RESUMEN
The mitochondrial phospholipid cardiolipin (CL) is critical for numerous essential biological processes, including mitochondrial dynamics and energy metabolism. Mutations in the CL remodeling enzyme TAFAZZIN cause Barth syndrome, a life-threatening genetic disorder that results in severe physiological defects, including cardiomyopathy, skeletal myopathy, and neutropenia. To study the molecular mechanisms whereby CL deficiency leads to skeletal myopathy, we carried out transcriptomic analysis of the TAFAZZIN-knockout (TAZ-KO) mouse myoblast C2C12 cell line. Our data indicated that cardiac and muscle development pathways are highly decreased in TAZ-KO cells, consistent with a previous report of defective myogenesis in this cell line. Interestingly, the muscle transcription factor myoblast determination protein 1 (MyoD1) is significantly repressed in TAZ-KO cells and TAZ-KO mouse hearts. Exogenous expression of MyoD1 rescued the myogenesis defects previously observed in TAZ-KO cells. Our data suggest that MyoD1 repression is caused by upregulation of the MyoD1 negative regulator, homeobox protein Mohawk, and decreased Wnt signaling. Our findings reveal, for the first time, that CL metabolism regulates muscle differentiation through MyoD1 and identify the mechanism whereby MyoD1 is repressed in CL-deficient cells.
Asunto(s)
Síndrome de Barth , Cardiolipinas , Proteína MioD , Animales , Ratones , Aciltransferasas/genética , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Cardiolipinas/genética , Cardiolipinas/metabolismo , Ratones Noqueados , Músculos/metabolismo , Factores de Transcripción/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismoRESUMEN
Circular RNAs (circRNAs) are non-coding RNAs with endogenous regulatory functions, including regulating skeletal muscle development. However, its role in the development of skeletal muscle in Japanese flounder (Paralichthys olivaceus) is not clear. Therefore we screened a candidate circpdlim5a, which is derived from the gene pdlim5a, from the skeletal muscle transcriptome of Japanese flounder. We characterized circpdlim5a, which was more stable compared to the linear RNA pdlim5a. Distributional characterization of circpdlim5a showed that circpdlim5a was predominantly distributed in the nucleus and was highly expressed in the skeletal muscle of adult Japanese flounder (24 months). When we further studied the circpdlim5a function, we found that it inhibited the expression of proliferation and differentiation genes according to the over-expression experiment of circpdlim5a in myoblasts. We concluded that circpdlim5a may inhibit the proliferation and differentiation of myoblasts and thereby inhibit skeletal muscle development in Japanese flounder. This experiment provides information for the study of circRNAs by identifying circpdlim5a and exploring its function, and offers clues for molecular breeding from an epigenetic perspective.
Asunto(s)
Lenguado , Animales , Lenguado/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , TranscriptomaRESUMEN
BACKGROUND: Skeletal muscle development is pivotal for animal growth and health. Recently, long noncoding RNAs (lncRNAs) were found to interact with chromatin through diverse roles. However, little is known about how lncRNAs act as chromatin-associated RNAs to regulate skeletal muscle development. Here, we aim to investigate the regulation of chromatin-associated RNA (MYH1G-AS) during skeletal muscle development. METHODS: We provided comprehensive insight into the RNA profile and chromatin accessibility of different myofibers, combining RNA sequencing (RNA-seq) with an assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). The dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were used to analyze the transcriptional regulation mechanism of MYH1G-AS. ALKBH5-mediated MYH1G-AS N6-methyladenosine (m6A) demethylation was assessed by a single-base elongation and ligation-based qPCR amplification method (SELECT) assay. Functions of MYH1G-AS were investigated through a primary myoblast and lentivirus/cholesterol-modified antisense oligonucleotide (ASO)-mediated animal model. To validate the interaction of MYH1G-AS with fibroblast growth factor 18 (FGF18) protein, RNA pull down and an RNA immunoprecipitation (RIP) assay were performed. Specifically, the interaction between FGF18 and SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5) protein was analyzed by coimmunoprecipitation (Co-IP) and a yeast two-hybrid assay. RESULTS: A total of 45 differentially expressed (DE) lncRNAs, with DE ATAC-seq peaks in their promoter region, were classified as open chromatin-associated lncRNAs. A skeletal muscle-specific lncRNA (MSTRG.15576.9; MYH1G-AS), which is one of the open chromatin-associated lncRNA, was identified. MYH1G-AS transcription is coordinately regulated by transcription factors (TF) SMAD3 and SP2. Moreover, SP2 represses ALKBH5 transcription to weaken ALKBH5-mediated m6A demethylation of MYH1G-AS, thus destroying MYH1G-AS RNA stability. MYH1G-AS accelerates myoblast proliferation but restrains myoblast differentiation. Moreover, MYH1G-AS drives a switch from slow-twitch to fast-twitch fibers and causes muscle atrophy. Mechanistically, MYH1G-AS inhibits FGF18 protein stabilization to reduce the interaction of FGF18 to SMARCA5, thus repressing chromatin accessibility of the SMAD4 promoter to activate the SMAD4-dependent pathway. CONCLUSIONS: Our results reveal a new pattern of the regulation of lncRNA expression at diverse levels and help expound the regulation of m6A methylation on chromatin status.
Asunto(s)
Cromatina , ARN Largo no Codificante , Animales , Cromatina/metabolismo , Pollos/genética , Pollos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Músculo Esquelético/metabolismo , Desarrollo de Músculos/genéticaRESUMEN
BACKGROUND: Skeletal muscle is a major insulin-sensitive tissue with a pivotal role in modulating glucose homeostasis. This study aimed to investigate the effect of resveratrol (RES) intervention during the suckling period on skeletal muscle growth and insulin sensitivity of neonates with intrauterine growth retardation (IUGR) in a pig model. RESULTS: Twelve pairs of normal birth weight (NBW) and IUGR neonatal male piglets were selected. The NBW and IUGR piglets were fed basal formula milk diet or identical diet supplemented with 0.1% RES from 7 to 21 days of age. Myofiber growth and differentiation, inflammation and insulin sensitivity in skeletal muscle were assessed. Early RES intervention promoted myofiber growth and maturity in IUGR piglets by ameliorating the myogenesis process and increasing thyroid hormone level. Administering RES also reduced triglyceride concentration in skeletal muscle of IUGR piglets, along with decreased inflammatory response, increased plasma fibroblast growth factor 21 (FGF21) concentration and improved insulin signaling. Meanwhile, the improvement of insulin sensitivity by RES may be partly regulated by activation of the FGF21/AMP-activated protein kinase α/sirtuin 1/peroxisome proliferator activated receptor-γ coactivator-1α pathway. CONCLUSION: Our results suggest that RES has beneficial effects in promoting myofiber growth and maturity and increasing skeletal muscle insulin sensitivity in IUGR piglets, which open a novel field of application of RES in IUGR infants for improving postnatal metabolic adaptation. © 2023 Society of Chemical Industry.
Asunto(s)
Factores de Crecimiento de Fibroblastos , Resistencia a la Insulina , Femenino , Porcinos , Animales , Masculino , Humanos , Resveratrol/farmacología , Resveratrol/metabolismo , Hígado/metabolismo , Retardo del Crecimiento Fetal/tratamiento farmacológico , Retardo del Crecimiento Fetal/veterinaria , Retardo del Crecimiento Fetal/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo , Desarrollo de MúsculosRESUMEN
DNA methylation has crucial roles in regulating the expression of genes involved in skeletal muscle development. However, the DNA methylation pattern of lncRNA during sheep skeletal muscle development remains unclear. This study investigated previous WGBS and LncRNA data in skeletal muscle of sheep (fetus and adult). We then focused on LncRNA GTL2, which is differentially expressed in skeletal muscle and has multiple DMRs. We found that the expression level of GTL2 decreased with age. GTL2 DMRs methylation levels were significantly higher in adult muscle than in fetal muscle. After 5AZA treatment, GTL2 expression was significantly increased in a dose-dependent manner.The dCas9-DNMT3A-sgRNA significantly reduced the expression level of GTL2 in cells, but increased GTL2 DMR methylation levels. The above studies indicate that dCas9-DNMT3A can effectively increase the methylation level in the DMR region of GTL2, the expression level of GTL2 is regulated by DNA methylation during muscle development.
Asunto(s)
Metilación de ADN , ARN Largo no Codificante , Animales , Impresión Genómica , Desarrollo de Músculos/genética , Músculo Esquelético , ARN Largo no Codificante/genética , Ovinos/genéticaRESUMEN
We have previously reported Tceal7 as a muscle-specific gene that represses myoblast proliferation and promotes myogenic differentiation. The regulatory mechanism of Tceal7 gene expression has been well clarified recently. However, the underlying mechanism of Tceal7 function in skeletal muscle development remains to be elucidated. In the present study, we have generated an MCK 6.5 kb-HA-Tceal7 transgenic model. The transgenic mice are born normally, while they have displayed defects in the growth of body weight and skeletal muscle myofiber during postnatal development. Although four RxL motifs have been identified in the Tceal7 protein sequence, we have not detected any direct protein-protein interaction between Tceal7 and Cyclin A2, Cyclin B1, Cylin D1, or Cyclin E1. Further analysis has revealed the interaction between Tceal7 and Cdk1 instead of Cdk2, Cdk4, or Cdk6. Transgenic overexpression of Tceal7 reduces phosphorylation of 4E-BP1 Ser65, p70S6K1 Thr389, and Cdk substrates in skeletal muscle. In summary, these studies have revealed a novel mechanism of Tceal7 in skeletal muscle development.
Asunto(s)
Ciclina A2 , Desarrollo de Músculos , Animales , Ratones , Secuencia de Aminoácidos , Ciclina A2/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , FosforilaciónRESUMEN
Species within the genus Equus are valued for their draft ability. Skeletal muscle forms the foundation of the draft ability of Equus species; however, skeletal muscle development-related conserved genes and their target miRNAs are rarely reported for Equus. In this study, a comparative genomics analysis was performed among five species (horse, donkey, zebra, cattle, and goat), and the results showed that a total of 15,262 (47.43%) genes formed the core gene set of the five species. Only nine chromosomes (Chr01, Chr02, Chr03, Chr06, Chr10, Chr18, Chr22, Chr27, Chr29, and Chr30) exhibited a good collinearity relationship among Equus species. The micro-synteny analysis results showed that TPM3 was evolutionarily conserved in chromosome 1 in Equus. Furthermore, donkeys were used as the model species for Equus to investigate the genetic role of TPM3 in muscle development. Interestingly, the results of comparative transcriptomics showed that the TPM3 gene was differentially expressed in donkey skeletal muscle S1 (2 months old) and S2 (24 months old), as verified via RT-PCR. Dual-luciferase test analysis showed that the TPM3 gene was targeted by differentially expressed miRNA (eca-miR-1). Furthermore, a total of 17 TPM3 gene family members were identified in the whole genome of donkey, and a heatmap analysis showed that EaTPM3-5 was a key member of the TPM3 gene family, which is involved in skeletal muscle development. In conclusion, the TPM3 gene was conserved in Equus, and EaTPM3-5 was targeted by eca-miR-1, which is involved in skeletal muscle development in donkeys.
Asunto(s)
Equidae , MicroARNs , Animales , Bovinos , Equidae/genética , Genoma , Genómica , Caballos/genética , MicroARNs/genética , Desarrollo de Músculos/genética , Músculo EsqueléticoRESUMEN
DNA methylation is a pivotal epigenetic regulatory mechanism in the development of skeletal muscles. Nonetheless, the regulators responsible for DNA methylation in the development of embryonic duck skeletal muscles remain unknown. In the present study, whole genome bisulfite sequencing (WGBS) and transcriptome sequencing were conducted on the skeletal muscles of embryonic day 21 (E21) and day 28 (E28) ducks. The DNA methylation pattern was found to fall mainly within the cytosine-guanine (CG) context, with high methylation levels in the intron, exon, and promoter regions. Overall, 7902 differentially methylated regions (DMRs) were identified, which corresponded to 3174 differentially methylated genes (DMGs). By using integrative analysis of both WGBS with transcriptomics, we identified 1072 genes that are DMGs that are negatively associated with differentially expressed genes (DEGs). The gene ontology (GO) analysis revealed significant enrichment in phosphorylation, kinase activity, phosphotransferase activity, alcohol-based receptors, and binding to cytoskeletal proteins. The Kyoto Encyclopedia of Genes and Genomes (KEGGs) analysis showed significant enrichment in MAPK signaling, Wnt signaling, apelin signaling, insulin signaling, and FoxO signaling. The screening of enriched genes showed that hyper-methylation inhibited the expression of Idh3a, Got1, Bcl2, Mylk2, Klf2, Erbin, and Klhl38, and hypo-methylation stimulated the expression of Col22a1, Dnmt3b, Fn1, E2f1, Rprm, and Wfikkn1. Further predictions showed that the CpG islands in the promoters of Klhl38, Klf2, Erbin, Mylk2, and Got1 may play a crucial role in regulating the development of skeletal muscles. This study provides new insights into the epigenetic regulation of the development of duck skeletal muscles.
Asunto(s)
Metilación de ADN , Epigénesis Genética , Animales , Patos/genética , Transcriptoma , Músculo Esquelético/metabolismoRESUMEN
Meat production performance is one of the most important factors in determining the economic value of poultry. Myofiber is the basic unit of skeletal muscle, and its physical and chemical properties determine the meat quality of livestock and poultry to a certain extent. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) as a transcriptional coactivator has been found to be widely involved in a series of biological processes. However, PPARGC1A is still poorly understood in chickens. In this manuscript, we reported that PPARGC1A was highly expressed in slow-twitch myofibers. PPARGC1A facilitated mitochondrial biogenesis and regulated skeletal muscle metabolism by mediating the flux of glycolysis and the TCA cycle. Gain- and loss-of-function analyses revealed that PPARGC1A promoted intramuscular fatty acid oxidation, drove the transformation of fast-twitch to slow-twitch myofibers, and increased chicken skeletal muscle mass. Mechanistically, the expression level of PPARGC1A is regulated by miR-193b-3p. Our findings help to understand the genetic regulation of skeletal muscle development and provide a molecular basis for further research on the antagonism of skeletal muscle development and fat deposition in chickens.
Asunto(s)
Pollos , MicroARNs , Animales , Pollos/genética , Pollos/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismoRESUMEN
Skeletal muscle development is a complex biological process involving multiple key genes, signaling pathways and noncoding RNAs, including microRNAs and circular RNAs (circRNAs). However, the regulatory relationship among them is so complicated that it has not yet been fully elucidated. In this study, we found that miR-7 inhibited C2C12 cell proliferation and differentiation by targeting transcription factor 12 (TCF12). circHIPK3 acted as a competing endogenous RNA, and its overexpression effectively reversed the regulation of miR-7 on C2C12 cell proliferation and differentiation by increasing TCF12 expression. Taken together, our findings provide evidence that circHIPK3 regulates skeletal muscle development through the miR-7/TCF12 pathway. This study provides a scientific basis for further research on skeletal muscle development at the circRNA level.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Proliferación Celular , MicroARNs/metabolismo , Desarrollo de Músculos , Mioblastos Esqueléticos/metabolismo , ARN Circular/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Regulación de la Expresión Génica , Ratones , MicroARNs/genética , ARN Circular/genética , Transducción de SeñalRESUMEN
BACKGROUND: The mutation of insulin-like growth factor 2 (IGF2 mutation) that a single-nucleotide substitution (GâA) in the third intron of IGF2 abrogates the interaction with zinc finger BED-type containing 6 (ZBED6) and leads to increased muscle mass in pigs. IGF2 mutation knock-in (IGF2 KI) and ZBED6 knockout (ZBED6 KO) lead to changes in IGF2 expression and increase muscle mass in mice and pigs. Long noncoding RNAs (lncRNAs) may participate in numerous biological processes, including skeletal muscle development. However, the role of the ZBED6-lncRNA axis in skeletal muscle development is poorly characterized. RESULTS: In this study, we assembled transcriptomes using RNA-seq data published in previous studies by our group and identified 11,408 known lncRNAs and 2269 potential lncRNAs in seven tissues, heart, longissimus dorsi, gastrocnemius muscle, liver, spleen, lung and kidney, of ZBED6 KO (lean mass model) and WT Bama pigs. ZBED6 affected the expression of 1570 lncRNAs (differentially expressed lncRNAs [DE-lncRNAs]; log2-fold change ≥ 1, nominal p-value ≤ 0.05) in the seven examined tissues. The expressed lncRNAs (FPKM > 0.1) exhibited tissue-specific patterns in WT pigs. Specifically, 3410 lncRNAs were expressed exclusively in only one tissue. Potential functions of lncRNAs were indirectly predicted by searching their target cis- and trans-regulated protein-coding genes. LncRNAs with tissue-specific expression influence numerous genes related to tissue functions. Weighted gene coexpression network analysis (WGCNA) of 1570 DE-lncRNAs between WT and ZBED6 KO pigs was used to define the following six lncRNA modules specific to different tissues: skeletal muscle, heart, lung, spleen, kidney and liver modules. Furthermore, by conjoint analysis of longissimus dorsi data (tissue-specific expression, muscle module and DE-lncRNAs) and ChIP-PCR revealed NONSUSG002145.1 (adjusted p-values = 0.044), which is coexpressed with the IGF2 gene and binding with ZBED6, may play important roles in ZBED6 KO pig skeletal muscle development. CONCLUSIONS: These findings indicate that the identified lncRNAs may play essential roles in tissue function and regulate the mechanism of ZBED6 action in skeletal muscle development in pigs. To our knowledge, this is the first study describing lncRNAs in ZBED6 KO pigs. These results may open new research directions leading to a better understanding of the global functions of ZBED6 and of lncRNA functions in skeletal muscle development in pigs.
Asunto(s)
ARN Largo no Codificante , Animales , Intrones , Ratones , Desarrollo de Músculos , Músculo Esquelético/metabolismo , ARN Largo no Codificante/genética , Proteínas Represoras/genética , Porcinos/genética , TranscriptomaRESUMEN
RNA editing is a posttranscriptional molecular process involved with specific nucleic modification, which can enhance the diversity of gene products. Adenosine-to-inosine (A-to-I, I is read as guanosine by both splicing and translation machinery) is the main type of RNA editing in mammals, which manifested as AG (adenosine-to-guanosine) in sequence data. Here, we aimed to explore patterns of RNA editing using RNA sequencing data from skeletal muscle at four developmental stages (three fetal periods and one postnatal period) in goat. We found the occurrences of RNA editing events raised at fetal periods and declined at the postnatal period. Also, we observed distinct editing levels of AG editing across stages, and significant difference was found between postnatal period and fetal periods. AG editing patterns in newborn goats are similar to those of 45-day embryo compared with embryo at 105 days and embryo at 60 days. In this study, we found a total of 1415 significantly differential edited AG sites among four groups. Moreover, 420 sites were obviously clustered into six time-series profiles, and one profile had significant association between editing level and gene expression. Our findings provided some novel insights into understanding the molecular mechanism of muscle development in mammals.
Asunto(s)
Cabras/genética , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Edición de ARN , Adenosina/metabolismo , Animales , Expresión Génica , Cabras/embriología , Cabras/crecimiento & desarrollo , Cabras/metabolismo , Guanosina/metabolismo , Músculo Esquelético/embriología , Músculo Esquelético/crecimiento & desarrollo , Mapeo de Interacción de ProteínasRESUMEN
Embryonic and neonatal skeletal muscles grow via the proliferation and fusion of myogenic cells, whereas adult skeletal muscle adapts largely by remodelling pre-existing myofibers and optimizing metabolic balance. It has been reported that miRNAs played key roles during skeletal muscle development through targeting different genes at post-transcriptional level. In this study, we show that a single miRNA (miR-208b) can modulate both the myogenesis and homoeostasis of skeletal muscle by distinct targets. As results, miR-208b accelerates the proliferation and inhibits the differentiation of myogenic cells by targeting the E-protein family member transcription factor 12 (TCF12). Also, miR-208b can stimulate fast-to-slow fibre conversion and oxidative metabolism programme through targeting folliculin interacting protein 1 (FNIP1) but not TCF12 gene. Further, miR-208b could active the AMPK/PGC-1a signalling and mitochondrial biogenesis through targeting FNIP1. Thus, miR-208b could mediate skeletal muscle development and homoeostasis through specifically targeting of TCF12 and FNIP1.
Asunto(s)
Metabolismo Energético , Regulación del Desarrollo de la Expresión Génica , Homeostasis , MicroARNs/genética , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Interferencia de ARN , Animales , Diferenciación Celular/genética , Células Cultivadas , Ratones , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Biológicos , Mioblastos/citología , Mioblastos/metabolismo , ARN Mensajero/genéticaRESUMEN
The effect of incubation and rearing temperature on muscle development and swimming endurance under a high-intensity swimming test was investigated in juvenile Chinook salmon (Oncorhynchus tshawytscha) in a hatchery experiment. After controlling for the effects of fork length (LF ) and parental identity, times to fatigue of fish were higher when fish were incubated or reared at warmer temperatures. Significant differences among combinations of pre- and post-emergence temperatures conformed to 15-15°C > 15-9°C > 9-9°C > 7-9°C > 7-7°C in 2011 when swimming tests were conducted at 300 accumulated temperature units post-emergence and 15-9°C > (7-9°C = 7-7°C) in 2012 when swimming tests were conducted at an LF of c. 40 mm. The combination of pre- and post-emergence temperatures also affected the number and size of muscle fibres, with differences among temperature treatments in mean fibre cross-sectional area persisting after controlling for LF and parental effects. Nonetheless, neither fibre number nor fibre size accounted for significant variation in swimming endurance. Thus, thermal carryover effects on swimming endurance were not mediated by thermal imprinting of muscle structure. This is the first study to test how temperature, body size and muscle structure interact to affect swimming endurance during early development in salmon.
Asunto(s)
Calor , Desarrollo de Músculos/fisiología , Resistencia Física/fisiología , Salmón/fisiología , Natación/fisiología , AnimalesRESUMEN
This study aimed to evaluate the effects of dietary guanidine acetic acid (GAA) supplementation on growth performance, carcass traits and the expression of muscle growth-related genes in finishing pigs. A total of 128 (81.03 ± 1.09 kg body weight) crossbred pigs (Duroc × Landrace ×Yorkshire) were blocked by body weight and allotted to 16 pens (eight pigs per pen), and pens were randomly assigned within blocks to one of five dietary treatments, with a basal diet (control group) or a basal diet supplemented with 0.03%, 0.06% and 0.09% GAA respectively. During the 60-day trial, GAA increased the average dairy gain (ADG) and average daily feed intake (ADFI) (p < .05). The back fat thickness of pigs fed 0.06% GAA was lower than other groups (p < .05). Pigs fed 0.06% GAA had improved lean meat percentage, loin muscle area, shear force and cross-sectional area of muscle fibre in comparison with control group (p < .05). The drop loss and the muscle fibre density in pigs fed 0.06% GAA were lower than control (p < .05). In addition, dietary GAA enhanced the expression of myosin heavy chain gene (MYH4), myogenic determination (Myod) and myogenic factor 5 (Myf5) in longissimus dorsi and carnitine palmitoyltransferase-1(CPT-1) in liver (p < .05). Meanwhile, GAA decreased the expression of Myostatin in longissimus dorsi and fatty acid synthase (FAS) in liver (p < .05). In conclusion, our results showed that appropriate dietary GAA supplementation (0.06%) promotes skeletal muscle development through changing myogenic gene expression and myofibre characteristics.
Asunto(s)
Alimentación Animal , Composición Corporal , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Expresión Génica , Glicina/análogos & derivados , Carne , Desarrollo de Músculos , Músculo Esquelético , PorcinosRESUMEN
Circular RNA (circRNA) is a type of closed circular RNA molecules formed by reverse splicing, which exists widely in organisms and has become a research hotspot in non-coding RNAs in recent years. Skeletal muscle plays the role of coordinating movement and maintaining normal metabolism and endocrine in organisms. With the development of sequencing and bioinformatics analysis technology, the functions and regulation mechanisms of circRNAs in skeletal muscle development have been gradually revealed. In this review, we summarize the types of molecular regulatory mechanisms, the classical research ideas and the functional research methods of circRNAs, and the research progress of circRNAs involved in normal development of skeletal muscle and regulation of skeletal muscle disease, in order to provide a reference to further study of the genetic mechanisms of circRNAs in the regulation of skeletal muscle development.
Asunto(s)
Desarrollo de Músculos , Músculo Esquelético/fisiología , ARN Circular/genética , Animales , Biología ComputacionalRESUMEN
Mef2 is a conserved and significant transcription factor in the control of muscle gene expression. In cell culture Mef2 synergises with MyoD-family members in the activation of gene expression and in the conversion of fibroblasts into myoblasts. Amongst its in vivo roles, Mef2 is required for both Drosophila muscle development and mammalian muscle regeneration. Mef2 has functions in other cell-types too, but this review focuses on skeletal muscle and surveys key findings on Mef2 from its discovery, shortly after that of MyoD, up to the present day. In particular, in vivo functions, underpinning mechanisms and areas of uncertainty are highlighted. We describe how Mef2 sits at a nexus in the gene expression network that controls the muscle differentiation program, and how Mef2 activity must be regulated in time and space to orchestrate specific outputs within the different aspects of muscle development. A theme that emerges is that there is much to be learnt about the different Mef2 proteins (from different paralogous genes, spliced transcripts and species) and how the activity of these proteins is controlled.
Asunto(s)
Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción MEF2/genética , Músculo Esquelético/metabolismo , Animales , Redes Reguladoras de Genes , Modelos Genéticos , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Músculo Esquelético/embriología , Mioblastos/citología , Mioblastos/metabolismo , Regeneración/genéticaRESUMEN
KEY POINTS: Lipin1 is critical for skeletal muscle development. Lipin1 regulates MyoD and myocyte-specific enhancer factor 2C (MEF2c) expression via the protein kinase C (PKC)/histone deacetylase 5-mediated pathway. Inhibition of PKCµ activity suppresses myoblast differentiation by inhibiting MyoD and MEF2c expression. ABSTRACT: Our previous characterization of global lipin1-deficient (fld) mice demonstrated that lipin1 played a novel role in skeletal muscle (SM) regeneration. The present study using cell type-specific Myf5-cre;Lipin1fl/fl conditional knockout mice (Lipin1Myf5cKO ) shows that lipin1 is a major determinant of SM development. Lipin1 deficiency induced reduced muscle mass and myopathy. Our results from lipin1-deficient myoblasts suggested that lipin1 regulates myoblast differentiation via the protein kinase Cµ (PKCµ)/histone deacetylase 5 (HDAC5)/myocyte-specific enhancer factor 2C (MEF2c):MyoD-mediated pathway. Lipin1 deficiency leads to the suppression of PKC isoform activities, as well as inhibition of the downstream target of PKCµ, class II deacetylase HDAC5 nuclear export, and, consequently, inhibition of MEF2c and MyoD expression in the SM of lipin1Myf5cKO mice. Restoration of diacylglycerol-mediated signalling in lipin1 deficient myoblasts by phorbol 12-myristate 13-acetate transiently activated PKC and HDAC5, and upregulated MEF2c expression. Our findings provide insights into the signalling circuitry that regulates SM development, and have important implications for developing intervention aimed at treating muscular dystrophy.
Asunto(s)
Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Proteína MioD/metabolismo , Fosfatidato Fosfatasa/metabolismo , Animales , Diferenciación Celular/fisiología , Histona Desacetilasas/metabolismo , Factores de Transcripción MEF2/metabolismo , Ratones , Ratones Endogámicos C57BL , Mioblastos/metabolismo , Mioblastos/fisiología , Fosforilación/fisiología , Transducción de Señal/fisiología , Regulación hacia Arriba/fisiologíaRESUMEN
Avian embryos are an ideal system to investigate the effect of incubation temperature on embryonic development, but the characteristics and mechanisms of temperature effects on poultry embryonic myogenesis are unclear. In this study, we investigated the effect of increasing the incubation temperature by 1⯰C on the expression of nine myogenesis-related genes in ducks and then explored the correlation between the alteration of promoter methylation and the expression of two of the nine genes under thermal manipulation (TM). The qRT-PCR results showed that TM during embryonic days (ED) 1-10 promoted (Pâ¯<â¯0.05) the expression of genes in breast muscle (PAX3, PAX7, MYOG, MCK, SIX1, TNNC1) and leg muscle (MYOD, MYOG, MYF5, MCK, AKIRIN2, TNNC1). TM during ED10-20 promoted the expression of PAX3, MYF5 and MCK and inhibited AKIRIN2 expression in breast muscle (Pâ¯<â¯0.05); however, it inhibited the expression of PAX3, PAX7, MYOD, MYOG, MYF5, SIX1, AKIRIN2 and TNNC1 and promoted MCK expression in leg muscle (Pâ¯<â¯0.05). TM during ED20-27 inhibited the expression of genes in breast muscle (PAX7) and leg muscle (MYOD, MYOG, MYF5, TNNC1) and promoted MCK expression in breast and leg muscle (Pâ¯<â¯0.05). Furthermore, with the Sequenom MassARRAY platform, it was observed that the average methylation level of AKIRIN2 (ED10) and TNNC1 (ED20) in leg muscle decreased (Pâ¯<â¯0.05) after TM. Notably, we found significant (Pâ¯<â¯0.05) inverse correlations between the methylation and mRNA levels of AKIRIN2 under TM during ED1-10 (râ¯=â¯- 0.969) and ED10-20 (râ¯=â¯- 0.805). Taken together, TM during ED1-10 was more favorable for improving duck myogenesis-related gene expression than TM during ED10-20 and ED20-27. TM during duck embryogenesis seemed to have a greater effect on the development of leg muscle than breast muscle and might alter AKIRIN2 expression by changing its promoter methylation status. These findings may be helpful to understand temperature effects on the muscle development of avian embryos and to explore the role of epigenetic regulation during this process.
Asunto(s)
Proteínas Aviares/fisiología , Patos , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos/fisiología , Músculo Esquelético , Temperatura , Animales , Patos/embriología , Patos/fisiología , Metilación , Músculo Esquelético/embriología , Músculo Esquelético/fisiología , Regiones Promotoras GenéticasRESUMEN
Skeletal muscle development plays an important role in muscle quality and yield, which decides the economic value of livestock. Long non-coding RNAs (lncRNAs) have been reported to be associated with skeletal muscle development. However, little is revealed about the function of lncRNAs in rabbits' muscle development. LncRNAs and mRNAs in two rabbit breeds (ZIKA rabbits (ZKR) and Qixin rabbits (QXR)) with different growth rates at three developmental stages (0 day, 35 days, and 84 days after birth) were researched by transcriptome sequencing. Differentially expressed lncRNAs and mRNAs were identified for two rabbit breeds at the same stages by DESeq package. Co-expression correlation analysis of differentially expressed lncRNAs and mRNAs were performed to construct lncRNAâ»mRNA pairs. To explore the function of lncRNAs, Gene Ontology (GO) analysis of co-expression mRNAs in lncRNAâ»mRNA pairs were performed. In three comparisons, there were 128, 109, and 115 differentially expressed lncRNAs, respectively. LncRNAs TCONS_00013557 and XR_518424.2 differentially expressed in the two rabbit breeds might play important roles in skeletal muscle development, for their co-expressed mRNAs were significantly enriched in skeletal muscle development related GO terms. This study provides potentially functional lncRNAs in skeletal muscle development of two rabbit breeds and might be beneficial to the production of rabbits.