Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.692
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Phys Chem ; 75(1): 421-435, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38424492

RESUMEN

Large strides have been made in designing an ever-increasing set of modern organic materials of high functionality and thus, often, of high complexity, including semiconducting polymers, organic ferroelectrics, light-emitting small molecules, and beyond. Here, we review how broadly applied thermal analysis methodologies, especially differential scanning calorimetry, can be utilized to provide unique information on the assembly and solid-state structure of this extensive class of materials, as well as the phase behavior of intrinsically intricate multicomponent systems. Indeed, highly relevant insights can be gained that are useful, e.g., for further materials-discovery activities and the establishment of reliable processing protocols, in particular if combined with X-ray diffraction techniques, spectroscopic tools, and scanning electron microscopy enabled by vapor-phase infiltration staining. We, hence, illustrate that insights far richer than simple melting point- and glass-transition identification can be obtained with differential scanning calorimetry, rendering it a critical methodology to understand complex matter, including functional macromolecules and blends.

2.
Nano Lett ; 24(39): 12111-12117, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39303046

RESUMEN

GaAs heterojunction solar cells are known as promising substitutions for traditional GaAs solar cells for their low cost and performance potential. Nevertheless, the further performance enhancement is hindered by insufficient spectral absorption and nonradioactive recombination. In this work, an InP quantum dot (QD) modified GaAs/PEDOT:PSS solar cell is designed to enhance spectrum utilization and suppress the nonradioactive carriers loss and the solar cell efficiency at 15.08% is achieved. Furthermore, InP QDs used in this work are synthesized by a novel hydrothermal method. During the synthesis process, ß-cyclodextrin (ß-cyc) was introduced into the reactants and acted as a reaction cell, isolating water and oxygen, enabling the reaction to proceed in ambient air. InP QDs synthesized by this method can achieve band engineering by altering reactant ratios, thereby effectively serving as both a Luminescent Solar Concentrator (LSC) and a Front Surface Field (FSF) in GaAs/PEDOT:PSS solar cells. This work demonstrates an inspiring way to synthesize InP QDs and optimize the performance of GaAs hybrid solar cells.

3.
Nano Lett ; 24(18): 5513-5520, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38634689

RESUMEN

P-type self-doping is known to hamper tin-based perovskites for developing high-performance solar cells by increasing the background current density and carrier recombination processes. In this work, we propose a gradient homojunction structure with germanium doping that generates an internal electric field across the perovskite film to deplete the charge carriers. This structure reduces the dark current density of perovskite by over 2 orders of magnitude and trap density by an order of magnitude. The resultant tin-based perovskite solar cells exhibit a higher power conversion efficiency of 13.3% and excellent stability, maintaining 95% and 85% of their initial efficiencies after 250 min of continuous illumination and 3800 h of storage, respectively. We reveal the homojunction formation mechanism using density functional theory calculations and molecular level characterizations. Our work provides a reliable strategy for controlling the spatial energy levels in tin perovskite films and offers insights into designing intriguing lead-free perovskite optoelectronics.

4.
Nano Lett ; 24(15): 4512-4520, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38579125

RESUMEN

Perovskite nanocrystals are advantageous for interfacial passivation of perovskite solar cells (PSCs), but the insulating long alkyl chain surface ligands impede the charge transfer, while the conventional ligand exchange would possibly introduce surface defects to the nanocrystals. In this work, we reported novel in situ modification of CsPbBr3 nanocrystals using a short chain conjugated molecule 2-methoxyphenylethylammonium iodide (2-MeO-PEAI) for interfacial passivation of PSCs. Transmission electron microscopy studies with atomic resolution unveil the transformation from cubic CsPbBr3 to Ruddlesden-Popper phase (RPP) nanocrystals due to halogen exchange. Synergic passivation by the RPP nanocrystals and 2-MeO-PEA+ has led to suppressed interface defects and enhanced charge carrier transport. Consequently, PSCs with in situ modified RPP nanocrystals achieved a champion power conversion efficiency of 24.39%, along with an improvement in stability. This work brings insights into the microstructural evolution of perovskite nanocrystals, providing a novel and feasible approach for interfacial passivation of PSCs.

5.
Nano Lett ; 24(1): 261-269, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38113224

RESUMEN

2D Dion-Jacobson (DJ) perovskites have emerged as promising photovoltaic materials, but the insulating organic spacer has hindered the efficient charge transport. Herein, we successfully synthesized a terthiophene-based semiconductor spacer, namely, 3ThDMA, for 2D DJ perovskite. An interesting finding is that the energy levels of 3ThDMA extensively overlap with the inorganic components and directly contribute to the band formation of (3ThDMA)PbI4, leading to enhanced charge transport across the organic spacer layers, whereas no such orbital interactions were found in (UDA)PbI4, a DJ perovskite based on 1,11-undecanediaminum (UDA). The devices based on (3ThDMA)MAn-1PbnI3n+1 (nominal n = 5) obtained a champion efficiency of 15.25%, which is a record efficiency for 2D DJ perovskite solar cells using long-conjugated spacers (conjugated rings ≥ 3) and a 22.60% efficiency for 3ThDMA-treated 3D PSCs. Our findings provide an important insight into understanding the orbital interactions in 2D DJ perovskite using an organic semiconductor spacer for efficient solar cells.

6.
Nano Lett ; 24(10): 3051-3058, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427970

RESUMEN

Construction of a high-quality charge transport layer (CTL) with intimate contact with the substrate via tailored interface engineering is crucial to increase the overall charge transfer kinetics and stability for a bulk-heterojunction (BHJ) organic solar cell (OSC). Here, we demonstrate a surface chemistry strategy to achieve a homogeneous composite hole transport layer (C-HTL) with robust substrate contact by self-assembling two-dimensional tungsten disulfide (WS2) nanosheets on a thin molybdenum oxide (MoO3) film-evaporated indium tin oxide (ITO) substrate. It is found that over such a well-defined C-HTL, WS2 is homogeneously tethered on the ITO/MoO3 substrate stemming from the strong electronic coupling interaction between the building blocks, which enables a favorable interfacial configuration in terms of uniformity. As a result, the D18:L8-BO-based OSC with C-HTL exhibits a power conversion efficiency (PCE) of 19.23%, an 11% improvement over the WS2-based control device, and the highest efficiency among single-junction PEDOT-free binary BHJ OSCs.

7.
Nano Lett ; 24(17): 5308-5316, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647008

RESUMEN

FAPbI3 stands out as an ideal candidate for the photoabsorbing layer of perovskite solar cells (PSCs), showcasing outstanding photovoltaic properties. Nonetheless, stabilizing photoactive α-FAPbI3 remains a challenge due to the lower formation energy of the competitive photoinactive δ-phase. In this study, we employ tetraethylphosphonium lead tribromide (TEPPbBr3) single crystals as templates for the epitaxial growth of PbI2. The strategic use of TEPPbBr3 optimizes the evolution of intermediates and the crystallization kinetics of perovskites, leading to high-quality and phase-stable α-FAPbI3 films. The TEPPbBr3-modified perovskite exhibits optimized carrier dynamics, yielding a champion efficiency of 25.13% with a small voltage loss of 0.34 V. Furthermore, the target device maintains 90% of its initial PCE under maximum power point (MPP) tracking over 1000 h. This work establishes a promising pathway through single crystal seed based epitaxial growth for achieving satisfactory crystallization regulation and phase stabilization of α-FAPbI3 perovskites toward high-efficiency and stable PSCs.

8.
Nano Lett ; 24(29): 9065-9073, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38985516

RESUMEN

The metal oxide electron transport layers (ETLs) of n-i-p perovskite solar cells (PSCs) are dominated by TiO2 and SnO2, while the efficacy of the other metal oxide ETLs still lags far behind. Herein, an emerging, economical, and environmentally friendly metal oxide, antimony oxide (Sb2Ox, x = 2.17), prepared by chemical bath deposition is reported as an alternative ETL for PSCs. The deposited Sb2Ox film is amorphous and very thin (∼10 nm) but conformal on rough fluorine-doped tin oxide substrates, showing matched energy levels, efficient electron extraction, and then reduced nonradiative recombination in PSCs. The champion PSC based on the Sb2Ox ETL delivers an impressive power conversion efficiency of 24.7% under one sun illumination, which represents the state-of-the-art performance of all metal oxide ETL-based PSCs. Additionally, the Sb2Ox-based devices show improved operational and thermal stability compared to their SnO2-based counterparts. Armed with these findings, we believe this work offers an optional ETL for perovskites-based optoelectronic devices.

9.
Nano Lett ; 24(18): 5460-5466, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38669564

RESUMEN

The performance of tin halide perovskite solar cells (PSCs) has been severely limited by the rapid crystallization of tin perovskites, which usually leads to an undesirable film quality. In this work, we tackle this issue by regulating the nucleation and crystal growth of tin perovskite films using a small Lewis base additive, urea. The urea-SnI2 interaction facilitates the formation of larger and more uniform clusters, thus accelerating the nucleation process. Additionally, the crystal growth process is extended, resulting in a high-quality tin perovskite film with compact morphology, increased crystallinity, and reduced defects. Consequently, the efficiency of tin PSCs is significantly increased from 10.42% to 14.22%. This work highlights the importance of manipulating the nucleation and crystal growth of tin perovskites to realize efficient tin PSCs.

10.
J Comput Chem ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212065

RESUMEN

Fourteen substituted diketopyrrolopyrrole (DPP) molecules in a donor (D)-acceptor (DPP)-donor (D) arrangement were designed. We employed density functional theory, time-dependent DFT, DFT-MRCI and the ab initio wave function second-order algebraic diagrammatic construction (ADC(2)) methods to investigate theoretically these systems. The examined aromatic substituents have one, two, or three hetero- and non-hetero rings. We comprehensively investigated their optical, electronic, and charge transport properties to evaluate potential applications in organic electronic devices. We found that the donor substituents based on one, two, or three aromatic rings bonded to the DPP core can improve the efficiency of an organic solar cell by fine-tuning the highest occupied molecular orbital/lowest unoccupied molecular orbital levels to match acceptors in typical bulk heterojunctions acceptors. Several properties of interest for organic photovoltaic devices were computed. We show that the investigated molecules are promising for applications as donor materials when combined with typical acceptors in bulk heterojunctions because they have appreciable energy conversion efficiencies resulting from their low ionization potentials and high electron affinities. This scenario allows a more effective charge separation and reduces the recombination rates. A comprehensive charge transfer analysis shows that D-A (DDP)-D systems have significant intramolecular charge transfer, further confirming their promise as candidates for donor materials in solar cells. The significant photophysical properties of DPP derivatives, including the high fluorescence emission, also allow these materials to be used in organic light-emitting diodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA