positively correlated, and the changes in the frequencies of Bacteroides and Clostridium subcluster XIVa were inversely correlated. After decompression, positive correlations were detected between the changes in the frequency of Bifidobacterium and fecal n-valerate levels and between the changes in the fecal levels of iso-butyrate and iso-valerate. On the other hand, inverse correlations were detected between the changes in the frequency of Clostridium cluster IX and fecal iso-butyrate levels, between the changes in the frequency of Clostridium cluster IX and fecal iso-valerate levels, and between the changes in the frequencies of Bacteroides and Clostridium cluster IV plus subcluster XIVa. During the study period, the changes in fecal iso-butyrate and iso-valerate levels were positively correlated, and inverse correlations were seen between the changes in the frequency of Clostridium cluster IV and fecal propionate levels and between the changes in the frequencies of Prevotella and Clostridium subcluster XIVa. These findings suggest that hyperbaric conditions affect the fecal microbiota and fecal SCFA levels and that intestinal conditions reversibly deteriorate under hyperbaric conditions.

18.
Front Physiol ; 11: 611208, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424633

RESUMEN

INTRODUCTION: The average age of the diving population is rising, and the risk of atherosclerosis and cardiovascular disease in divers are accordingly increasing. It is an open question whether this risk is altered by diving per se. In this study, we examined the effect of 7-weeks simulated diving on endothelial function and mitochondrial respiration in atherosclerosis-prone rats. METHODS: Twenty-four male ApoE knockout (KO) rats (9-weeks-old) were fed a Western diet for 8 weeks before 12 rats were exposed to simulated heliox dry-diving in a pressure chamber (600 kPa for 60 min, decompression of 50 kPa/min). The rats were dived twice-weekly for 7 weeks, resulting in a total of 14 dives. The remaining 12 non-diving rats served as controls. Endothelial function of the pulmonary and mesenteric arteries was examined in vitro using an isometric myograph. Mitochondrial respiration in cardiac muscle tissues was measured using high-resolution respirometry. RESULTS AND CONCLUSION: Both ApoE KO diving and non-diving rats showed changes in endothelial function at the end of the intervention, but the extent of these changes was larger in the diving group. Altered nitric oxide signaling was primarily involved in these changes. Mitochondrial respiration was unaltered. In this pro-atherosclerotic rat model of cardiovascular changes, extensive diving appeared to aggravate endothelial dysfunction rather than promote adaptation to oxidative stress.

19.
Artículo en Inglés | MEDLINE | ID: mdl-32998440

RESUMEN

Saturation diving allows divers to reduce the risk of decompression sickness while working at depth for prolonged periods but may increase reactive oxygen species (ROS) production. Such modifications can affect endothelial function by exacerbating oxidative stress. This study investigated the effects of saturation diving on oxidative stress damage. Redox status was evaluated through: ROS production; total antioxidant capacity (TAC); nitric oxide metabolites (NOx); nitrotyrosine (3-NT); and lipid peroxidation (8-iso-PGF2α) assessment. Creatinine and neopterin were analyzed as markers of renal function and damage. Measurements were performed on saliva and urine samples obtained at four time points: pre; deep; post; and 24 h post. Four divers were included in the study. After the saturation dive (post), significant (p < 0.05) increases in ROS (0.12 ± 0.03 vs. 0.36 ± 0.06 µmol.min-1), TAC (1.88 ± 0.03 vs. 2.01 ± 0.08 mM), NOx (207.0 ± 103.3 vs. 441.8 ± 97.3 µM), 3-NT (43.32 ± 18.03 vs. 18.64 ± 7.45 nM·L-1), and 8-iso-PGF2α (249.7 ± 45.1 vs. 371.9 ± 54.9 pg·mg-1 creatinine) were detected. Markers of renal damage were increased as well after the end of the saturation dive (creatinine 0.54 ± 0.22 vs. 2.72 ± 1.12 g-L-1; neopterin 73.3 ± 27.9 vs. 174.3 ± 20.53 µmol·mol-1 creatinine). These results could ameliorate commercial or military diving protocols or improve the understanding of symptoms caused by oxygen level elevation.


Asunto(s)
Buceo , Estrés Oxidativo/fisiología , Biomarcadores/metabolismo , Proyectos Piloto , Especies Reactivas de Oxígeno
20.
Front Physiol ; 10: 1342, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695628

RESUMEN

INTRODUCTION: The number of divers is rising every year, including an increasing number of aging persons with impaired endothelial function and concomitant atherosclerosis. While diving is an independent modulator of endothelial function, little is known about how diving affects already impaired endothelium. In this study, we questioned whether diving exposure leads to further damage of an already impaired endothelium. METHODS: A total of 5 male and 5 female ApoE knockout (KO) rats were exposed to simulated diving to an absolute pressure of 600 kPa in heliox gas (80% helium, 20% oxygen) for 1 h in a dry pressure chamber. 10 ApoE KO rats (5 males, 5 females) and 8 male Sprague-Dawley rats served as controls. Endothelial function was examined in vitro by isometric myography of pulmonary and mesenteric arteries. Lipid peroxidation in blood plasma, heart and lung tissue was used as measures of oxidative stress. Expression and phosphorylation of endothelial NO synthase were quantified by Western blot. RESULTS AND CONCLUSION: A single simulated dive was found to induce endothelial dysfunction in the pulmonary arteries of ApoE KO rats, and this was more profound in male than female rats. Endothelial dysfunction in males was associated with changing in production or bioavailability of NO; while in female pulmonary arteries an imbalance in prostanoid signaling was observed. No effect of diving was found on mesenteric arteries from rats of either sex. Our findings suggest that changes in endothelial dysfunction were specific for pulmonary circulation. In future, human translation of these findings may suggest caution for divers who are elderly or have prior reduced endothelial function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA