Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 394
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(11): e2321595121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437551

RESUMEN

Polynyas, areas of open water embedded within sea ice, are a key component of ocean-atmosphere interactions that act as hotspots of sea-ice production, bottom-water formation, and primary productivity. The specific drivers of polynya dynamics remain, however, elusive and coupled climate models struggle to replicate Antarctic polynya activity. Here, we leverage a 44-y time series of Antarctic sea ice to elucidate long-term trends. We identify Antarctic-wide linear increases and a hitherto undescribed cyclical pattern of polynya activity across the Ross Sea region that potentially arises from interactions between the Amundsen Sea Low and Southern Annular Mode. While their specific drivers remain unknown, identifying these emerging patterns augments our capacity to understand the processes that influence sea ice. As we enter a potentially new age of Antarctic sea ice, this advance in understanding will, in turn, lead to more accurate predictions of environmental change, and its implications for Antarctic ecosystems.

2.
Proc Natl Acad Sci U S A ; 121(29): e2400355121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38976732

RESUMEN

The ongoing and projected retreat of Arctic sea ice has garnered international interest toward the utilization of Arctic maritime corridors for shipping, tourism, and development. Yet, with potential for increasing traffic in Arctic regions, it's important to consider additional environmental variables affected by climate change which may threaten maritime operations. Here, we use four climate model projections to produce ocean wave simulations and investigate the future magnitude and seasonality of sea ice risk coupled with wave hazards. Analyzing the potential 5 mo shipping season spanning July to November along the Northwest Passage maritime route between 2020 and 2070, our results show a substantial decline in sea ice risk over the analysis time period, resulting in near open-water conditions along the route for a 5 mo period by 2070. However, as seasonal ice coverage retreats, there is a significant upward trend in wave heights along the route during July and November, with the timing of the greatest wave height shifting away from September toward later in the season. This result is pertinent as the possibility of seasonally unprecedented extreme waves coupled with subfreezing late fall temperatures makes for an especially hazardous environment, thus emphasizing the importance of considering the interaction between evolving sea ice and interdependent hazards when predicting the risks and challenges faced by Arctic maritime operations.

3.
Proc Natl Acad Sci U S A ; 120(7): e2208738120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745804

RESUMEN

Founding populations of the first Americans likely occupied parts of Beringia during the Last Glacial Maximum (LGM). The timing, pathways, and modes of their southward transit remain unknown, but blockage of the interior route by North American ice sheets between ~26 and 14 cal kyr BP (ka) favors a coastal route during this period. Using models and paleoceanographic data from the North Pacific, we identify climatically favorable intervals when humans could have plausibly traversed the Cordilleran coastal corridor during the terminal Pleistocene. Model simulations suggest that northward coastal currents strengthened during the LGM and at times of enhanced freshwater input, making southward transit by boat more difficult. Repeated Cordilleran glacial-calving events would have further challenged coastal transit on land and at sea. Following these events, ice-free coastal areas opened and seasonal sea ice was present along the Alaskan margin until at least 15 ka. Given evidence for humans south of the ice sheets by 16 ka and possibly earlier, we posit that early people may have taken advantage of winter sea ice that connected islands and coastal refugia. Marine ice-edge habitats offer a rich food supply and traversing coastal sea ice could have mitigated the difficulty of traveling southward in watercraft or on land over glaciers. We identify 24.5 to 22 ka and 16.4 to 14.8 ka as environmentally favorable time periods for coastal migration, when climate conditions provided both winter sea ice and ice-free summer conditions that facilitated year-round marine resource diversity and multiple modes of mobility along the North Pacific coast.


Asunto(s)
Ecosistema , Agua Dulce , Humanos , América del Norte , Migración Humana , Océanos y Mares , Cubierta de Hielo
4.
Proc Natl Acad Sci U S A ; 120(22): e2211432120, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216559

RESUMEN

The rapid melting of Arctic sea ice is the largest and clearest signal of anthropogenic climate change. Current projections indicate that the first ice-free Arctic summer will likely occur by mid-century, owing to increasing carbon dioxide concentrations in the atmosphere. However, other powerful greenhouse gases have also contributed to Arctic sea ice loss, notably ozone-depleting substances (ODSs). In the late 1980s, ODSs became strictly regulated by the Montreal Protocol, and their atmospheric concentrations have been declining since the mid-1990s. Here, analyzing new climate model simulations, we demonstrate that the Montreal Protocol, designed to protect the ozone layer, is delaying the first appearance of an ice-free Arctic summer, by up to 15 y, depending on future emissions. We also show that this important climate mitigation stems entirely from the reduced greenhouse gas warming from the regulated ODSs, with the avoided stratospheric ozone losses playing no role. Finally, we estimate that each Gg of averted ODS emissions results in approximately 7 km2 of avoided Arctic sea ice loss.

5.
Proc Natl Acad Sci U S A ; 119(26): e2202720119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35727968

RESUMEN

Sea ice levies an impost on maritime navigability in the Arctic, but ice cover diminution due to anthropogenic climate change is generating expectations for improved accessibility in coming decades. Projections of sea ice cover retreating preferentially from the eastern Arctic suggest key provisions of international law of the sea will require revision. Specifically, protections against marine pollution in ice-covered seas enshrined in Article 234 of the United Nations Convention on the Law of the Sea have been used in recent decades to extend jurisdictional competence over the Northern Sea Route only loosely associated with environmental outcomes. Projections show that plausible open water routes through international waters may be accessible by midcentury under all but the most aggressive of emissions control scenarios. While inter- and intraannual variability places the economic viability of these routes in question for some time, the inevitability of a seasonally ice-free Arctic will be attended by a reduction of regulatory friction and a recalibration of associated legal frameworks.


Asunto(s)
Efectos Antropogénicos , Cambio Climático , Cubierta de Hielo , Contaminación del Agua , Regiones Árticas , Predicción , Legislación como Asunto , Océanos y Mares , Contaminación del Agua/legislación & jurisprudencia
6.
Proc Natl Acad Sci U S A ; 119(44): e2203468119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279448

RESUMEN

Sea ice decline in the North Atlantic and Nordic Seas has been proposed to contribute to the repeated abrupt atmospheric warmings recorded in Greenland ice cores during the last glacial period, known as Dansgaard-Oeschger (D-O) events. However, the understanding of how sea ice changes were coupled with abrupt climate changes during D-O events has remained incomplete due to a lack of suitable high-resolution sea ice proxy records from northwestern North Atlantic regions. Here, we present a subdecadal-scale bromine enrichment (Brenr) record from the NEEM ice core (Northwest Greenland) and sediment core biomarker records to reconstruct the variability of seasonal sea ice in the Baffin Bay and Labrador Sea over a suite of D-O events between 34 and 42 ka. Our results reveal repeated shifts between stable, multiyear sea ice (MYSI) conditions during cold stadials and unstable, seasonal sea ice conditions during warmer interstadials. The shift from stadial to interstadial sea ice conditions occurred rapidly and synchronously with the atmospheric warming over Greenland, while the amplitude of high-frequency sea ice fluctuations increased through interstadials. Our findings suggest that the rapid replacement of widespread MYSI with seasonal sea ice amplified the abrupt climate warming over the course of D-O events and highlight the role of feedbacks associated with late-interstadial seasonal sea ice expansion in driving the North Atlantic ocean-climate system back to stadial conditions.


Asunto(s)
Cambio Climático , Cubierta de Hielo , Movimientos del Agua , Bromo , Bahías , Terranova y Labrador , Océanos y Mares
7.
Proc Natl Acad Sci U S A ; 119(36): e2120770119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037334

RESUMEN

The last two decades have seen a dramatic decline and strong year-to-year variability in Arctic winter sea ice, especially in the Barents-Kara Sea (BKS), changes that have been linked to extreme midlatitude weather and climate. It has been suggested that these changes in winter sea ice arise largely from a combined effect of oceanic and atmospheric processes, but the relative importance of these processes is not well established. Here, we explore the role of atmospheric circulation patterns on BKS winter sea ice variability and trends using observations and climate model simulations. We find that BKS winter sea ice variability is primarily driven by a strong anticyclonic anomaly over the region, which explains more than 50% of the interannual variability in BKS sea-ice concentration (SIC). Recent intensification of the anticyclonic anomaly has warmed and moistened the lower atmosphere in the BKS by poleward transport of moist-static energy and local processes, resulting in an increase in downwelling longwave radiation. Our results demonstrate that the observed BKS winter sea-ice variability is primarily driven by atmospheric, rather than oceanic, processes and suggest a persistent role of atmospheric forcing in future Arctic winter sea ice loss.


Asunto(s)
Atmósfera , Cubierta de Hielo , Regiones Árticas , Clima , Cubierta de Hielo/química , Océanos y Mares , Estaciones del Año , Tiempo
8.
Glob Chang Biol ; 30(4): e17283, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38663017

RESUMEN

Stratospheric ozone, which has been depleted in recent decades by the release of anthropogenic gases, is critical for shielding the biosphere against ultraviolet-B (UV-B) radiation. Although the ozone layer is expected to recover before the end of the 21st century, a hole over Antarctica continues to appear each year. Ozone depletion usually peaks between September and October, when fortunately, most Antarctic terrestrial vegetation and soil biota is frozen, dormant and protected under snow cover. Similarly, much marine life is protected by sea ice cover. The ozone hole used to close before the onset of Antarctic summer, meaning that most biota were not exposed to severe springtime UV-B fluxes. However, in recent years, ozone depletion has persisted into December, which marks the beginning of austral summer. Early summertime ozone depletion is concerning: high incident UV-B radiation coincident with snowmelt and emergence of vegetation will mean biota is more exposed. The start of summer is also peak breeding season for many animals, thus extreme UV-B exposure (UV index up to 14) may come at a vulnerable time in their life cycle. Climate change, including changing wind patterns and strength, and particularly declining sea ice, are likely to compound UV-B exposure of Antarctic organisms, through earlier ice and snowmelt, heatwaves and droughts. Antarctic field research conducted decades ago tended to study UV impacts in isolation and more research that considers multiple climate impacts, and the true magnitude and timing of current UV increases is needed.


Asunto(s)
Biota , Cambio Climático , Cubierta de Hielo , Pérdida de Ozono , Nieve , Regiones Antárticas , Animales , Rayos Ultravioleta , Estaciones del Año , Ozono Estratosférico/análisis
9.
Glob Chang Biol ; 30(6): e17353, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38837850

RESUMEN

Rapid climate change is altering Arctic ecosystems at unprecedented rates. These changes in the physical environment may open new corridors for species range expansions, with substantial implications for subsistence-dependent communities and sensitive ecosystems. Over the past 20 years, rising incidental harvest of Pacific salmon by subsistence fishers has been monitored across a widening range spanning multiple land claim jurisdictions in Arctic Canada. In this study, we connect Indigenous and scientific knowledges to explore potential oceanographic mechanisms facilitating this ongoing northward expansion of Pacific salmon into the western Canadian Arctic. A regression analysis was used to reveal and characterize a two-part mechanism related to thermal and sea-ice conditions in the Chukchi and Beaufort seas that explains nearly all of the variation in the relative abundance of salmon observed within this region. The results indicate that warmer late-spring temperatures in a Chukchi Sea watch-zone and persistent, suitable summer thermal conditions in a Beaufort Sea watch-zone together create a range-expansion corridor and are associated with higher salmon occurrences in subsistence harvests. Furthermore, there is a body of knowledge to suggest that these conditions, and consequently the presence and abundance of Pacific salmon, will become more persistent in the coming decades. Our collaborative approach positions us to document, explore, and explain mechanisms driving changes in fish biodiversity that have the potential to, or are already affecting, Indigenous rights-holders in a rapidly warming Arctic.


Asunto(s)
Cambio Climático , Animales , Regiones Árticas , Canadá , Salmón/fisiología , Temperatura , Distribución Animal , Ecosistema , Estaciones del Año
10.
J Eukaryot Microbiol ; 71(1): e13005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37877451

RESUMEN

Spiny brown dinoflagellate cysts are commonly used as sea-ice indicators in the Arctic, but their biological affinities are not well known. We present the first indication of hitherto temperate Protoperidinium tricingulatum in the Arctic based on single-cell LSU rDNA sequencing from sediments of the Disko Bay-Vaigat Sound, West Greenland. The morphological similarity of the sequenced cyst morphotype to the sea-ice indicator Islandinium? cezare morphotype 1 is striking. The morphology of the isolated cysts, as well as those observed in the total cyst assemblage following standard palynological preparation, both resemble either I.? cezare morphotype 1 or P. tricingulatum, suggesting that the specimens may in fact be close morphological variants of the same species. In addition, nine LSU rDNA sequences were obtained from morphological variants assigned to Islandinium minutum s.l.: including both subspecies minutum and subspecies barbatum. The two subspecies could not be differentiated based on partial LSU rDNA sequencing. Overall, Arctic spiny brown dinoflagellate cyst species may be morphologically more diverse and taxonomically more complex than shown earlier and further genetic and morphological studies are needed. Importantly, the value of cysts as palaeoecological indicators depends on a sound understanding of their biological affinity and taxonomy.


Asunto(s)
Dinoflagelados , Groenlandia , ADN Ribosómico/genética , Sedimentos Geológicos , Regiones Árticas
11.
Environ Sci Technol ; 58(15): 6716-6724, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38573586

RESUMEN

Wildfires in Australia have attracted extensive attention in recent years, especially for the devastating 2019-2020 fire season. Remote forcing, such as those from tropical oceans, plays an important role in driving the abnormal weather conditions associated with wildfires. However, whether high latitude climate change can impact Australian fires is largely unclear. In this study, we reveal a robust relationship between Antarctic sea ice concentration (SIC), primarily over the Amundsen Sea region, with Australian springtime fire activity, by using reanalysis data sets, AMIP simulation results, and a state-of-the-art climate model simulation. Specifically, a diminished Amundsen SIC leads to the formation of a high-pressure system above Australia as a result of the eastward propagation of Rossby waves. Meanwhile, two strengthened meridional cells originating from the tropic and polar regions also enhance subsiding airflow in Australia, resulting in prolonged arid and high-temperature conditions. This mechanism explains about 28% of the variability of Australian fire weather and contributed more than 40% to the 2019 extreme burning event, especially in the eastern hotspots. These findings contribute to our understanding of polar-low latitude climate teleconnection and have important implications for projecting Australian fires as well as the global environment.


Asunto(s)
Incendios , Incendios Forestales , Australia , Cubierta de Hielo , Océanos y Mares
12.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732944

RESUMEN

Sea ice, as an important component of the Earth's ecosystem, has a profound impact on global climate and human activities due to its thickness. Therefore, the inversion of sea ice thickness has important research significance. Due to environmental and equipment-related limitations, the number of samples available for remote sensing inversion is currently insufficient. At high spatial resolutions, remote sensing data contain limited information and noise interference, which seriously affect the accuracy of sea ice thickness inversion. In response to the above issues, we conducted experiments using ice draft data from the Beaufort Sea and designed an improved GBDT method that integrates feature-enhancement and active-learning strategies (IFEAL-GBDT). In this method, the incident angle and time series are used to perform spatiotemporal correction of the data, reducing both temporal and spatial impacts. Meanwhile, based on the original polarization information, effective multi-attribute features are generated to expand the information content and improve the separability of sea ice with different thicknesses. Taking into account the growth cycle and age of sea ice, attributes were added for month and seawater temperature. In addition, we studied an active learning strategy based on the maximum standard deviation to select more informative and representative samples and improve the model's generalization ability. The improved GBDT model was used for training and prediction, offering advantages in dealing with nonlinear, high-dimensional data, and data noise problems, further expanding the effectiveness of feature-enhancement and active-learning strategies. Compared with other methods, the method proposed in this paper achieves the best inversion accuracy, with an average absolute error of 8 cm and a root mean square error of 13.7 cm for IFEAL-GBDT and a correlation coefficient of 0.912. This research proves the effectiveness of our method, which is suitable for the high-precision inversion of sea ice thickness determined using Sentinel-1 data.

13.
J Fish Biol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38922867

RESUMEN

Polar cod (Boreogadus saida) is an endemic key species of the Arctic Ocean ecosystem. The ecology of this forage fish is well studied in Arctic shelf habitats where a large part of its population lives. However, knowledge about its ecology in the central Arctic Ocean (CAO), including its use of the sea-ice habitat, is hitherto very limited. To increase this knowledge, samples were collected at the under-ice surface during several expeditions to the CAO between 2012 and 2020, including the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The diet of immature B. saida and the taxonomic composition of their potential prey were analysed, showing that both sympagic and pelagic species were important prey items. Stomach contents included expected prey such as copepods and amphipods. Surprisingly, more rarely observed prey such as appendicularians, chaetognaths, and euphausiids were also found to be important. Comparisons of the fish stomach contents with prey distribution data suggests opportunistic feeding. However, relative prey density and catchability are important factors that determine which type of prey is ingested. Prey that ensures limited energy expenditure on hunting and feeding is often found in the stomach contents even though it is not the dominant species present in the environment. To investigate the importance of prey quality and quantity for the growth of B. saida in this area, we measured energy content of dominant prey species and used a bioenergetic model to quantify the effect of variations in diet on growth rate potential. The modeling results suggest that diet variability was largely explained by stomach fullness and, to a lesser degree, the energetic content of the prey. Our results suggest that under climate change, immature B. saida may be at least equally sensitive to a loss in the number of efficiently hunted prey than to a reduction in the prey's energy content. Consequences for the growth and survival of B. saida will not depend on prey presence alone, but also on prey catchability, digestibility, and energy content.

14.
Glob Chang Biol ; 29(17): 5087-5098, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37332145

RESUMEN

Phytoplankton primary production in the Arctic Ocean has been increasing over the last two decades. In 2019, a record spring bloom occurred in Fram Strait, characterized by a peak in chlorophyll that was reached weeks earlier than in other years and was larger than any previously recorded May bloom. Here, we consider the conditions that led to this event and examine drivers of spring phytoplankton blooms in Fram Strait using in situ, remote sensing, and data assimilation methods. From samples collected during the May 2019 bloom, we observe a direct relationship between sea ice meltwater in the upper water column and chlorophyll a pigment concentrations. We place the 2019 spring dynamics in context of the past 20 years, a period marked by rapid change in climatic conditions. Our findings suggest that increased advection of sea ice into the region and warmer surface temperatures led to a rise in meltwater input and stronger near-surface stratification. Over this time period, we identify large-scale spatial correlations in Fram Strait between increased chlorophyll a concentrations and increased freshwater flux from sea ice melt.


Asunto(s)
Cubierta de Hielo , Fitoplancton , Clorofila A , Regiones Árticas , Clorofila
15.
Glob Chang Biol ; 29(19): 5596-5614, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37492997

RESUMEN

Climate change is one of the top three global threats to seabirds, particularly species that visit polar regions. Arctic terns migrate between both polar regions annually and rely on productive marine areas to forage, on sea ice for rest and foraging, and prevailing winds during flight. Here, we report 21st-century trends in environmental variables affecting arctic terns at key locations along their Atlantic/Indian Ocean migratory flyway during the non-breeding seasons, identified through tracking data. End-of-century climate change projections were derived from Earth System Models and multi-model means calculated in two Shared Socioeconomic Pathways: 'middle-of-the-road' and 'fossil-fuelled development' scenarios. Declines in North Atlantic primary production emerge as a major impact to arctic terns likely to affect their foraging during the 21st century under a 'fossil-fuelled development' scenario. Minimal changes are, however, projected at three other key regions visited by arctic terns (Benguela Upwelling, Subantarctic Indian Ocean and the Southern Ocean). Southern Ocean sea ice extent is likely to decline, but the magnitude of change and potential impacts on tern survival are uncertain. Small changes (<1 m s-1 ) in winds are projected in both scenarios, but with minimal likely impacts on migration routes and duration. However, Southern Ocean westerlies are likely to strengthen and contract closer to the continent, which may require arctic terns to shift routes or flight strategies. Overall, we find minor effects of climate change on the migration of arctic terns, with the exception of poorer foraging in the North Atlantic. However, given that arctic terns travel over huge spatial scales and live for decades, they integrate minor changes in conditions along their migration routes such that the sum effect may be greater than the parts. Meeting carbon emission targets is vital to slow these end-of-century climatic changes and minimise extinction risk for a suite of polar species.


Asunto(s)
Charadriiformes , Cambio Climático , Animales , Calentamiento Global , Océano Atlántico , Viento , Regiones Árticas
16.
Ecol Appl ; 33(2): e2751, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36151883

RESUMEN

Sea ice loss is fundamentally altering the Arctic marine environment. Yet there is a paucity of data on the adaptability of food webs to ecosystem change, including predator-prey interactions. Polar bears (Ursus maritimus) are an important subsistence resource for Indigenous people and an apex predator that relies entirely on the under-ice food web to meet its energy needs. In this study, we assessed whether polar bears maintained dietary energy density by prey switching in response to spatiotemporal variation in prey availability. We compared the macronutrient composition of diets inferred from stable carbon and nitrogen isotopes in polar bear guard hair (primarily representing summer/fall diet) during periods when bears had low and high survival (2004-2016), between bears that summered on land versus pack ice, and between bears occupying different regions of the Alaskan and Canadian Beaufort Sea. Polar bears consumed diets with lower energy density during periods of low survival, suggesting that concurrent increased dietary proportions of beluga whales (Delphinapterus leucas) did not offset reduced proportions of ringed seals (Pusa hispida). Diets with the lowest energy density and proportions from ringed seal blubber were consumed by bears in the western Beaufort Sea (Alaska) during a period when polar bear abundance declined. Intake required to meet energy requirements of an average free-ranging adult female polar bear was 2.1 kg/day on diets consumed during years with high survival but rose to 3.0 kg/day when survival was low. Although bears that summered onshore in the Alaskan Beaufort Sea had higher-fat diets than bears that summered on the pack ice, access to the remains of subsistence-harvested bowhead whales (Balaena mysticetus) contributed little to improving diet energy density. Because most bears in this region remain with the sea ice year round, prey switching and consumption of whale carcasses onshore appear insufficient to augment diets when availability of their primary prey, ringed seals, is reduced. Our results show that a strong predator-prey relationship between polar bears and ringed seals continues in the Beaufort Sea. The method of estimating dietary blubber using predator hair, demonstrated here, provides a new metric to monitor predator-prey relationships that affect individual health and population demographics.


Asunto(s)
Caniformia , Phocidae , Ursidae , Animales , Femenino , Ursidae/fisiología , Ecosistema , Canadá , Dieta , Isótopos de Nitrógeno , Dinámica Poblacional , Cubierta de Hielo , Regiones Árticas
17.
Environ Sci Technol ; 57(39): 14589-14601, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37585923

RESUMEN

Sea ice (including overlying snow) is a dynamic interface between the atmosphere and the ocean, influencing the mercury (Hg) cycling in polar oceans. However, a large-scale and process-based model for the Hg cycle in the sea ice environment is lacking, hampering our understanding of regional Hg budget and critical processes. Here, we develop a comprehensive model for the Hg cycle at the ocean-sea ice-atmosphere interface with constraints from observational polar cryospheric data. We find that seasonal patterns of average total Hg (THg) in snow are governed by snow thermodynamics and deposition, peaking in springtime (Arctic: 5.9 ng/L; Antarctic: 5.3 ng/L) and minimizing during ice formation (Arctic: 1.0 ng/L, Antarctic: 0.5 ng/L). Arctic and Antarctic sea ice exhibited THg concentration peaks in summer (0.25 ng/L) and spring (0.28 ng/L), respectively, governed by different snow Hg transmission pathways. Antarctic snow-ice formation facilitates Hg transfer to sea ice during spring, while in the Arctic, snow Hg is primarily moved through snowmelt. Overall, first-year sea ice acts as a buffer, receiving atmospheric Hg during ice growth and releasing it to the ocean in summer, influencing polar atmospheric and seawater Hg concentrations. Our model can assess climate change effects on polar Hg cycles and evaluate the Minamata Convention's effectiveness for Arctic populations.

18.
Environ Sci Technol ; 57(17): 6799-6807, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37083047

RESUMEN

Plastic pollution has become ubiquitous with very high quantities detected even in ecosystems as remote as Arctic sea ice and deep-sea sediments. Ice algae growing underneath sea ice are released upon melting and can form fast-sinking aggregates. In this pilot study, we sampled and analyzed the ice algaeMelosira arcticaand ambient sea water from three locations in the Fram Strait to assess their microplastic content and potential as a temporary sink and pathway to the deep seafloor. Analysis by µ-Raman and fluorescence microscopy detected microplastics (≥2.2 µm) in all samples at concentrations ranging from 1.3 to 5.7 × 104 microplastics (MP) m-3 in ice algae and from 1.4 to 4.5 × 103 MP m-3 in sea water, indicating magnitude higher concentrations in algae. On average, 94% of the total microplastic particles were identified as 10 µm or smaller in size and comprised 16 polymer types without a clear dominance. The high concentrations of microplastics found in our pilot study suggest thatM. arctica could trap microplastics from melting ice and ambient sea water. The algae appear to be a temporary sink and could act as a key vector to food webs near the sea surface and on the deep seafloor, to which its fast-sinking aggregates could facilitate an important mechanism of transport.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Cadena Alimentaria , Ecosistema , Cubierta de Hielo , Proyectos Piloto , Regiones Árticas , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
19.
Oecologia ; 202(3): 589-599, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37458813

RESUMEN

Responses of one species to climate change may influence the population dynamics of others, particularly in the Arctic where food webs are strongly linked. Specifically, changes to the cryosphere may limit prey availability for predators. We examined Arctic (Vulpes lagopus) and red fox (V. vulpes) population dynamics near the southern edge of the Arctic fox distribution using fur harvest records from Churchill, Manitoba, Canada between 1955 and 2012. Arctic foxes showed a declining population trend over time (inferred from harvest records corrected for trapping effort), whereas the red fox population trend was relatively stable. The positive relationship between the annual Arctic and red fox harvests suggested interspecific competition did not promote the Arctic fox decline. To investigate alternative mechanisms, we evaluated the relative influence of sea-ice phenology, snow depth, snow duration, winter thaws, and summer temperature on the harvest dynamics of both species in the most recent 32 years (1980-2012; n = 29) of our data. Arctic fox harvests were negatively related to the length of time Hudson Bay was free of sea ice. Shorter sea ice duration may reduce access to seal carrion as an alternative winter food source when lemming densities decline. Contrary to our prediction, red fox harvest was not related to summer temperature but was positively related to snow depth, suggesting winter prey availability may limit red fox population growth. Predators have an important ecological role, so understanding the influence of changes in the cryosphere on predator-prey interactions may better illuminate the broader influence of climate change on food-web dynamics.


Asunto(s)
Ecosistema , Zorros , Animales , Zorros/fisiología , Cadena Alimentaria , Regiones Árticas , Dinámica Poblacional , Arvicolinae/fisiología
20.
Philos Trans A Math Phys Eng Sci ; 381(2249): 20220162, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37150196

RESUMEN

The Southern Ocean upper-layer freshwater balance exerts a global climatic influence by modulating density stratification and biological productivity, and hence the exchange of heat and carbon between the atmosphere and the ocean interior. It is thus important to understand and quantify the time-varying freshwater inputs, which is challenging from measurements of salinity alone. Here we use seawater oxygen isotopes from samples collected between 2016 and 2021 along a transect spanning the Scotia and northern Weddell Seas to separate the freshwater contributions from sea ice and meteoric sources. The unprecedented retreat of sea ice in 2016 is evidenced as a strong increase in sea ice melt across the northern Weddell Sea, with surface values increasing approximately two percentage points between 2016 and 2018 and column inventories increasing approximately 1 to 2 m. Surface meteoric water concentrations exceeded 4% in early 2021 close to South Georgia due to meltwater from the A68 megaberg; smaller icebergs may influence meteoric water at other times also. Both these inputs highlight the importance of a changing cryosphere for upper-ocean freshening; potential future sea ice retreats and increases in iceberg calving would enhance the impacts of these freshwater sources on the ocean and climate. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA