Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(14): e2309629, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37988699

RESUMEN

LiMn1-yFeyPO4 (LMFP) is a significant and cost-effective cathode material for Li-ion batteries, with a higher working voltage than LiFePO4 (LFP) and improved safety features compared to layered oxide cathodes. However, its commercial application faces challenges due to a need for a synthesis process to overcome the low Li-ion diffusion kinetics and complex phase transitions. Herein, a solid-state synthesis process using LFP and nano LiMn0.7Fe0.3PO4 (MF73) is proposed. The larger LFP acts as a structural framework fused with nano-MF73, preserving the morphology and high performance of LFP. These results demonstrate that the solid-state reaction occurs quickly, even at a low sintering temperature of 500 °C, and completes at 700 °C. However, contrary to the expectations, the larger LFP particles disappeared and fused into the nano-MF73 particles, revealing that Fe ions diffuse more easily than Mn ions in the olivine framework. This discovery provides valuable insights into understanding ion diffusion in LMFP. Notably, the obtained LMFP can still deliver an initial capacity of 142.3 mAh g-1, and the phase separation during the electrochemical process is significantly suppressed, resulting in good cycling stability (91.1% capacity retention after 300 cycles). These findings offer a promising approach for synthesizing LMFP with improved performance and stability.

2.
Chemistry ; 30(42): e202401581, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38771299

RESUMEN

Transition metal carbides find widespread use throughout industry due to their high strength and resilience under extreme conditions. However, they remain largely limited to compounds formed from the early d-block elements, since the mid-to-late transition metals do not form thermodynamically stable carbides. We report here the high-pressure bulk synthesis of large single crystals of a novel metastable manganese carbide compound, MnCx (P63/mmc), which adopts the anti-NiAs-type structure with significant substoichiometry at the carbon sites. We demonstrate how synthesis pressure modulates the carbon loading, with ~40 % occupancy being achieved at 9.9 GPa.

3.
Nano Lett ; 23(5): 1743-1751, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36811529

RESUMEN

P2-Na0.67Ni0.33Mn0.67O2 represents a promising cathode for Na-ion batteries, but it suffers from severe structural degradation upon storing in a humid atmosphere and cycling at a high cutoff voltage. Here we propose an in situ construction to achieve simultaneous material synthesis and Mg/Sn cosubstitution of Na0.67Ni0.33Mn0.67O2 via one-pot solid-state sintering. The materials exhibit superior structural reversibility and moisture insensitivity. In-operando XRD reveals an essential correlation between cycling stability and phase reversibility, whereas Mg substitution suppressed the P2-O2 phase transition by forming a new Z phase, and Mg/Sn cosubstitution enhanced the P2-Z transition reversibility benefiting from strong Sn-O bonds. DFT calculations disclosed high chemical tolerance to moisture, as the adsorption energy to H2O was lower than that of the pure Na0.67Ni0.33Mn0.67O2. A representative Na0.67Ni0.23Mg0.1Mn0.65Sn0.02O2 cathode exhibits high reversible capacities of 123 mAh g-1 (10 mA g-1), 110 mAh g-1 (200 mA g-1), and 100 mAh g-1 (500 mA g-1) and a high capacity retention of 80% (500 mA g-1, 500 cycles).

4.
Int J Mol Sci ; 25(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38791542

RESUMEN

Molecularly imprinted polymers (MIPs) are established artificial molecular recognition platforms with tailored selectivity towards a target molecule, whose synthesis and functionality are highly influenced by the nature of the solvent employed in their synthesis. Steps towards the "greenification" of molecular imprinting technology (MIT) has already been initiated by the elaboration of green MIT principles; developing MIPs in a solvent-free environment may not only offer an eco-friendly alternative, but could also significantly influence the affinity and expected selectivity of the resulting binding sites. In the current study the first solvent-free mechanochemical synthesis of MIPs via liquid-assisted grinding (LAG) is reported. The successful synthesis of the imprinted polymer was functionally demonstrated by measuring its template rebinding capacity and the selectivity of the molecular recognition process in comparison with the ones obtained by the conventional, non-covalent molecular imprinting process in liquid media. The results demonstrated similar binding capacities towards the template molecule and superior chemoselectivity compared to the solution-based MIP synthesis method. The adoption of green chemistry principles with all their inherent advantages in the synthesis of MIPs may not only be able to alleviate the potential environmental and health concerns associated with their analytical (e.g., selective adsorbents) and biomedical (e.g., drug carriers or reservoirs) applications, but might also offer a conceptual change in molecular imprinting technology.


Asunto(s)
Impresión Molecular , Polímeros Impresos Molecularmente , Polímeros Impresos Molecularmente/química , Polímeros Impresos Molecularmente/síntesis química , Impresión Molecular/métodos , Técnicas de Síntesis en Fase Sólida/métodos , Polímeros/química , Polímeros/síntesis química , Solventes/química
5.
Small ; 19(52): e2304123, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37649215

RESUMEN

In this study, pre-crystallization-controlled, solid-state preparation of red carbon dots (C-dots) from o-phenylenediamine on a hectogram scale with a 94% yield is reported. Highly efficient red phosphor (C-dots@MCC) is obtained by dispersing the C-dots in microcrystalline cellulose, which matched extremely well with the commercial Y3 Al5 O12 :Ce3+ (YAG) phosphor. White light-emitting diodes (WLEDs) fabricated from the two phosphors emitted warm white light with a correlated color temperature of 3845 K, CIE color coordinates of (0.38, 0.37), and an extremely high color rendering index (CRI) of 95, outperforming all the reported YAG-derived WLEDs. Furthermore, the CRI value of the WLED can be further increased to 97 after fine-tuning, which is the highest CRI for WLEDs of any C-dots derived devices reported so far. The superior performance of the WLED is attributed to a delicate energy transfer between YAG and C-dots@MCC. Most importantly, the WLED maintained excellent stabilities under varied currents, working durations, moistures, and temperatures.

6.
Small ; 19(12): e2206248, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642819

RESUMEN

P2-type Na2/3 Ni1/3 Mn1/2 Ti1/6 O2 (NMTNO) cathode is a preeminent electrode material for Na-ion batteries owing to its open prismatic framework, air-moisture stability, inexpensiveness, appealing capacity, environmental benignity, and Co-free composition. However, the poor cycling stability, sluggish Na-ion kinetics induced in bulk-sized cathode particles, cracking, and exfoliation in the crystallites remain a setback. To outmaneuver these, a designing strategy of a mechanically robust, hexagonal nano-crystallites of P2-type Na2/3 Ni1/3 Mn1/2 Ti1/6 O2 (NMTNOnano ) electrode via quick, energy-efficient, and low-cost microwave-irradiated synthesis is proposed. For the first time, employing a unified experimental and theoretical approach with fracture mechanics analysis, the mechanism behind the enhanced performance, better structural stability, and lower diffusion-induced stress of NMTNOnano compared to micro-sized Na2/3 Ni1/3 Mn1/2 Ti1/6 O2 is unveiled and the electrochemical shock map is predicted. The NMTNOnano cathode provides 94.8% capacity retention after 100 cycles at 0.1 C with prolonged performance for 1000 cycles at 0.5 C. The practical viability of this cathode, tested in a full cell against a hard carbon anode delivered 85.48% capacity retention at 0.14 mA cm-2 after 200 cycles. This work bridges the gap in correlating the microstructural and electrochemical properties through experimental, theoretical (DFT), and fracture mechanics analysis, thereby tailoring efficient cathode with lower diffusion-induced stress for high-energy Na-ion batteries.

7.
J Fluoresc ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37726503

RESUMEN

Though iron is one of the vital micronutrients in biological systems excess of which is associated with various illness. Consumption of contaminated water and crops because of its extensive industrial utility is one of the major sources for excess iron in living beings. Hence, we have designed a sensor based on carbon nanoparticles for the detection of Fe (III) and we have also attempted to estimate Fe (III) in spiked water samples. Carbon nanoparticles (CNP) with quantum yield of 40.2 % was synthesized by solid state synthesis from aromatic molecular precursors unlike conventional synthesis methodology. The particle size, stability and optical properties of CNP were investigated by microscopic and spectroscopic techniques. CNP manifested a naked color change from colorless to yellow in presence of Fe (III) and 72 % of CNP's emission was quenched at 487 nm on excitation at 377 nm by Fe (III). The detection time was less than a second and limit of detection was calculated as 0.248 µM. The mechanistic aspect of detection was investigated and applicability of CNP was examined in spiked water samples.

8.
Sensors (Basel) ; 23(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37837091

RESUMEN

In this study, we report on the room-temperature characteristics of an impedance-type humidity sensor based on porous tin oxide/titanium oxide (SnO2/TiO2) composite ceramics modified with Mo and Zn. The SnO2/TiO2-based composites synthesized in the solid-state processing technique have been structurally characterized using X-ray diffraction, scanning electron microscopy, energy dispersive, and Raman spectroscopy. Structural analysis indicated the desired porous nature of the synthesized ceramics for sensing applications, with an average crystallite size in the nano range and a density of about 80%. The humidity-sensing properties were evaluated within a wide relative humidity range from 15% to 85% at room temperature, and the results showed that a better humidity response had a sample with Mo. This humidity-sensing material exhibits a linear impedance change of about two orders of magnitude at the optimal operating frequency of 10 kHz. Furthermore, fast response (18 s) and recovery (27 s), relatively small hysteresis (2.8%), repeatability, and good long-term stability were also obtained. Finally, the possible humidity-sensing mechanism was discussed in detail using the results of complex impedance analysis.

9.
Molecules ; 28(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37110730

RESUMEN

A new mechanically stimulated solid-state reaction of PtCl4 with sodium ß-diketonates has been discovered. Platinum (II) ß-diketonates were obtained by grinding excess sodium trifluoroacetylacetonate Na(tfac) or hexafluoroacetylacetonate Na(hfac) in a vibration ball mill, followed by subsequent heating of the resulting mixture. The reactions occur under much milder conditions (at about 170 °C) compared to similar reactions of PtCl2 or K2PtCl6 (at about 240 °C). Excess diketonate salt plays the role of a reducing agent in the conversion of Pt (IV) salt to Pt (II) compounds. The effect of grinding on properties of the ground mixtures was studied by XRD, IR, and thermal analysis methods. The difference in the course of the interaction of PtCl4 with Na(hfac) or Na(tfac) indicates the dependence of the reaction on the ligand properties. The probable reaction mechanisms were discussed. This method of synthesis of platinum (II) ß-diketonates makes it possible to substantially reduce the variety of reagents used, the number of reaction steps, the reaction time, the use of solvents, and waste generation compared to conventional solution-based methods.

10.
Nano Lett ; 21(10): 4176-4184, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33988361

RESUMEN

Though low-cost and environmentally friendly, Li-Mn-O cathodes suffer from low energy density. Although synthesized Li4Mn5O12-like overlithiated spinel cathode with reversible hybrid anion- and cation-redox (HACR) activities has a high initial capacity, it degrades rapidly due to oxygen loss and side-reaction-induced electrolyte decomposition. Herein, we develop a two-step heat treatment to promote local decomposition as Li4Mn5O12 → 2LiMn2O4 + Li2MnO3 + 1/2 O2↑, which releases near-surface reactive oxygen that is harmful to cycling stability. The produced nanocomposite delivers a high discharge capacity of 225 mAh/g and energy density of over 700 Wh/kg at active-material level at a current density of 100 mA/g between 1.8 to 4.7 V. Benefiting from suppressed oxygen loss and side reactions, 80% capacity retention is achieved after 214 cycles in half cells. With industrially acceptable electrolyte amount (6 g/Ah), full cells paired with Li4Ti5O12 anode have a good retention over 100 cycles.

11.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35743296

RESUMEN

Carbon monoxide (CO) oxidation performance heavily depends on the surface-active species and the oxygen vacancies of nanocomposites. Herein, the CuOx/Cu1.5Mn1.5O4 were fabricated via solid-state strategy. It is manifested that the construction of CuOx/Cu1.5Mn1.5O4 nanocomposite can produce abundant surface CuOx species and a number of oxygen vacancies, resulting in substantially enhanced CO oxidation activity. The CO is completely converted to carbon dioxide (CO2) at 75 °C when CuOx/Cu1.5Mn1.5O4 nanocomposites were involved, which is higher than individual CuOx, MnOx, and Cu1.5Mn1.5O4. Density function theory (DFT) calculations suggest that CO and O2 are adsorbed on CuOx/Cu1.5Mn1.5O4 surface with relatively optimal adsorption energy, which is more beneficial for CO oxidation activity. This work presents an effective way to prepare heterogeneous metal oxides with promising application in catalysis.


Asunto(s)
Nanocompuestos , Oxígeno , Catálisis , Cobre
12.
Angew Chem Int Ed Engl ; 61(42): e202209033, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-35876617

RESUMEN

Phthalocyanines are important organic dyes with a broad applicability in optoelectronics, catalysis, sensing and nanomedicine. Currently, phthalocyanines are synthetized in high boiling organic solvents, like dimethylaminoethanol (DMAE), which is a flammable, corrosive, and bioactive substance, miscible with water and harmful to the environment. Here we show a new solid-state approach for the high-yielding synthesis of phthalocyanines, which reduces up to 100-fold the amount of DMAE. Through systematic screening of solid-state reaction parameters, carried out by ball-milling and aging, we reveal the influence of key variables-temperature, presence of a template, and the amount and role of DMAE in the conversion of tBu phthalonitrile to tetra-tBu phthalocyanine. These results set the foundations to synthesize these high-performance dyes through a greener approach, opening the field of solid-state synthesis to a wider family of phthalocyanines.


Asunto(s)
Cáusticos , Deanol , Colorantes , Indoles , Isoindoles , Solventes , Agua
13.
Chemistry ; 27(57): 14184-14188, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34407247

RESUMEN

Multinary transition metal nitrides and oxonitrides are a versatile and intriguing class of compounds. However, they have been investigated far less than pure oxides. The compounds Sc5 P12 N23 O3 and Ti5 P12 N24 O2 have now been synthesized from the binary nitrides ScN and TiN, respectively, by following a high-pressure high-temperature approach at 8 GPa and 1400 °C. NH4 F acts as a mineralizing agent that supports product formation and crystallization. The starting materials ScN and TiN are seemingly an uncommon choice because of their chemical inertness but, nevertheless, react under these conditions. Sc5 P12 N23 O3 and Ti5 P12 N24 O2 crystallize isotypically with Ti5 B12 O26 , consisting of solely vertex-sharing P(O/N)4 tetrahedra forming two independent interpenetrating diamond-like nets that host TM(O/N)6 (TM=Sc, Ti) octahedra. Ti5 P12 N24 O2 is a mixed-valence compound and shows ordering of Ti3+ and Ti4+ ions.

14.
Angew Chem Int Ed Engl ; 60(14): 7752-7758, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33460518

RESUMEN

Starphenes are attractive compounds due to their characteristic physicochemical properties that are inherited from acenes, making them interesting compounds for organic electronics and optics. However, the instability and low solubility of larger starphene homologs make their synthesis extremely challenging. Herein, we present a new strategy leading to pristine [16]starphene in preparative scale. Our approach is based on a synthesis of a carbonyl-protected starphene precursor that is thermally converted in a solid-state form to the neat [16]starphene, which is then characterised with a variety of analytical methods, such as 13 C CP-MAS NMR, TGA, MS MALDI, UV/Vis and FTIR spectroscopy. Furthermore, high-resolution STM experiments unambiguously confirm its expected structure and reveal a moderate electronic delocalisation between the pentacene arms. Nucleus-independent chemical shifts NICS(1) are also calculated to survey its aromatic character.

15.
Chemistry ; 26(40): 8689-8697, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32187757

RESUMEN

Intermetallics adopt an array of crystal structures, boast diverse chemical compositions, and possess exotic physical properties that have led to a wide range of applications from the biomedical to aerospace industries. Despite a long history of intermetallic synthesis and crystal structure analysis, identifying new intermetallic phases has remained challenging due to the prolonged nature of experimental phase space searching or the need for fortuitous discovery. In this Minireview, new approaches that build on the traditional methods for materials synthesis and characterization are discussed with a specific focus on realizing novel intermetallics. Indeed, advances in the computational modeling of solids using density functional theory in combination with structure prediction algorithms have led to new high-pressure phases, functional intermetallics, and aided experimental efforts. Furthermore, the advent of data-centered methodologies has provided new opportunities to rapidly predict crystal structures, physical properties, and the existence of unknown compounds. Describing the research results for each of these examples in depth while also highlighting the numerous opportunities to merge traditional intermetallic synthesis and characterization with computation and informatics provides insight that is essential to advance the discovery of metal-rich solids.

16.
Chemistry ; 26(9): 2041-2050, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-31785014

RESUMEN

A green and convenient solid-state method assisted by mechanical energy is employed for the synthesis of boron (B) and nitrogen (N) co-doped porous carbons (B,N-Cs). Glutamic acid (Glu) and boric acid (H3 BO3 ) are used as the N-containing carbon precursor and boron source, respectively. This method is easy to perform and proved to be efficient towards co-doping B and N into the carbon matrix with high contents of B (7 atom %) and N (10 atom %). By adjusting the molar ratio of H3 BO3 to Glu, the surface chemical states of B and N could be readily modulated. When increasing H3 BO3 dosage, the pore size of B,N-Cs could be tuned ranging from micropores to mesopores with a Brunauer-Emmett-Teller (BET) surface area up to 940 m2 g-1 . Finally, the B,N-Cs were applied as metal-free catalysts for the cycloaddition of CO2 to epoxides, which outperform the N-doped carbon catalyst (NC-900) and the physically mixed catalyst of NC-900/B4 C. The enhanced activity is attributed to the cooperative effect between B and N sites. X-ray photoelectron spectroscopy (XPS) analysis reveals that BN3 in the B,N-Cs serves as a critical active site for the cooperative catalysis.

17.
Chemphyschem ; 21(13): 1345-1368, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32346904

RESUMEN

The number of known inorganic compounds is dramatically less than predicted due to synthetic challenges, which often constrains products to only the thermodynamically most stable compounds. Consequently, a mechanism-based approach to inorganic solids with designed structures is the holy grail of solid state synthesis. This article discusses a number of synthetic approaches using the concept of an energy landscape, which describes the complex relationship between the energy of different atomic configurations as a function of a variety of parameters such as initial structure, temperature, pressure, and composition. Nucleation limited synthesis approaches with high diffusion rates are contrasted with diffusion limited synthesis approaches. One challenge to the synthesis of new compounds is the inability to accurately predict what structures might be local free energy minima in the free energy landscape. Approaches to this challenge include predicting potentially stable compounds thorough the use of structural homologies and/or theoretical calculations. A second challenge to the synthesis of metastable inorganic solids is developing approaches to move across the energy landscape to a desired local free energy minimum while avoiding deeper free energy minima, such as stable binary compounds, as reaction intermediates. An approach using amorphous intermediates is presented, where local composition can be used to prepare metastable compounds. Designed nanoarchitecture built into a precursor can be preserved at low reaction temperatures and used to direct the reaction to specific structural homologs.

18.
Angew Chem Int Ed Engl ; 59(1): 339-342, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31612543

RESUMEN

The first quasi-binary acetonitriletriide Sr3 [C2 N]2 has been synthesised and characterised. The nearly colourless crystals were obtained from the reaction of Sr metal, graphite, and elemental N2 , generated by decomposition of Sr(N3 )2 , in a sealed Ni ampoule with the aid of an alkali metal flux. The structure of this compound was analysed via single-crystal X-ray diffraction and the identity of the [C2 N]3- anion was confirmed by Raman spectroscopy and further investigated by quantum-chemical methods. Computed interatomic distances within the [C2 N]3- anion strikingly match the obtained experimental data.

19.
Angew Chem Int Ed Engl ; 59(20): 7793-7796, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32056339

RESUMEN

Antimony(III) borates with a stereochemical active lone pair remained unknown, although the first antimony borate was reported more than twenty years ago. Now, the first antimony(III) borate in a closed system is successfully synthesized, namely SbB3 O6 . Remarkably, SbB3 O6 not only exhibits an exceptional linear optical response, that is, birefringence of Δn=0.290 at the wavelength of 546 nm, which is the largest among borates, but also has a strong nonlinear optical response of 3.5 times larger than the benchmark KH2 PO4 , exceeding those of most borates. Theoretical calculations reveal that the coexistence of strong linear and nonlinear optical responses in SbB3 O6 should be attributable to the synergistic effect of π-conjugated B-O anionic groups and Sb3+ with stereochemically active lone pair. This work provides a new class of optical bi-functional materials with potential prospects in integrated optical devices.

20.
Chemistry ; 25(53): 12275-12280, 2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31389071

RESUMEN

A range of oxobis(phenyl-1,3-butanedione) vanadium(IV) complexes have been successfully synthesized from cheap starting materials and a simple and solvent-free one-pot dry-melt reaction. This direct, straightforward, fast and alternative approach to inorganic synthesis has the potential for a wide range of applications. Analytical studies confirm their successful synthesis, purity and solid-state coordination, and we report the use of such complexes as potential drug candidates for the treatment of cancer. After a 24 hour incubation of A549 lung carcinoma cells with the compounds, they reveal cytotoxicity values elevenfold greater than cisplatin and remain non-toxic towards normal cell types. Additionally, the complexes are stable over a range of physiological pH values and show the potential for interactions with bovine serum albumin.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/toxicidad , Complejos de Coordinación/síntesis química , Vanadio/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Bovinos , Cisplatino/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Humanos , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA