Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 964
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Development ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023143

RESUMEN

Effective interplay between the uterus and the embryo is essential for pregnancy establishment, however, convenient methods to screen embryo implantation success and maternal uterine response in experimental mouse models are currently lacking. Here we report 3DMOUSEneST, a groundbreaking method for analyzing mouse implantation sites based on label-free higher harmonic generation microscopy, providing unprecedented insights into the embryo-uterine dynamics during early pregnancy. The 3DMOUSEneST method incorporates second-harmonic generation microscopy to image the three-dimensional structure formed by decidual fibrillar collagen, named 'decidual nest', and third-harmonic generation microscopy to evaluate early conceptus (defined as the embryo and extraembryonic tissues) growth. We demonstrate that decidual nest volume is a measurable indicator of decidualization efficacy and correlates with the probability of early pregnancy progression based on a logistic regression analysis using Smad1/5 and Smad2/3 conditional knockout mice with known implantation defects. 3DMOUSEneST has great potential to become a principal method for studying decidual fibrillar collagen and characterizing mouse models associated with early embryonic lethality and fertility issues.

2.
Proc Natl Acad Sci U S A ; 119(47): e2214662119, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36375085

RESUMEN

Second harmonic generation microscopy (SHG) is generally acknowledged as a powerful tool for the label-free three-dimensional visualization of tissues and advanced materials, with one of its most popular applications being collagen imaging. Despite the great need, progress in super-resolved SHG imaging lags behind the developments reported over the past years in fluorescence-based optical nanoscopy. In this work, we demonstrate super-resolved re-scan SHG, qualitatively and quantitatively showing on collagenous tissues the available resolution advantage over the diffraction limit. We introduce as well super-resolved re-scan two-photon excited fluorescence microscopy, an imaging modality not explored to date.


Asunto(s)
Microscopía de Generación del Segundo Armónico , Microscopía de Generación del Segundo Armónico/métodos , Microscopía Fluorescente/métodos , Colágeno , Fotones , Cintigrafía
3.
Nano Lett ; 24(21): 6369-6375, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38752581

RESUMEN

Optical chirality, which plays important roles in liquid crystal display and biological and chemical detection, has been attracting scientists' attention due to its potential applications in optical information processing. Usually, the chiral optical response of natural molecules is very weak. However, the emergence of metasurfaces offers a promising solution to solve this issue. By judiciously designing the geometry of meta-atoms, we have realized strong optical circular dichroism (CD) in both linear and nonlinear optical regimes. However, tuning of the CD with a metasurface remains challenging. Here, we propose the twist-angle-controlled nonlinear CD effect by using the second-harmonic generation process on a gold-crystal hybrid metasurface. The CD effect of the second-harmonic waves can be tuned well by controlling the twist angle between the two constituent materials. The proposed hybrid metasurface may open new avenues for developing ultracompact and multifunctional nonlinear optical devices.

4.
Nano Lett ; 24(27): 8378-8385, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38885205

RESUMEN

Stacking orders provide a unique way to tune the properties of two-dimensional materials. Recently, ABCB-stacked tetralayer graphene has been predicted to possess atypical elemental ferroelectricity arising from its symmetry breaking but has been experimentally explored very little. Here, we observe pronounced nonlinear optical second-harmonic generation (SHG) in ABCB-stacked tetralayer graphene while absent in both ABAB- and ABCA-stacked allotropes. Our results provide direct evidence of symmetry breaking in ABCB-stacked tetralayer graphene. The remarkable contrast in the SHG spectra of tetralayer graphene allows straightforward identification of ABCB domains from the other two kinds of stacking order and facilitates the characterization of their crystalline orientation. The employed SHG technique serves as a convenient tool for exploring the intriguing physics and novel nonlinear optics in ABCB-stacked graphene, where spontaneous polarization and intrinsically gapped flat bands coexist. Our results establish ABCB-stacked graphene as a unique platform for studying the rare ferroelectricity in noncentrosymmetric elemental structures.

5.
Nano Lett ; 24(14): 4209-4216, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557205

RESUMEN

Optical nonlinear processes are indispensable in a wide range of applications, including ultrafast lasers, microscopy, and quantum information technologies. Among the diverse nonlinear processes, second-order effects usually overwhelm the higher-order ones, except in centrosymmetric systems, where the second-order susceptibility vanishes to allow the use of the third-order nonlinearity. Here we demonstrate a hybrid photonic platform whereby the balance between second- and third-order susceptibilities can be tuned flexibly. By decorating ultra-high-Q silica microcavities with atomically thin tungsten diselenide, we observe cavity-enhanced second-harmonic generation and sum-frequency generation with continuous-wave excitation at a power level of only a few hundred microwatts. We show that the coexistence of second- and third-order nonlinearities in a single device can be achieved by carefully choosing the size and location of the two-dimensional material. Our approach can be generalized to other types of cavities, unlocking the potential of hybrid systems with controlled nonlinear susceptibilities for novel applications.

6.
Nano Lett ; 24(12): 3654-3660, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38498929

RESUMEN

Optical vortices with spin and orbital angular momentum (SAM and OAM) states offer multiple degrees of freedom for manipulating optical fields and thus enable great potentials in optical information processing. Recently, the optical metasurface has become an important platform for vortex beam generation and steering. However, the strong spin-orbit interaction on such metasurfaces usually leads to spin locked OAM generation, which limits the complete control of the angular momentum state of light. Here, we propose to solve this constraint using geometric phase controlled nonlinear chiroptical metasurfaces. The metasurface consists of two types of plasmonic meta-atoms which have opposite handedness and exhibit a strong spin-dependent circular dichroism effect. By encoding specific phase singularities and phase gradients to different channels, we experimentally demonstrate the spin unlocked second harmonic beam steering. The proposed nonlinear chiroptical metasurfaces may have important applications in developing multifunctional nonlinear optical devices.

7.
Nano Lett ; 24(19): 5699-5704, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38695662

RESUMEN

We report the second harmonic generation (SHG) response from a single 34 nm diameter lithium niobate nanoparticle. The experimental setup involves a first beam devoted to the optical trapping of single nanoparticles, whereas a second arm involves a femtosecond laser source leading to the SHG emission from the trapped nanoparticles. SHG operation where one to three nanoparticles are present in the optical trap is first demonstrated, highlighting the transition between coherent and incoherent SHG, the latter known as hyper-Rayleigh scattering (HRS). With a spatial light modulator moving the optical trap in and out of the focus of the femtosecond beam, the SHG intensity is switched back and forth between a low and a high level. This controlled operation opens new avenues for nanoparticle characterization and applications in sensing or communication and information technologies and constitutes the first step in the design of active substrateless metasurfaces.

8.
Nano Lett ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847507

RESUMEN

The strong light localization and long photon lifetimes in whispering gallery mode (WGM) microresonators, benefiting from a high-quality (Q) factor and a small mode volume (V), could significantly enhance light-matter interactions, enabling efficient nonlinear photon generation and paving the way for exploring novel on-chip optical functionalities. However, the leakage of energy from bending losses severely limits the improvement of the Q factor for subwavelength WGM microresonators. Here, we demonstrated an integrated self-suspended WGM microresonator that combines external rings and bridges with a microdisk on a platform of silicon on insulator, achieving about one-hundred-fold enhancement in the Q factor and an ultrasmall mode volume of 2.67(/λnSi)3 as predicted by numerical simulations. We experimentally confirmed the improved performance of the subwavelength WGM resonator with the dramatic enhancement of third-harmonic generation and second-harmonic generation on this device. Our work is anticipated to enhance light-matter interactions on small-footprint microresonators and boost the development of efficient integrated nonlinear and quantum photonics.

9.
Nano Lett ; 24(11): 3413-3420, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38456746

RESUMEN

Two-dimensional (2D) NbOI2 demonstrates significant second-harmonic generation (SHG) with a high conversion efficiency. To unlock its full potential in practical applications, it is desirable to modulate the SHG behavior while utilizing the intrinsic lattice anisotropy. Here, we demonstrate direction-specific modulation of the SHG response in NbOI2 by applying anisotropic strain with respect to the intrinsic lattice orientations, where more than 2-fold enhancement in the SHG intensity is achieved under strain along the polar axis. The strain-driven SHG evolution is attributed to the strengthened built-in piezoelectric field (polar axis) and the enlarged Peierls distortions (nonpolar axis). Moreover, we provide quantifications of the correlation between strain and SHG intensity in terms of the susceptibility tensor. Our results demonstrate the effective coupling of orientation-specific strain to the anisotropic SHG response through the intrinsic polar order in 2D nonlinear optical crystals, opening a new paradigm toward the development of functional devices.

10.
Nano Lett ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836611

RESUMEN

Light-matter strong coupling (LMSC) is an intriguing state in which light and matter are hybridized inside a cavity. It is increasingly recognized as an excellent way to control material properties without any chemical modification. Here, we show that the LMSC is a powerful state for manipulating chiral nonlinear optical (NLO) effects through the investigation of second harmonic generation (SHG) circular dichroism. At the upper polariton band in LMSC, in addition to the enhancement of SHG by more than 1 order of magnitude, the responsivity to the handedness of circularly polarized light was largely modified, where sign inversion and increase of the dissymmetry factor were achieved. Quarter waveplate rotation analysis revealed that the LMSC clearly influenced the coefficients associated with chirality in the NLO process and also contributed to the enhancement of nonlinear magnetic dipole interactions. This study demonstrated that LMSC serves as a great platform for controlling chiral and magneto-optics.

11.
Nano Lett ; 24(12): 3744-3749, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38483127

RESUMEN

Ultrafast nonlinearity, which results in modulation of the linear optical response, is a basis for the development of time-varying media, in particular those operating in the epsilon-near-zero (ENZ) regime. Here, we demonstrate that the intraband excitation of hot electrons in the ENZ film results in a second-harmonic resonance shift of ∼10 THz (40 nm) and second-harmonic generation (SHG) intensity changes of >100% with only minor (<1%) changes in linear transmission. The modulation is 10-fold enhanced by a plasmonic metasurface coupled to a film, allowing for ultrafast modulation of circularly polarized SHG. The effect is described by the plasma frequency renormalization in the ENZ material and the modification of the electron damping, with a possible influence of the hot-electron dynamics on the quadratic susceptibility. The results elucidate the nature of the second-order nonlinearity in ENZ materials and pave the way to the rational engineering of active nonlinear metamaterials and metasurfaces for time-varying applications.

12.
Nano Lett ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619536

RESUMEN

Nanoscale spatially controlled modulation of the properties of ferroelectrics via artificial domain pattering is crucial to their emerging optoelectronics applications. New patterning strategies to achieve high precision and efficiency and to link the resultant domain structures with device functionalities are being sought. Here, we present an epitaxial heterostructure of SrRuO3/PbTiO3/SrRuO3, wherein the domain configuration is delicately determined by the charge screening conditions in the SrRuO3 layer and the substrate strains. Chemical etching of the top SrRuO3 layer leads to a transition from in-plane a domains to out-of-plane c domains, accompanied by a giant (>105) modification in the second harmonic generation response. The modulation effect, coupled with the plasmonic resonance effect from SrRuO3, enables a highly flexible design of nonlinear optical devices, as demonstrated by a simulated split-ring resonator metasurface. This domain patterning strategy may be extended to more thin-film ferroelectric systems with domain stabilities amenable to electrostatic boundary conditions.

13.
Small ; : e2307512, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38342669

RESUMEN

Second-harmonic generation (SHG) offers a convenient approach for infrared-to-visible light conversion in tunable nanoscale light sources and optical communication. Semiconductor nanostructures offer rich possibilities to tailor their nonlinear optical properties. In this study, strong second-harmonic generation in InP nanomembranes with InAsP quantum well (QW) is demonstrated. Compared with bulk InP, up to 100 times enhancement of SHG is achieved in the short-wave infrared range. This enhancement is shown to be predominantly induced by the resonance-enhanced absorption and quantum confinement of fundamental wavelengths in the InAsP QW. The thin nanomembrane structure will also provide nanocavity enhancement for second-harmonic wavelengths. The enhanced SHG peak wavelengths can also be tuned by changing the QW composition. These findings provide an effective strategy for enhancing and manipulating the second-harmonic generation in semiconductor quantum-confined nanostructures for on-chip all-optical applications.

14.
Small ; 20(6): e2304563, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37786270

RESUMEN

It is substantially challenging for non-centrosymmetric (NCS) Hg-based chalcogenides for infrared nonlinear optical (IR-NLO) applications to realize wide band gap (Eg > 3.0 eV) and sufficient phase-matching (PM) second-harmonic-generation intensity (deff > 1.0 × benchmark AgGaS2 ) simultaneously due to the inherent incompatibility. To address this issue, this work presents a diagonal synergetic substitution strategy for creating two new NCS quaternary Hg-based chalcogenides, AEHgGeS4 (AE = Sr and Ba), based on the centrosymmetric (CS) AEIn2 S4 . The derived AEHgGeS4 displays excellent NLO properties such as a wide Eg (≈3.04-3.07 eV), large PM deff (≈2.2-3.0 × AgGaS2 ), ultra-high laser-induced damage threshold (≈14.8-15 × AgGaS2 ), and suitable Δn (≈0.19-0.24@2050 nm), making them highly promising candidates for IR-NLO applications. Importantly, such excellent second-order NLO properties are primarily attributed to the synergistic combination of tetrahedral [HgS4 ] and [GeS4 ] functional primitives, as supported by detailed theoretical calculations. This study reports the first two NCS Hg-based materials with well-balanced comprehensive properties (i.e., Eg > 3.0 eV and deff > 1.0 × benchmark AgGaS2 ) and puts forward a new design avenue for the construction of more efficient IR-NLO candidates.

15.
Small ; 20(26): e2310423, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38263809

RESUMEN

Infrared nonlinear optical (IR NLO) materials play significant roles in laser technology. The novel functional building units (FBUs) are of great importance in constructing NLO materials with strong second harmonic generation (SHG). Herein, polysulfide anion [Sx]2- (x = 2, 3, 4, 5) units are investigated on NLO-related properties and structure-performance relationships. Theoretical calculations uncover that the [Sx]2- (x = 2, 3, 4, 5) units are potential IR NLO FBUs with large polarizability anisotropy (δ), hyperpolarizability (ß) and wide HOMO-LUMO gap. Fourteen crystals including [Sx]2- (x = 2, 3, 4, 5) units are calculated and analyzed. The results show that these units can result in a wide IR transmittance range, significant SHG effects, wide band gap Eg (Na2S4: Eg = 3.09 eV), and large birefringence Δn [BaS3 (P21212): Δn = 0.70]. More importantly, it is highlighted that the crystal materials including with [Sx]2- (x = 2, 3, 4, 5) groups are good candidates for the exploration of the outstanding IR NLO materials.

16.
Small ; 20(12): e2307072, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37940616

RESUMEN

Discovering new deep ultraviolet (DUV) nonlinear optical (NLO) materials is the current research hotspot. However, how to perfectly integrate several stringent performances into a crystal is a great challenge because of the natural incompatibility among them, particularly wide band gap and large NLO coefficient. To tackle the challenge, a boron-rich closed-loop strategy is supposed, based on which a new barium borate, Ba4B14O25, is designed and synthesized successfully via the high-temperature solid-state melting method. It features a highly polymeric 3D geometry with the closed-loop anionic framework [B14O25]8- constructed by the fundamental building blocks [B14O33]24-. The high-density π-conjugated [BO3]3- groups and the fully closed-loop B-O-B connections make Ba4B14O25 possess excellent NLO properties, including short UV cutoff edge (<200 nm), large second harmonic generation response (3.0 × KDP) and phase-matching capability, being a promising DUV-transparent NLO candidate material. The work provides a creative design strategy for the exploration of DUV NLO crystals.

17.
Small ; 20(3): e2305711, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37697703

RESUMEN

The typical chalcopyrite AgGaQ2 (Q = S, Se) are commercial infrared (IR) second-order nonlinear optical (NLO) materials; however, they suffer from unexpected laser-induced damage thresholds (LIDTs) primairy due to their narrow band gaps. Herein, what sets this apart from previously reported chemical substitutions is the utilization of an unusual cationic substitution strategy, represented by [[SZn4 ]S12 + [S4 Zn13 ]S24 + 11ZnS4 ⇒ MS12 + [M4 Cl]S24 + 11GaS4 ], in which the covalent Sx Zny units in the diamond-like sphalerite ZnS are synergistically replaced by cationic Mx Cly units, resulting in two novel salt-inclusion sulfides, M[M4 Cl][Ga11 S20 ] (M = A/Ba, A = K, 1; Rb, 2). As expected, the introduction of mixed cations in the GaS4 anionic frameworks of 1 and 2 leads to wide band gaps (3.04 and 3.01 eV), which exceeds the value of AgGaS2 , facilitating the improvement of high LIDTs (9.4 and 10.3 × AgGaS2 @1.06 µm, respectively). Furthermore, compounds 1 and 2 exhibit moderate second-harmonic generation intensities (0.84 and 0.78 × AgGaS2 @2.9 µm, respectively), mainly originating from the orderly packing tetrahedral GaS4 units. Importantly, this study demonstrates the successful application of the cationic substitution strategy based on diamond-like structures to provide a feasible chemical design insight for constructing high-performance NLO materials.

18.
Chemistry ; 30(14): e202302998, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38231551

RESUMEN

Polar crystalline materials, a subset of the non-centrosymmetric materials, are highly sought after. Their symmetry properties make them pyroelectric and also piezoelectric and capable of second-harmonic generation (SHG). For SHG and piezoelectric applications, metal oxides are commonly used. The advantages of oxides are durability and hardness - downsides are the need for high-temperature synthesis/processing and often the need to include toxic metals. Organic polar crystals, on the other hand, can avoid toxic metals and can be amenable to solution-state processing. While the vast majority of polar organic molecules crystallize in non-polar space groups, we found that both 7-chloro-1,3,5-triazaadamantane, for short Cl-TAA, and also the related Br-TAA (but not I-TAA) form polar crystals in the space group R3m, easily obtained from dichloromethane solution. Measurements confirm piezoelectric and SHG properties for Cl-TAA and Br-TAA. When the two species are crystallized together, solid solutions form, suggesting that properties of future materials can be tuned continuously.

19.
BMC Cancer ; 24(1): 652, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811917

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) ranks among the deadliest types of cancer, and it will be meaningful to search for new biomarkers with prognostic value to help clinicians tailor therapeutic strategies. METHODS: Here we tried to use an advanced optical imaging technique, multiphoton microscopy (MPM) combining second-harmonic generation (SHG) and two-photon excited fluorescence (TPEF) imaging, for the label-free detection of PDAC tissues from a cohort of 149 patients. An automated image processing method was used to extract collagen features from SHG images and the Kaplan-Meier survival analysis and Cox proportional hazards regression were used to assess the prognostic value of collagen signatures. RESULTS: SHG images clearly show the different characteristics of collagen fibers in tumor microenvironment. We gained eight collagen morphological features, and a Feature-score was derived for each patient by the combination of these features using ridge regression. Statistical analyses reveal that Feature-score is an independent factor, and can predict the overall survival of PDAC patients as well as provide well risk stratification. CONCLUSIONS: SHG imaging technique can potentially be a tool for the accurate diagnosis of PDAC, and this optical biomarker (Feature-score) may help clinicians make more approximate treatment decisions.


Asunto(s)
Carcinoma Ductal Pancreático , Colágeno , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/metabolismo , Pronóstico , Femenino , Masculino , Colágeno/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/diagnóstico , Persona de Mediana Edad , Anciano , Microscopía de Generación del Segundo Armónico/métodos , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/análisis , Estimación de Kaplan-Meier , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Adulto , Microambiente Tumoral
20.
Nanotechnology ; 35(14)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38055989

RESUMEN

Transition metal dichalcogenides (TMDs) are actively studied in various fields of optics and optoelectronics, including nonlinear optics of second-harmonic generation (SHG). By stacking two different TMD materials to form a heterobilyaer, unique optical properties emerge, with stronger SHG at a twist angle of 0° between TMDs and weaker SHG at a twist angle of 60°. In this work, we demonstrate the enhancement of SHG in a heterobilayer consisting of WSe2and WS2monolayers stacked at a twist angle of 64.1°, using a nanoparticle to induce local strain. The interatomic spacing of the heterobilayer is deformed by the nanoparticle, breaking the inversion symmetry, resulting in a substantial increase in the SHG of the heterobilayer at room temperature. The SHG increases depending on the polarization of the pump laser: 15-fold for linear polarization, 9-fold for right-circular polarization, and up to 100-fold for left-circular polarization. In addition, the SHG enhanced in the heterobilayer with local strain satisfies the same chiral selection rule as in the unstrained TMD region, demonstrating that the chiral selection rule of SHG is insensitive to local strain. Our findings will increase the applicability of TMD heterobilayers in nonlinear optoelectronics and valleytronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA