Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Gene Med ; 26(1): e3628, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37963584

RESUMEN

BACKGROUND: Butein has shown substantial potential as a cancer treatment, but its precise mechanism of action in colorectal cancer (CRC) remains unclear. This study aimed to uncover the underlying mechanisms through which butein operates in CRC and to identify potential biomarkers through a comprehensive investigation. METHODS: Target genes associated with butein were sourced from SwissTargetPrediction, CTD, BindingDB and TargetNet. Gene expression data from the GSE38026 dataset and the single-cell dataset (GSE222300) were retrieved from the Gene Expression Omnibus database. The activation of disease-related pathways was assessed using Kyoto Encyclopedia of Genes and Genomes, Gene Ontology and differential gene analysis. Disease-associated genes were identified through differential analysis and weighted gene co-expression network analysis (WGCNA). The protein-protein interaction network was utilized to pinpoint potential drug targets. Molecular complex detection (MCODE) analysis was employed to uncover relevant genes influenced by butein within key subgroup networks. Machine learning techniques were applied for the screening of potential biomarkers, with receiver operating characteristic curves used to evaluate their clinical significance. Single-cell analysis was conducted to assess the pharmacological targets of butein in CRC, with validation performed using the external dataset GSE40967. RESULTS: A total of 232 target genes for butein were identified. Functional enrichment analysis revealed significant enrichment of signaling pathways, including mitogen-activated protein kinase, JAK-STAT and NF-κB, among these genes. Differential analysis, in conjunction with WGCNA, yielded 520 disease-related genes. Subsequently, a disease-drug-gene network consisting of 727 targets was established, and a subnetwork containing 56 crucial genes was extracted. Important pathways such as the FoxO signaling pathway exhibited significant enrichment within these key genes. Machine learning applied to the 56 important genes led to the identification of a potential biomarker, UBE2C. Receiver operating characteristic analysis demonstrated the excellent clinical predictive utility of UBE2C. Single-cell analysis suggested that butein's therapeutic effects might be linked to its influence on epithelial and T cells, with UBE2C expression associated with these cell types. Validation using the external dataset GSE40967 further confirmed the exceptional clinical predictive capability of UBE2C. CONCLUSION: This study combines network pharmacology with single-cell analysis to unravel the mechanisms underlying butein's effects in CRC. Notably, UBE2C emerged as a promising biomarker with superior clinical efficacy. These research findings contribute significantly to our understanding of specific molecular mechanisms, potentially shaping future clinical practices.


Asunto(s)
Chalconas , Neoplasias Colorrectales , Farmacología en Red , Humanos , Biomarcadores , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Análisis de Secuencia de ARN
2.
Environ Toxicol ; 39(5): 2741-2752, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38251953

RESUMEN

The tumor microenvironment (TME) significantly influences disease progression through immune infiltration, while ferroptosis, a recently discovered cell death mechanism, plays a crucial role in tumor suppression. However, its role in breast cancer is not clear. In this study, we analyzed bulk RNA and single-cell RNA sequencing data from 1217 samples, including 1104 breast cancer patients and 113 controls, to identify ferroptosis-related genes (FRGs) and construct a prognostic model. Using univariate cox regression, LASSO regression, and multivariate cox regression analysis, we discovered 21 FRGs and 3 TME-related immune cell types with prognostic value. Dimensionality reduction clustering and visualization were performed using the UMAP method, while the immune infiltration process was calculated with the TIP online tool. We employed GSEA enrichment analysis, WGCNA clustering analysis, and correlation analysis to examine functional differences, and the mutation analysis of the best and worst prognosis groups was conducted using the maftools package. Our findings revealed that knocking down the expression of the hub gene SLC39A7 significantly impacted cancer cell apoptosis and combining ferroptosis and TME scores yielded high prognostic power. Epithelial cells and B cells exhibited higher ferroptosis scores, which were independently associated with immune checkpoint blockade (ICB) response and ICB gene expression. This study provides a foundation for further exploration of the relationship between ferroptosis and ICB response in breast cancer. In conclusion, we developed a prognostic model based on ferroptosis and infiltrated immune cells that effectively stratified breast cancer patients and demonstrated the role of SLC39A7 in breast cancer pathogenesis through the regulation of apoptosis.


Asunto(s)
Neoplasias de la Mama , Proteínas de Transporte de Catión , Ferroptosis , Humanos , Femenino , Neoplasias de la Mama/genética , Ferroptosis/genética , Microambiente Tumoral/genética , Apoptosis , Muerte Celular
3.
BMC Bioinformatics ; 24(1): 432, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964243

RESUMEN

BACKGROUND: Deep generative models naturally become nonlinear dimension reduction tools to visualize large-scale datasets such as single-cell RNA sequencing datasets for revealing latent grouping patterns or identifying outliers. The variational autoencoder (VAE) is a popular deep generative method equipped with encoder/decoder structures. The encoder and decoder are useful when a new sample is mapped to the latent space and a data point is generated from a point in a latent space. However, the VAE tends not to show grouping pattern clearly without additional annotation information. On the other hand, similarity-based dimension reduction methods such as t-SNE or UMAP present clear grouping patterns even though these methods do not have encoder/decoder structures. RESULTS: To bridge this gap, we propose a new approach that adopts similarity information in the VAE framework. In addition, for biological applications, we extend our approach to a conditional VAE to account for covariate effects in the dimension reduction step. In the simulation study and real single-cell RNA sequencing data analyses, our method shows great performance compared to existing state-of-the-art methods by producing clear grouping structures using an inferred encoder and decoder. Our method also successfully adjusts for covariate effects, resulting in more useful dimension reduction. CONCLUSIONS: Our method is able to produce clearer grouping patterns than those of other regularized VAE methods by utilizing similarity information encoded in the data via the highly celebrated UMAP loss function.


Asunto(s)
Análisis de Datos , Simulación por Computador , Análisis de Secuencia de ARN
4.
BMC Bioinformatics ; 19(1): 220, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884114

RESUMEN

BACKGROUND: The single cell RNA sequencing (scRNA-seq) technique begin a new era by allowing the observation of gene expression at the single cell level. However, there is also a large amount of technical and biological noise. Because of the low number of RNA transcriptomes and the stochastic nature of the gene expression pattern, there is a high chance of missing nonzero entries as zero, which are called dropout events. RESULTS: We develop DrImpute to impute dropout events in scRNA-seq data. We show that DrImpute has significantly better performance on the separation of the dropout zeros from true zeros than existing imputation algorithms. We also demonstrate that DrImpute can significantly improve the performance of existing tools for clustering, visualization and lineage reconstruction of nine published scRNA-seq datasets. CONCLUSIONS: DrImpute can serve as a very useful addition to the currently existing statistical tools for single cell RNA-seq analysis. DrImpute is implemented in R and is available at https://github.com/gongx030/DrImpute .


Asunto(s)
ARN/genética , Análisis de Secuencia de ARN/métodos , Humanos
5.
Mol Biotechnol ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580851

RESUMEN

Colorectal cancer (CRC) has brought great healthy burden for patients. Neutrophil extracellular traps (NETs) have been explored in several tumors, while it remains largely unclear in CRC. CRC-related data were downloaded from Cancer Genome Atlas and Gene Expression Omnibus databases. Then, a NET risk score was built after univariate Cox and LASSO Cox regression analysis. Prognostic value was evaluated via survival analysis, stratification analysis, and ROC analysis. The functional enrichment analysis was conducted basing on bulk and scRNA-seq data. The immune landscape difference was analyzed using CIBERSORT, XCell, and MCPcounter portals. NET risk score was built for CRC patients, basing on G0S2, HIST1H2BC, CRISPLD2, and IL17A. In TCGA-CRC and validation datasets, regardless of age or gender, high-risk CRC patients had significantly worse prognosis, besides higher NET risk score was mainly found in samples with MSI-H and advanced T, N, and M stages. Employing multiple databases, we noticed that M0 and M2 Macrophages infiltrated the most in high-risk CRC patients, besides M2 Macrophages and neutrophils showed positive correlation with NET risk score. A novel reliable prognostic NET risk score was developed for CRC patients, and high-risk patients had unfavorable prognosis with advanced disease status.

6.
Artículo en Inglés | MEDLINE | ID: mdl-36912759

RESUMEN

The development and widespread utilization of high-throughput sequencing technologies in biology has fueled the rapid growth of single-cell RNA sequencing (scRNA-seq) data over the past decade. The development of scRNA-seq technology has significantly expanded researchers' understanding of cellular heterogeneity. Accurate cell type identification is the prerequisite for any research on heterogeneous cell populations. However, due to the high noise and high dimensionality of scRNA-seq data, improving the effectiveness of cell type identification remains a challenge. As an effective dimensionality reduction method, Principal Component Analysis (PCA) is an essential tool for visualizing high-dimensional scRNA-seq data and identifying cell subpopulations. However, traditional PCA has some defects when used in mining the nonlinear manifold structure of the data and usually suffers from over-density of principal components (PCs). Therefore, we present a novel method in this paper called joint L2,p-norm and random walk graph constrained PCA (RWPPCA). RWPPCA aims to retain the data's local information in the process of mapping high-dimensional data to low-dimensional space, to more accurately obtain sparse principal components and to then identify cell types more precisely. Specifically, RWPPCA combines the random walk (RW) algorithm with graph regularization to more accurately determine the local geometric relationships between data points. Moreover, to mitigate the adverse effects of dense PCs, the L2,p-norm is introduced to make the PCs sparser, thus increasing their interpretability. Then, we evaluate the effectiveness of RWPPCA on simulated data and scRNA-seq data. The results show that RWPPCA performs well in cell type identification and outperforms other comparison methods.


Asunto(s)
Análisis de la Célula Individual , Análisis de Expresión Génica de una Sola Célula , Análisis de Componente Principal , Análisis de la Célula Individual/métodos , Algoritmos , Análisis por Conglomerados
7.
Biology (Basel) ; 13(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39056656

RESUMEN

Fibroblast heterogeneity remains undefined in eosinophilic esophagitis (EoE), an allergic inflammatory disorder complicated by fibrosis. We utilized publicly available single-cell RNA sequencing data (GSE201153) of EoE esophageal biopsies to identify fibroblast sub-populations, related transcriptomes, disease status-specific pathways and cell-cell interactions. IL13-treated fibroblast cultures were used to model active disease. At least 2 fibroblast populations were identified, F_A and F_B. Several genes including ACTA2 were more enriched in F_A. F_B percentage was greater than F_A and epithelial-mesenchymal transition upregulated in F_B vs. F_A in active and remission EoE. Epithelial-mesenchymal transition was also upregulated in F_B in active vs. remission EoE and TNF-α signaling via NFKB was downregulated in F_A. IL-13 treatment upregulated ECM-related genes more profoundly in ACTA2- fibroblasts than ACTA2+ myofibroblasts. After proliferating epithelial cells, F_B and F_A contributed most to cell-cell communication networks. ECM-Receptor interaction strength was stronger than secreted or cell-cell contact signaling in active vs. remission EoE and significant ligand-receptor pairs were driven mostly by F_B. This unbiased analysis identifies at least 2 fibroblast sub-populations in EoE in vivo, distinguished in part by ACTA2. Fibroblasts play a critical role in cell-cell interactions in EoE, most profoundly via ECM-receptor signaling via the F_B sub-group.

8.
Aging Cell ; : e14275, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016438

RESUMEN

Renal aging, marked by the accumulation of senescent cells and chronic low-grade inflammation, leads to renal interstitial fibrosis and impaired function. In this study, we investigate the role of macrophages, a key regulator of inflammation, in renal aging by analyzing kidney single-cell RNA sequencing data of C57BL/6J mice from 8 weeks to 24 months. Our findings elucidate the dynamic changes in the proportion of kidney cell types during renal aging and reveal that increased macrophage infiltration contributes to chronic low-grade inflammation, with these macrophages exhibiting senescence and activation of ferroptosis signaling. CellChat analysis indicates enhanced communications between macrophages and tubular cells during aging. Suppressing ferroptosis alleviates macrophage-mediated tubular partial epithelial-mesenchymal transition in vitro, thereby mitigating the expression of fibrosis-related genes. Using SCENIC analysis, we infer Stat1 as a key age-related transcription factor promoting iron dyshomeostasis and ferroptosis in macrophages by regulating the expression of Pcbp1, an iron chaperone protein that inhibits ferroptosis. Furthermore, through virtual screening and molecular docking from a library of anti-aging compounds, we construct a docking model targeting Pcbp1, which indicates that the natural small molecule compound Rutin can suppress macrophage senescence and ferroptosis by preserving Pcbp1. In summary, our study underscores the crucial role of macrophage iron dyshomeostasis and ferroptosis in renal aging. Our results also suggest Pcbp1 as an intervention target in aging-related renal fibrosis and highlight Rutin as a potential therapeutic agent in mitigating age-related renal chronic low-grade inflammation and fibrosis.

9.
Genes (Basel) ; 14(2)2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36833245

RESUMEN

The recent advancement in single-cell RNA sequencing technologies enables the understanding of dynamic cellular processes at the single-cell level. Using trajectory inference methods, pseudotimes can be estimated based on reconstructed single-cell trajectories which can be further used to gain biological knowledge. Existing methods for modeling cell trajectories, such as minimal spanning tree or k-nearest neighbor graph, often lead to locally optimal solutions. In this paper, we propose a penalized likelihood-based framework and introduce a stochastic tree search (STS) algorithm aiming at the global solution in a large and non-convex tree space. Both simulated and real data experiments show that our approach is more accurate and robust than other existing methods in terms of cell ordering and pseudotime estimation.


Asunto(s)
Algoritmos , Análisis de la Célula Individual , Funciones de Verosimilitud , Análisis de la Célula Individual/métodos , Análisis por Conglomerados
10.
Comput Biol Chem ; 104: 107862, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37031647

RESUMEN

Single-cell RNA sequencing technology provides a tremendous opportunity for studying disease mechanisms at the single-cell level. Cell type identification is a key step in the research of disease mechanisms. Many clustering algorithms have been proposed to identify cell types. Most clustering algorithms perform similarity calculation before cell clustering. Because clustering and similarity calculation are independent, a low-rank matrix obtained only by similarity calculation may be unable to fully reveal the patterns in single-cell data. In this study, to capture accurate single-cell clustering information, we propose a novel method based on a low-rank representation model, called KGLRR, that combines the low-rank representation approach with K-means clustering. The cluster centroid is updated as the cell dimension decreases to better from new clusters and improve the quality of clustering information. In addition, the low-rank representation model ignores local geometric information, so the graph regularization constraint is introduced. KGLRR is tested on both simulated and real single-cell datasets to validate the effectiveness of the new method. The experimental results show that KGLRR is more robust and accurate in cell type identification than other advanced algorithms.


Asunto(s)
Algoritmos , Análisis por Conglomerados
11.
Genome Med ; 15(1): 115, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38111063

RESUMEN

Identifying expressed somatic mutations from single-cell RNA sequencing data de novo is challenging but highly valuable. We propose RESA - Recurrently Expressed SNV Analysis, a computational framework to identify expressed somatic mutations from scRNA-seq data. RESA achieves an average precision of 0.77 on three in silico spike-in datasets. In extensive benchmarking against existing methods using 19 datasets, RESA consistently outperforms them. Furthermore, we applied RESA to analyze intratumor mutational heterogeneity in a melanoma drug resistance dataset. By enabling high precision detection of expressed somatic mutations, RESA substantially enhances the reliability of mutational analysis in scRNA-seq. RESA is available at https://github.com/ShenLab-Genomics/RESA .


Asunto(s)
Melanoma , Análisis de la Célula Individual , Humanos , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Mutación , Melanoma/genética , Perfilación de la Expresión Génica/métodos , Análisis por Conglomerados , Programas Informáticos
12.
Mol Immunol ; 160: 20-22, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321065

RESUMEN

Human transitional B cells and naïve B cells are each variable beyond the widely discussed diversity in their B cell receptor repertoire, because whilst remaining within their subset definition, the phenotypes and transcriptomes of individual cells occur within a range of values. Cells can therefore have different functional biases. Here we have taken advantage of small clones of transitional and naïve B cells that exist within different tissue sites in pre-existing dataset to ask whether the transcriptomes of individual clone members are more similar to each other than to the transcriptomes of unrelated cells. We observe that cells that are clonally related are more similar to each other in terms of gene expression than they are to the remainder of cells in clones. This demonstrates that differences are shared between clone members and are therefore heritable. We suggest further that diversity in the transitional and naïve B cell populations has the potential to be propagated and thus sustained.


Asunto(s)
Antígenos , Linfocitos B , Humanos , Células Clonales , Proliferación Celular
13.
Comput Biol Chem ; 100: 107733, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35926443

RESUMEN

Single-cell RNA sequencing (scRNA-seq) data exhibit an unusual abundance of zero counts with a considerable fraction due to the dropout events, which introduces challenges to differential expression analysis. To correct biases in differential expression due to the informative dropouts, an inverse non-dropout-probability weighting method is proposed given that the dropout rate is negatively dependent on the underlying gene expression magnitude in scRNA-seq data. The weights are estimated using the maximum likelihood method where dropout values are integrated out using the Gauss-Hermite quadrature. Linear, generalized linear and mixed regressions with the estimated weights are fitted on original or transformed scRNA-seq data. Variances of coefficient estimators from the weighted regressions are estimated using the jackknife method. Extensive simulation studies are carried out to compare the proposed method to five cutting-edge methods (Limma, edgeR, MAST, ZIAQ and scImpute), where the proposed method performs among the best under all scenarios in terms of AUC, sensitivity, specificity and FDR. Rate of detecting true positives is examined for the proposed method and five comparison methods using mouse embryonic stem cells and fibroblasts where differentially expressed (DE) genes detected in bulk RNA-seq data on the same set of genes under the same conditions from independent source serve as true positives. Specificity is compared for these methods on true negative data by random splitting of a real dataset. Furthermore, the proposed method is illustrated on a lineage study where cells in the same embryo are correlated and genes differentially expressed between cell division lineages are identified.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Animales , Perfilación de la Expresión Génica/métodos , Ratones , ARN/genética , RNA-Seq , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Programas Informáticos , Secuenciación del Exoma
14.
Interdiscip Sci ; 14(2): 394-408, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35028910

RESUMEN

Cell type determination based on transcriptome profiles is a key application of single-cell RNA sequencing (scRNA-seq). It is usually achieved through unsupervised clustering. Good feature selection is capable of improving the clustering accuracy and is a crucial component of single-cell clustering pipelines. However, most current single-cell feature selection methods are univariable filter methods ignoring gene dependency. Even the multivariable filter methods developed in recent years only consider "one-to-many" relationship between genes. In this paper, a novel single-cell feature selection method based on convex analysis of mixtures (FSCAM) is proposed, which takes into account "many-to-many" relationship. Compared to the previous "one-to-many" methods, FSCAM selects genes with a combination of relevancy, redundancy and completeness. Pertinent benchmarking is conducted on the real datasets to validate the superiority of FSCAM. Through plugging into the framework of partition around medoids (PAM) clustering, a single-cell clustering algorithm based on FSCAM method (SCC_FSCAM) is further developed. Comparing SCC_FSCAM with existing advanced clustering algorithms, the results show that our algorithm has advantages in both internal criteria (clustering number) and external criteria (adjusted Rand index) and has a good stability.


Asunto(s)
Algoritmos , Análisis de la Célula Individual , Análisis por Conglomerados , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma
15.
Comput Biol Med ; 151(Pt A): 106050, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36334362

RESUMEN

Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and has infected millions worldwide. SARS-CoV-2 spike protein uses Angiotensin-converting enzyme 2 (ACE2) and Transmembrane serine protease 2 (TMPRSS2) for entering and fusing the host cell membrane. However, interaction with spike protein receptors and protease processing are not the only factors determining coronaviruses' entry. Several proteases mediate the entry of SARS-CoV-2 virus into the host cell. Identifying receptor factors helps understand tropism, transmission, and pathogenesis of COVID-19 infection in humans. The paper aims to identify novel viral receptor or membrane proteins that are transcriptionally and biologically similar to ACE2 and TMPRSS2 through a fuzzy clustering technique that employs the Grey wolf optimizer (GWO) algorithm for finding the optimal cluster center. The exploratory and exploitation capability of GWO algorithm is improved by hybridizing mutation and crossover operators of the evolutionary algorithm. Also, the genetic diversity of the grey wolf population is enhanced by eliminating weak individuals from the population. The proposed clustering algorithm's effectiveness is shown by detecting novel viral receptors and membrane proteins associated with the pathogenesis of SARS-CoV-2 infection. The expression profiles of ACE2 protein and its co-receptor factor are analyzed and compared with single-cell transcriptomics profiling using the Seurat R toolkit, mass spectrometry (MS), and immunohistochemistry (IHC). Our advanced clustering method infers that cell that expresses high ACE2 level are more affected by SARS-CoV-infection. So, SARS-CoV-2 virus affects lung, intestine, testis, heart, kidney, and liver more severely than brain, bone marrow, skin, spleen, etc. We have identified 58 novel viral receptors and 816 membrane proteins, and their role in the pathogenicity mechanism of SARS-CoV-2 infection has been studied. Besides, our study confirmed that Neuropilins (NRP1), G protein-coupled receptor 78 (GPR78), C-type lectin domain family 4 member M (CLEC4M), Kringle containing transmembrane protein 1 (KREMEN1), Asialoglycoprotein receptor 1 (ASGR1), A Disintegrin and metalloprotease 17 (ADAM17), Furin, Neuregulin-1,(NRG1), Basigin or CD147 and Poliovirus receptor (PVR) are the potential co-receptors of SARS-CoV-2 virus. A significant finding is that heparin derivative glycosaminoglycans could block the replication of SARS-CoV-2 virus inside the host cytoplasm. The membrane protein N-Deacetylase/N-Sulfotransferase-2 (NDST2), Extostosin protein (EXT1, EXT2, and EXT3), Glucuronic acid epimerase (GLCE), and Xylosyltransferase I, II (XYLT1, XYLT2) could act as the therapeutic target for inhibiting the spread of SARS-CoV-2 infection. Drugs such as carboplatin and gemcitabine are effective in such situations.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Masculino , SARS-CoV-2 , Peptidil-Dipeptidasa A/química , Glicoproteína de la Espiga del Coronavirus/química , Algoritmos , Receptor de Asialoglicoproteína
16.
Cancer Biol Med ; 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34398535

RESUMEN

Tumor tissues contain both tumor and non-tumor cells, which include infiltrated immune cells and stromal cells, collectively called the tumor microenvironment (TME). Single-cell RNA sequencing (scRNAseq) enables the examination of heterogeneity of tumor cells and TME. In this review, we examined scRNAseq datasets for multiple cancer types and evaluated the heterogeneity of major cell type composition in different cancer types. We further showed that endothelial cells and fibroblasts/myofibroblasts in different cancer types can be classified into common subtypes, and the subtype composition is clearly associated with cancer characteristic and therapy response.

17.
Interdiscip Sci ; 13(3): 476-489, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34076860

RESUMEN

High-throughput sequencing of single-cell gene expression reveals a complex mechanism of individual cell's heterogeneity in a population. An important purpose for analyzing single-cell RNA sequencing (scRNA-seq) data is to identify cell subtypes and functions by cell clustering. To deal with high levels of noise and cellular heterogeneity, we introduced a new single cell data analysis model called Adaptive Total-Variation Regularized Low-Rank Representation (ATV-LRR). In scRNA-seq data, ATV-LRR can reconstruct the low-rank subspace structure to learn the similarity of cells. The low-rank representation can not only segment multiple linear subspaces, but also extract important information. Moreover, adaptive total variation also can remove cell noise and preserve cell feature details by learning the gradient information of the data. At the same time, to analyze scRNA-seq data with unknown prior information, we introduced the maximum eigenvalue method into the ATV-LRR model to automatically identify cell populations. The final clustering results show that the ATV-LRR model can detect cell types more effectively and stably.


Asunto(s)
RNA-Seq , Algoritmos , Análisis por Conglomerados , Perfilación de la Expresión Génica , Análisis de la Célula Individual
18.
Comput Biol Chem ; 90: 107415, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33307360

RESUMEN

Accurate clustering of cells from single-cell RNA sequencing (scRNA-seq) data is an essential step for biological analysis such as putative cell type identification. However, scRNA-seq data has high dimension and high sparsity, which makes traditional clustering methods less effective to reflect the similarity between cells. Since genetic network fundamentally defines the functions of cell and deep learning shows strong advantages in network representation learning, we propose a novel scRNA-seq clustering framework ScGSLC based on graph similarity learning. ScGSLC effectively integrates scRNA-seq data and protein-protein interaction network to a graph. Then graph convolution network is employed by ScGSLC to embedding graph and clustering the cells by the calculated similarity between graphs. Unsupervised clustering results of nine public data sets demonstrate that ScGSLC shows better performance than the state-of-the-art methods.


Asunto(s)
Algoritmos , Redes Reguladoras de Genes , RNA-Seq , Análisis de la Célula Individual , Análisis por Conglomerados , Humanos , Mapas de Interacción de Proteínas , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA