Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 151(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345319

RESUMEN

The trunk axial skeleton develops from paraxial mesoderm cells. Our recent study demonstrated that conditional knockout of the stem cell factor Sall4 in mice by TCre caused tail truncation and a disorganized axial skeleton posterior to the lumbar level. Based on this phenotype, we hypothesized that, in addition to the previously reported role of Sall4 in neuromesodermal progenitors, Sall4 is involved in the development of the paraxial mesoderm tissue. Analysis of gene expression and SALL4 binding suggests that Sall4 directly or indirectly regulates genes involved in presomitic mesoderm differentiation, somite formation and somite differentiation. Furthermore, ATAC-seq in TCre; Sall4 mutant posterior trunk mesoderm shows that Sall4 knockout reduces chromatin accessibility. We found that Sall4-dependent open chromatin status drives activation and repression of WNT signaling activators and repressors, respectively, to promote WNT signaling. Moreover, footprinting analysis of ATAC-seq data suggests that Sall4-dependent chromatin accessibility facilitates CTCF binding, which contributes to the repression of neural genes within the mesoderm. This study unveils multiple mechanisms by which Sall4 regulates paraxial mesoderm development by directing activation of mesodermal genes and repression of neural genes.


Asunto(s)
Proteínas de Unión al ADN , Regulación del Desarrollo de la Expresión Génica , Mesodermo , Factores de Transcripción , Animales , Ratones , Diferenciación Celular , Cromatina/metabolismo , Expresión Génica , Mesodermo/metabolismo , Somitos/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo
2.
Development ; 150(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37830145

RESUMEN

Recent work shows that the developmental potential of progenitor cells in the HH10 chick brain changes rapidly, accompanied by subtle changes in morphology. This demands increased temporal resolution for studies of the brain at this stage, necessitating precise and unbiased staging. Here, we investigated whether we could train a deep convolutional neural network to sub-stage HH10 chick brains using a small dataset of 151 expertly labelled images. By augmenting our images with biologically informed transformations and data-driven preprocessing steps, we successfully trained a classifier to sub-stage HH10 brains to 87.1% test accuracy. To determine whether our classifier could be generally applied, we re-trained it using images (269) of randomised control and experimental chick wings, and obtained similarly high test accuracy (86.1%). Saliency analyses revealed that biologically relevant features are used for classification. Our strategy enables training of image classifiers for various applications in developmental biology with limited microscopy data.


Asunto(s)
Aprendizaje Profundo , Animales , Redes Neurales de la Computación , Encéfalo , Microscopía , Alas de Animales
3.
FASEB J ; 38(13): e23753, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38924591

RESUMEN

Lunatic Fringe (LFNG) is required for spinal development. Biallelic pathogenic variants cause spondylocostal dysostosis type-III (SCD3), a rare disease generally characterized by malformed, asymmetrical, and attenuated development of the vertebral column and ribs. However, a variety of SCD3 cases reported have presented with additional features such as auditory alterations and digit abnormalities. There has yet to be a single, comprehensive, functional evaluation of causative LFNG variants and such analyses could unveil molecular mechanisms for phenotypic variability in SCD3. Therefore, nine LFNG missense variants associated with SCD3, c.564C>A, c.583T>C, c.842C>A, c.467T>G, c.856C>T, c.601G>A, c.446C>T, c.521G>A, and c.766G>A, were assessed in vitro for subcellular localization and protein processing. Glycosyltransferase activity was quantified for the first time in the c.583T>C, c.842C>A, and c.446C>T variants. Primarily, our results are the first to satisfy American College of Medical Genetics and Genomics PS3 criteria (functional evidence via well-established assay) for the pathogenicity of c.583T>C, c.842C>A, and c.446C>T, and replicate this evidence for the remaining six variants. Secondly, this work indicates that all variants that prevent Golgi localization also lead to impaired protein processing. It appears that the FRINGE domain is responsible for this phenomenon. Thirdly, our data suggests that variant proximity to the catalytic residue may influence whether LFNG is improperly trafficked and/or enzymatically dysfunctional. Finally, the phenotype of the axial skeleton, but not elsewhere, may be modulated in a variant-specific fashion. More reports are needed to continue testing this hypothesis. We anticipate our data will be used as a basis for discussion of genotype-phenotype correlations in SCD3.


Asunto(s)
Disostosis , Variación Genética , Glicosiltransferasas , Animales , Ratones , Línea Celular , Chlorocebus aethiops , Disostosis/congénito , Disostosis/genética , Variación Genética/genética , Genómica , Glicosiltransferasas/genética , Células 3T3 NIH , Procesamiento Proteico-Postraduccional/genética , Transporte de Proteínas/genética , Proteómica
4.
Dev Dyn ; 253(2): 204-214, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37688793

RESUMEN

BACKGROUND: The segmented nature of the adult vertebral column is based on segmentation of the paraxial mesoderm during early embryogenesis. Disruptions to embryonic segmentation, whether caused by genetic lesions or environmental stress, result in adult vertebral pathologies. However, the mechanisms linking embryonic segmentation and the details of adult vertebral morphology are poorly understood. RESULTS: We induced border defects using two approaches in zebrafish: heat stress and misregulation of embryonic segmentation genes tbx6, mesp-ba, and ripply1. We assayed vertebral length, regularity, and polarity using microscopic and radiological imaging. In population studies, we find a correlation between specific embryonic border defects and specific vertebral defects, and within individual fish, we trace specific adult vertebral defects to specific embryonic border defects. CONCLUSIONS: Our data reveal that transient disruptions of embryonic segment border formation led to significant vertebral anomalies that persist through adulthood. The spacing of embryonic borders controls the length of the vertebra. The positions of embryonic borders control the positions of ribs and arches. Embryonic borders underlie fusions and divisions between adjacent spines and ribs. These data suggest that segment borders have a dominant role in vertebral development.


Asunto(s)
Columna Vertebral , Pez Cebra , Animales , Columna Vertebral/diagnóstico por imagen , Mesodermo , Proteínas de Pez Cebra , Desarrollo Embrionario , Somitos , Proteínas de Dominio T Box/genética
5.
Dev Biol ; 485: 37-49, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35276131

RESUMEN

T is the founding member of the T-box family of transcription factors; family members are critical for cell fate decisions and tissue morphogenesis throughout the animal kingdom. T is expressed in the primitive streak and notochord with mouse mutant studies revealing its critical role in mesoderm formation in the primitive streak and notochord integrity. We previously demonstrated that misexpression of Tbx6 in the paraxial and lateral plate mesoderm results in embryos resembling Tbx15 and Tbx18 nulls. This, together with results from in vitro transcriptional assays, suggested that ectopically expressed Tbx6 can compete with endogenously expressed Tbx15 and Tbx18 at the binding sites of target genes. Since T-box proteins share a similar DNA binding domain, we hypothesized that misexpressing T in the paraxial and lateral plate mesoderm would also interfere with the endogenous Tbx15 and Tbx18, causing embryonic phenotypes resembling those seen upon Tbx6 expression in the somites and limbs. Interestingly, ectopic T expression led to distinct embryonic phenotypes, specifically, reduced-sized somites in embryos expressing the highest levels of T, which ultimately affects axis length and neural tube morphogenesis. We further demonstrate that ectopic T leads to ectopic expression of Tbx6 and Mesogenin 1, known targets of T. These results suggests that ectopic T expression contributes to the phenotype by activating its own targets rather than via a straight competition with endogenous T-box factors.


Asunto(s)
Somitos , Proteínas de Dominio T Box , Animales , Expresión Génica Ectópica , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Mesodermo , Ratones , Somitos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
6.
Dev Biol ; 488: 120-130, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35644252

RESUMEN

We previously showed the importance of TGFß signaling in development of the mouse axial skeleton. Here, we provide the first direct evidence that TGFß signaling is required for resegmentation of the sclerotome using chick embryos. Lipophilic fluorescent tracers, DiO and DiD, were microinjected into adjacent somites of embryos treated with or without TGFßRI inhibitors, SB431542, SB525334 or SD208, at developmental day E2.5 (HH16). Lineage tracing of labeled cells was observed over the course of 4 days until the completion of resegmentation at E6.5 (HH32). Vertebrae were malformed and intervertebral discs were small and misshapen in inhibitor injected embryos. Hypaxial myofibers were also increased in thickness after treatment with the inhibitor. Inhibition of TGFß signaling resulted in alterations in resegmentation that ranged between full, partial, and slanted shifts in distribution of DiO or DiD labeled cells within vertebrae. Patterning of rostro-caudal markers within sclerotome was disrupted at E3.5 after treatment with TGFßRI inhibitor with rostral domains expressing both rostral and caudal markers. We propose that TGFß signaling regulates rostro-caudal polarity and subsequent resegmentation in sclerotome during spinal column development.


Asunto(s)
Pollos , Disco Intervertebral , Animales , Huesos , Embrión de Pollo , Somitos/fisiología , Columna Vertebral/fisiología , Factor de Crecimiento Transformador beta
7.
Development ; 146(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31416929

RESUMEN

Consistent asymmetries between the left and right sides of animal bodies are common. For example, the internal organs of vertebrates are left-right (L-R) asymmetric in a stereotyped fashion. Other structures, such as the skeleton and muscles, are largely symmetric. This Review considers how symmetries and asymmetries form alongside each other within the embryo, and how they are then maintained during growth. I describe how asymmetric signals are generated in the embryo. Using the limbs and somites as major examples, I then address mechanisms for protecting symmetrically forming tissues from asymmetrically acting signals. These examples reveal that symmetry should not be considered as an inherent background state, but instead must be actively maintained throughout multiple phases of embryonic patterning and organismal growth.


Asunto(s)
Tipificación del Cuerpo , Desarrollo Embrionario , Animales , Enfermedad , Extremidades/embriología , Humanos , Ratones , Somitos/embriología
8.
Dev Dyn ; 250(1): 39-59, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32406962

RESUMEN

In vertebrates, the trunk consists of the musculoskeletal structures of the back and the ventrolateral body wall, which together enclose the internal organs of the circulatory, digestive, respiratory and urogenital systems. This review gives an overview on the development of the thoracic and abdominal wall during amniote embryogenesis. Specifically, I briefly summarize relevant historical concepts and the present knowledge on the early embryonic development of ribs, sternum, intercostal muscles and abdominal muscles with respect to anatomical bauplan, origin and specification of precursor cells, initial steps of pattern formation, and cellular and molecular regulation of morphogenesis.


Asunto(s)
Pared Abdominal/embriología , Pared Torácica/embriología , Vertebrados/embriología , Músculos Abdominales/embriología , Animales , Humanos , Músculos Intercostales/embriología , Costillas/embriología , Esternón/embriología
9.
Semin Cell Dev Biol ; 91: 31-44, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29331210

RESUMEN

Craniofacial muscles, muscles that move the eyes, control facial expression and allow food uptake and speech, have long been regarded as a variation on the general body muscle scheme. However, evidence has accumulated that the function of head muscles, their developmental anatomy and the underlying regulatory cascades are distinct. This article reviews the key aspects of craniofacial muscle and muscle stem cell formation and discusses how this differs from the trunk programme of myogenesis; we show novel RNAseq data to support this notion. We also trace the origin of head muscle in the chordate ancestors of vertebrates and discuss links with smooth-type muscle in the primitive chordate pharynx. We look out as to how the special properties of head muscle precursor and stem cells, in particular their competence to contribute to the heart, could be exploited in regenerative medicine.


Asunto(s)
Ojo/embriología , Cabeza/embriología , Mesodermo/embriología , Músculo Esquelético/embriología , Animales , Neuronas Colinérgicas/citología , Neuronas Colinérgicas/metabolismo , Ojo/inervación , Regulación del Desarrollo de la Expresión Génica , Cabeza/inervación , Mesodermo/citología , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Músculo Esquelético/inervación , Mioblastos/citología , Mioblastos/metabolismo , Vertebrados/embriología , Vertebrados/genética
10.
J Anat ; 235(4): 716-724, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31225912

RESUMEN

Somites are epithelial segments of the paraxial mesoderm. Shortly after their formation, the epithelial somites undergo extensive cellular rearrangements and form specific somite compartments, including the sclerotome and the myotome, which give rise to the axial skeleton and to striated musculature, respectively. The dynamics of somite development varies along the body axis, but most research has focused on somite development at thoracolumbar levels. The development of tail somites has not yet been thoroughly characterized, even though vertebrate tail development has been intensely studied recently with respect to the termination of segmentation and the limitation of body length in evolution. Here, we provide a detailed description of the somites in the avian tail from the beginning of tail formation at HH-stage 20 to the onset of degeneration of tail segments at HH-stage 27. We characterize the formation of somite compartment formation in the tail region with respect to morphology and the expression patterns of the sclerotomal marker gene paired-box gene 1 (Pax1) and the myotomal marker genes MyoD and myogenic factor 5 (Myf5). Our study gives insight into the development of the very last segments formed in the avian embryo, and provides a basis for further research on the development of tail somite derivatives such as tail vertebrae, pygostyle and tail musculature.


Asunto(s)
Aves/embriología , Somitos/embriología , Cola (estructura animal)/embriología , Animales , Embrión de Pollo , Desarrollo Embrionario
11.
Dev Dyn ; 247(11): 1211-1216, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30265422

RESUMEN

In ovo electroporation is a well established method to introduce transgenes into a number of tissues in chicken embryos, e.g., neural tissue, limb mesenchyme, and somites. This method has been widely used to investigate cell lineage, cell morphology, and molecular pathways by localized expression of fluorescent reporter constructs. Furthermore gain- and loss-of-function experiments can be performed by electroporating transgenes or gene-silencing constructs. We have developed a new technique to electroporate tissues positioned opposite to each other with different plasmids using an electroporation chamber. As proof of principle, we electroporated the dorsal surface ectoderm with a reporter construct expressing mCherry and the subjacent somites with a reporter construct expressing EGFP. This double-electroporation technique allows investigation of the localization of two different proteins of interest in two adjacent tissues and will be useful to examine the cellular and molecular interaction of neighboring structures during embryonic development. Developmental Dynamics 247:1211-1216, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Electroporación/métodos , Técnicas de Transferencia de Gen , Proteínas/genética , Animales , Animales Modificados Genéticamente , Comunicación Celular , Embrión de Pollo , Embrión no Mamífero , Desarrollo Embrionario , Proteínas/análisis , Distribución Tisular
12.
Genesis ; 56(8): e23240, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30113767

RESUMEN

The notochord and somites are distinctive chordate structures. The T-box transcription factor gene, Brachyury, is expressed in notochord and plays a pivotal role in its formation. In the cephalochordate, Branchiostoma floridae, Brachyury is duplicated into BfBra1 and BfBra2, which are expressed in the somite-formation region as well. In a series of experiments to elucidate the regulatory machinery of chordate Brachyury expression, we carried out a lacZ reporter assay of BfBra in embryos of the urochordate, Ciona intestinalis. Vista analyses suggest the presence of conserved non-coding sequences, not only in the 5'-upstream, but also in the 3'-downstream and in introns of BfBra. We found that: (1) 5'-upstream sequences of both BfBra1 and BfBra2 promote lacZ expression in muscle cells, (2) 3'-downstream sequences have enhancer activity that promotes lacZ expression in notochord cells, and (3) introns of BfBra2 and BfBra1 exhibit lacZ expression preferentially in muscle and notochord cells. These results suggest shared cephalochordate Brachyury enhancer machinery that also works in urochordates. We discuss the results in relation to evolutionary modification of Brachyury expression in formation of chordate-specific organs characteristic of each lineage.


Asunto(s)
Ciona intestinalis/genética , Proteínas Fetales/genética , Proteínas de Dominio T Box/genética , Secuencia de Aminoácidos/genética , Animales , Secuencia de Bases/genética , Sitios de Unión , Ciona/genética , Ciona intestinalis/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Anfioxos/genética , Notocorda/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Alineación de Secuencia , Somitos/metabolismo
13.
Development ; 141(8): 1780-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24715465

RESUMEN

Formation of somites, the rudiments of vertebrate body segments, is an oscillatory process governed by a gene-expression oscillator, the segmentation clock. This operates in each cell of the presomitic mesoderm (PSM), but the individual cells drift out of synchrony when Delta/Notch signalling fails, causing gross anatomical defects. We and others have suggested that this is because synchrony is maintained by pulses of Notch activation, delivered cyclically by each cell to its neighbours, that serve to adjust or reset the phase of the intracellular oscillator. This, however, has never been proved. Here, we provide direct experimental evidence, using zebrafish containing a heat-shock-driven transgene that lets us deliver artificial pulses of expression of the Notch ligand DeltaC. In DeltaC-defective embryos, in which endogenous Notch signalling fails, the artificial pulses restore synchrony, thereby rescuing somite formation. The spacing of segment boundaries produced by repetitive heat-shocking varies according to the time interval between one heat-shock and the next. The induced synchrony is manifest both morphologically and at the level of the oscillations of her1, a core component of the intracellular oscillator. Thus, entrainment of intracellular clocks by periodic activation of the Notch pathway is indeed the mechanism maintaining cell synchrony during somitogenesis.


Asunto(s)
Relojes Biológicos , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptor Notch1/metabolismo , Somitos/citología , Somitos/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Recuento de Células , Embrión no Mamífero/metabolismo , Respuesta al Choque Térmico , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Factores de Tiempo , Transgenes , Pez Cebra/embriología , Pez Cebra/metabolismo
14.
Bioorg Med Chem Lett ; 27(9): 2029-2037, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28320616

RESUMEN

In this report we utilized zebrafish (Danio rerio) embryos in a phenotypical high-content screen (HCS) to identify novel leads in a cancer drug discovery program. We initially validated our HCS model using the flavin adenosine dinucleotide (FAD) containing endoplasmic reticulum (ER) enzyme, endoplasmic reticulum oxidoreductase (ERO1) inhibitor EN460. EN460 showed a dose response effect on the embryos with a dose of 10µM being significantly lethal during early embryonic development. The HCS campaign which employed a small library identified a promising lead compound, a naphthyl-benzoic acid derivative coined compound 1 which had significant dosage and temporally dependent effects on notochord and muscle development in zebrafish embryos. Screening a 369 kinase member panel we show that compound 1 is a PIM3 kinase inhibitor (IC50=4.078µM) and surprisingly a DAPK1 kinase agonist/activator (EC50=39.525µM). To our knowledge this is the first example of a small molecule activating DAPK1 kinase. We provide a putative model for increased phosphate transfer in the ATP binding domain when compound 1 is virtually docked with DAPK1. Our data indicate that observable phenotypical changes can be used in future zebrafish screens to identify compounds acting via similar molecular signaling pathways.


Asunto(s)
Descubrimiento de Drogas/métodos , Embrión no Mamífero/efectos de los fármacos , Activadores de Enzimas/química , Activadores de Enzimas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Pez Cebra/embriología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Ácido Benzoico/química , Ácido Benzoico/farmacología , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Ensayos de Selección de Medicamentos Antitumorales/métodos , Embrión no Mamífero/enzimología , Activación Enzimática/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/metabolismo
15.
Dev Dyn ; 245(10): 1011-28, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27389484

RESUMEN

BACKGROUND: Hematopoietic stem and progenitor cells (HSPCs) are generated de novo in the embryo in a process termed the endothelial to hematopoietic transition (EHT). EHT is most extensively studied in the yolk sac and dorsal aorta. Recently new sites of hematopoiesis have been described, including the heart, somites, head, and venous plexus of the yolk sac. RESULTS: We examined sites of HSPC formation in well-studied and in less well-known sites by mapping the expression of the key EHT factor Runx1 along with several other markers by means of confocal microscopy. We identified sites of HSPC formation in the head, heart and somites. We also identified sites of HSPC formation in both the arterial and venous plexuses of the yolk sac, and show that progenitors with lymphoid potential are enriched in hematopoietic clusters in close proximity to arteries. Furthermore, we demonstrate that many of the cells in hematopoietic clusters resemble monocytes or granulocytes based on nuclear shape. CONCLUSIONS: We identified sites of HSPC formation in the head, heart, and somites, confirming that embryonic hematopoiesis is less spatially restricted than previously thought. Furthermore, we show that HSPCs in the yolk sac with lymphoid potential are located in closer proximity to arteries than to veins. Developmental Dynamics 245:1011-1028, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Células Madre Hematopoyéticas/citología , Animales , Arterias/embriología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Femenino , Citometría de Flujo , Cabeza/embriología , Corazón/embriología , Células Madre Hematopoyéticas/metabolismo , Ratones , Microscopía Confocal , Somitos/embriología , Saco Vitelino/embriología
16.
Proc Natl Acad Sci U S A ; 110(46): E4316-24, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24151332

RESUMEN

Sequential production of body segments in vertebrate embryos is regulated by a molecular oscillator (the segmentation clock) that drives cyclic transcription of genes involved in positioning intersegmental boundaries. Mathematical modeling indicates that the period of the clock depends on the total delay kinetics of a negative feedback circuit, including those associated with the synthesis of transcripts encoding clock components [Lewis J (2003) Curr Biol 13(16):1398-1408]. Here, we measure expression delays for three transcripts [Lunatic fringe, Hes7/her1, and Notch-regulated-ankyrin-repeat-protein (Nrarp)], that cycle during segmentation in the zebrafish, chick, and mouse, and provide in vivo measurements of endogenous splicing and export kinetics. We show that mRNA splicing and export are much slower than transcript elongation, with the longest delay (about 16 min in the mouse) being due to mRNA export. We conclude that the kinetics of mRNA and protein production and destruction can account for much of the clock period, and provide strong support for delayed autorepression as the underlying mechanism of the segmentation clock.


Asunto(s)
Relojes Biológicos/fisiología , Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Modelos Biológicos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular , Embrión de Pollo , Glicosiltransferasas/metabolismo , Hibridación Fluorescente in Situ , Péptidos y Proteínas de Señalización Intracelular , Ratones , Proteínas/metabolismo , Empalme del ARN/fisiología , Especificidad de la Especie , Factores de Tiempo , Pez Cebra
17.
Dev Biol ; 390(2): 231-46, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24662046

RESUMEN

The vertebrate head-trunk interface (occipital region) has been heavily remodelled during evolution, and its development is still poorly understood. In extant jawed vertebrates, this region provides muscle precursors for the throat and tongue (hypopharyngeal/hypobranchial/hypoglossal muscle precursors, HMP) that take a stereotype path rostrally along the pharynx and are thought to reach their target sites via active migration. Yet, this projection pattern emerged in jawless vertebrates before the evolution of migratory muscle precursors. This suggests that a so far elusive, more basic transport mechanism must have existed and may still be traceable today. Here we show for the first time that all occipital tissues participate in well-conserved cell movements. These cell movements are spearheaded by the occipital lateral mesoderm and ectoderm that split into two streams. The rostrally directed stream projects along the floor of the pharynx and reaches as far rostrally as the floor of the mandibular arch and outflow tract of the heart. Notably, this stream leads and engulfs the later emerging HMP, neural crest cells and hypoglossal nerve. When we (i) attempted to redirect hypobranchial/hypoglossal muscle precursors towards various attractants, (ii) placed non-migratory muscle precursors into the occipital environment or (iii) molecularly or (iv) genetically rendered muscle precursors non-migratory, they still followed the trajectory set by the occipital lateral mesoderm and ectoderm. Thus, we have discovered evolutionarily conserved morphogenetic movements, driven by the occipital lateral mesoderm and ectoderm, that ensure cell transport and organ assembly at the head-trunk interface.


Asunto(s)
Evolución Biológica , Movimiento Celular/fisiología , Ectodermo/fisiología , Hipofaringe/embriología , Mesodermo/fisiología , Morfogénesis/fisiología , Vertebrados/embriología , Animales , Electroporación , Cabeza/anatomía & histología , Cabeza/embriología , Inmunohistoquímica , Hibridación in Situ , Microcirugia , Cresta Neural/fisiología , Especificidad de la Especie , Torso/anatomía & histología , Torso/embriología
18.
J Morphol ; 285(1): e21667, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38100741

RESUMEN

Serial block-face scanning electron microscopy of the tail tip of post-metamorphic amphioxus (Branchiostoma floridae) revealed some terminal myomeres never been seen before with other techniques. The morphology of these myomeres differed markedly from the chevron shapes of their more anterior counterparts. Histologically, these odd-shaped myomeres ranged from empty vesicles bordered by undifferentiated cells to ventral sacs composed of well-developed myotome, dermatome, and sclerotome. Strikingly, several of these ventral sacs gave rise to a nipple-like dorsal projection composed either entirely of sclerotome or a mixture of sclerotome and myotome. Considered as a whole, from posterior to anterior, these odd-shaped posterior myomeres suggested that their more substantial ventral part may represent the ventral limb of a chevron, while the delicate projection represents a nascent dorsal limb. This scenario contrasts with formation of chevron-shaped myomeres along most of the antero-posterior axis. Although typical chevron formation in amphioxus is surprisingly poorly studied, it seems to be attained by a dorso-ventral extension of the myomere accompanied by the assumption of a V-shape; this is similar to what happens (at least superficially) in developing fishes. Another unusual feature of the odd-shaped posterior myomeres of amphioxus is their especially distended sclerocoels. One possible function for these might be to protect the posterior end of the central nervous system from trauma when the animals burrow into the substratum.


Asunto(s)
Anfioxos , Músculo Esquelético , Cola (estructura animal) , Microscopía Electrónica de Volumen , Animales , Peces , Anfioxos/ultraestructura , Mesodermo/diagnóstico por imagen , Mesodermo/ultraestructura , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/ultraestructura , Cola (estructura animal)/diagnóstico por imagen , Cola (estructura animal)/ultraestructura
19.
Dev Cell ; 59(14): 1860-1875.e5, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38697108

RESUMEN

In bony fishes, patterning of the vertebral column, or spine, is guided by a metameric blueprint established in the notochord sheath. Notochord segmentation begins days after somitogenesis concludes and can occur in its absence. However, somite patterning defects lead to imprecise notochord segmentation, suggesting that these processes are linked. Here, we identify that interactions between the notochord and the axial musculature ensure precise spatiotemporal segmentation of the zebrafish spine. We demonstrate that myoseptum-notochord linkages drive notochord segment initiation by locally deforming the notochord extracellular matrix and recruiting focal adhesion machinery at these contact points. Irregular somite patterning alters this mechanical signaling, causing non-sequential and dysmorphic notochord segmentation, leading to altered spine development. Using a model that captures myoseptum-notochord interactions, we find that a fixed spatial interval is critical for driving sequential segment initiation. Thus, mechanical coupling of axial tissues facilitates spatiotemporal spine patterning.


Asunto(s)
Tipificación del Cuerpo , Notocorda , Somitos , Columna Vertebral , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/embriología , Notocorda/embriología , Notocorda/metabolismo , Somitos/embriología , Somitos/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Columna Vertebral/embriología , Transducción de Señal , Regulación del Desarrollo de la Expresión Génica , Matriz Extracelular/metabolismo , Embrión no Mamífero/metabolismo
20.
Front Cell Dev Biol ; 12: 1382960, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863942

RESUMEN

Introduction: Vertebrate body axis formation initiates during gastrulation and continues within the tail bud at the posterior end of the embryo. Major structures in the trunk are paired somites, which generate the musculoskeletal system, the spinal cord-forming part of the central nervous system, and the notochord, with important patterning functions. The specification of these different cell lineages by key signalling pathways and transcription factors is essential, however, a global map of cell types and expressed genes in the avian trunk is missing. Methods: Here we use high-throughput sequencing approaches to generate a molecular map of the emerging trunk and tailbud in the chick embryo. Results and Discussion: Single cell RNA-sequencing (scRNA-seq) identifies discrete cell lineages including somites, neural tube, neural crest, lateral plate mesoderm, ectoderm, endothelial and blood progenitors. In addition, RNA-seq of sequential tissue sections (RNA-tomography) provides a spatially resolved, genome-wide expression dataset for the avian tailbud and emerging body, comparable to other model systems. Combining the single cell and RNA-tomography datasets, we identify spatially restricted genes, focusing on somites and early myoblasts. Thus, this high-resolution transcriptome map incorporating cell types in the embryonic trunk can expose molecular pathways involved in body axis development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA