Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(37): e2401229, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38733235

RESUMEN

The great potential of K1/2Bi1/2TiO3 (KBT) for dielectric energy storage ceramics is impeded by its low dielectric breakdown strength, thereby limiting its utilization of high polarization. This study develops a novel composition, 0.83KBT-0.095Na1/2Bi1/2ZrO3-0.075 Bi0.85Nd0.15FeO3 (KNBNTF) ceramics, demonstrating outstanding energy storage performance under high electric fields up to 425 kV cm-1: a remarkable recoverable energy density of 7.03 J cm-3, and a high efficiency of 86.0%. The analysis reveals that the superior dielectric breakdown resistance arises from effective mitigation of space charge accumulation at the interface, influenced by differential dielectric and conductance behaviors between grains and grain boundaries. Electric impedance spectra confirm the significant suppression of space charge accumulation in KNBNTF, attributable to the co-introduction of Na1/2Bi1/2ZrO3 and Bi0.85Nd0.15FeO3. Phase-field simulations reveal the emergence of a trans-granular breakdown mode in KNBNTF resulting from the mitigated interfacial polarization, impeding breakdown propagation and increasing dielectric breakdown resistance. Furthermore, KNBNTF exhibits a complex local polarization and enhances the relaxor features, facilitating high field-induced polarization and establishing favorable conditions for exceptional energy storage performance. Therefore, the proposed strategy is a promising design pathway for tailoring dielectric ceramics in energy storage applications.

2.
Chemistry ; 30(39): e202400998, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38780029

RESUMEN

Rapid construction of new fluorescence emitters is essential in advancing synthetic luminescent materials. This study illustrated a piperidine-promoted reaction of chiral dialdehyde with benzoylacetonitrile and malonitrile, leading to the formation of the 6/6/7 fused cyclic product in good yield. The proposed reaction mechanism involves a dual condensation/cyclization process, achieving the formation of up to six bonds for fused polycycles. The single crystal structure analysis revealed that the fused cyclic skeleton contains face-to-face naphthyl and cyanoalkenyl motifs, which act as the electronic donor and acceptor, respectively, potentially resulting in through-space charge transfer (TSCT) emission. While the TSCT emissions were weak in solution, a notable increase in luminescence intensity was observed upon aggregation, indicating bright fluorescent light. A series of theoretical analyses further supported the possibility of spatial electronic communication based on frontier molecular orbitals, the distance of charge transfer, and reduced density gradient analysis. This work not only provides guidance for the one-step synthesis of complex polycycles, but also offers valuable insights into the design of aggregation-enhanced TSCT emission materials.

3.
Nanotechnology ; 35(24)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38467060

RESUMEN

Mechanical energy harvesting performances of poly(vinylidene fluoride) (PVDF) based composites are most often correlated with their polar phase and the individual piezoelectricity of the used filler materials. Here we show that the significant enhancement of space charge polarization of the said composites can play the key dominant role in determining their mechanical energy harvesting performance regardless of their polar phase and individual piezoelectricity of the used fillers. For this purpose, ionic liquid has been incorporated into PVDF/0.5(Ba0.7Ca0.3)TiO3-0.5Ba(Ti0.8Zr0.2)O3(BCZT) composites which led to a huge enhancement in space charge polarization. The gradual addition of ionic liquid into 10 wt% BCZT loaded PVDF (PBCZT) has helped in extraordinarily enhancing the conductivity gradually which has confirmed the huge enhancement of space charge polarization. However, after a certain limit of ionic liquid addition, the polar phase of the composite films is decreased. Despite this, the output voltages from the piezoelectric and piezo-tribo hybrid nanogenerators (PENGs and HNGs, respectively) fabricated by using the developed films have been found to be increased gradually with the increase in the ionic liquid amount in PBCZT composite. As the amount of BCZT filler was kept fixed for all the films, this result has confirmed the key role of space charge polarization of PVDF-based composites in determining their mechanical energy harvesting performances compared to the effect of polar phase and individual piezoelectricity of filler. The optimized PENG and HNG devices have shown the output voltage as high as 52 and 167 V, respectively, with power densities ∼85 and 152µW cm-2which predicted their excellent usability in real life energy conversion devices. This work also shows that the effect of extraordinarily enhanced space charge polarization is effective in improving the performance of all types of mechanical energy harvesting devices regardless of their mechanisms (piezoelectric or hybrid).

4.
Nano Lett ; 23(22): 10473-10479, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37930154

RESUMEN

Molecular junctions are potentially highly efficient devices for thermal energy harvesting since their transmission properties can be tailored to break electron-hole transport symmetry and consequently yield high Seebeck and Peltier coefficients. Full harnessing of this potential requires, however, a capability to precisely position their Fermi level within the transmission landscape. Currently, with the lack of such a "knob" for two-lead junctions, their thermoelectric performance is too low for applications. Here we report that the requested capability can be realized by using junctions with a semimetal lead and molecules with a tailored effect of their monolayers on the work function of the semimetal. The approach is demonstrated by junctions with monolayers of alkanethiols on bismuth (Bi). Fermi-level tuning enables in this case increasing the Seebeck coefficient by more than 2 orders of magnitude. The underlying mechanism of this capability is discussed, as well as its general applicability.

5.
Angew Chem Int Ed Engl ; 63(29): e202402774, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38584586

RESUMEN

Currently, most photoredox catalysis polymerization systems are limited by high excitation power, long polymerization time, or the requirement of electron donors due to the precise design of efficient photocatalysts still poses a great challenge. Herein, we propose a new approach: the creation of efficient photocatalysts having low ground state oxidation potentials and high excited state energy levels, along with through-space charge transfer (TSCT) induced intersystem crossing (ISC) properties. A cabazole-naphthalimide (NI) dyad (NI-1) characterized by long triplet excited state lifetime (τT=62 µs), satisfactory ISC efficiency (ΦΔ=54.3 %) and powerful reduction capacity [Singlet: E1/2 (PC+1/*PC)=-1.93 eV, Triplet: E1/2 (PC+1/*PC)=-0.84 eV] was obtained. An efficient and rapid polymerization (83 % conversion of 1 mM monomer in 30 s) was observed under the conditions of without electron donor, low excitation power (10 mW cm-2) and low catalyst (NI-1) loading (<50 µM). In contrast, the conversion rate was lower at 29 % when the reference catalyst (NI-4) was used for photopolymerization under the same conditions, demonstrating the advantage of the TSCT photocatalyst. Finally, the TSCT material was used as a photocatalyst in practical lithography for the first time, achieving pattern resolutions of up to 10 µm.

6.
Angew Chem Int Ed Engl ; 63(38): e202408712, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38962896

RESUMEN

Noncovalent spatial interaction has become an intriguing and important tool for constructing optoelectronic molecules. In this study, we linearly attached three conjugated units in a multi π-stacked manner by using just one trident bridge based on indeno[2,1-b]fluorene. To achieve this structure, we improved the synthetic approach through double C-H activation, significantly simplifying the preparation process. Due to the proximity of the C10, C11, and C12 sites in indeno[2,1-b]fluorene, we derived two novel donor|acceptor|donor (D|A|D) type molecules, 2DMB and 2DMFB, which exhibited closely packed intramolecular stacking, enabling efficient through-space charge transfer. This molecular construction is particularly suitable for developing high-performance thermally activated delayed fluorescence materials. With donor(s) and acceptor(s) constrained and separated within this spatially rigid structure, elevated radiative transition rates, and high photoluminescence quantum yields were achieved. Organic light-emitting diodes incorporating 2DMB and 2DMFB demonstrated superior efficiency, achieving maximum external quantum efficiencies of 28.6 % and 16.2 %, respectively.

7.
Angew Chem Int Ed Engl ; 63(20): e202402704, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38414169

RESUMEN

Thermally activated delayed fluorescence (TADF) emitters featuring through-space charge transfer (TSCT) can be excellent candidates for piezochromic luminescent (PCL) materials due to their structural dynamics. Spatial donor-acceptor (D-A) stacking arrangements enable the modulation of inter- and intramolecular D-A interactions, as well as spatial charge transfer states, under varying pressure conditions. Herein, we demonstrate an effective approach toward dynamic reversible full-color PCL materials with TSCT-TADF characteristics. Their single crystals exhibit a full-color-gamut PCL process spanning a range of 170 nm. Moreover, the TSCT-TADF-PCL emitters display a unity photoluminescence quantum yield, and show promising application in X-ray scintillator imaging.

8.
Angew Chem Int Ed Engl ; 63(18): e202401833, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38429247

RESUMEN

Organic scintillators have recently attracted growing attention for X-ray detection in industrial and medical applications. However, these materials still face critical obstacles of low attenuation efficiency and/or inefficient triplet exciton utilization. Here we developed a new category of organogold(III) complexes, Tp-Au-1 and Tp-Au-2, through adopting a through-space interaction motif to realize high X-ray attenuation efficiency and efficient harvesting of triplet excitons for emission. Thanks to the efficient through-space charge transfer process, this panel of complexes achieved higher photoluminescence quantum yield and shorter radiative lifetimes compared with the through-bond reference complexes. Inspiringly, these organogold(III) complexes exhibited polarity-dependent emission origins: thermally activated delayed fluorescence and/or phosphorescence. Under X-ray irradiation, Tp-Au-2 manifested intense radioluminescence together with a record-high scintillation light yield of 77,600 photons MeV-1 for organic scintillators. The resulting scintillator screens demonstrated high-quality X-ray imaging with >16.0 line pairs mm-1 spatial resolution, outstripping most organic and inorganic scintillators. This finding provides a feasible strategy for the design of superior organic X-ray scintillators.

9.
Angew Chem Int Ed Engl ; : e202414810, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39322938

RESUMEN

Developing ionic copper-iodine clusters with multiple emitting is crucial for enriching lighting and display materials with various colors. However, the luminescent properties of traditional ionic copper-iodine clusters are often closely associated with low-energy cluster-centered triplet emission, which will redshift further as the Cu···Cu bond length decreases. This article utilizes a pressure-treated strategy to achieve an anomalous pressure-induced blue-shifted luminescence phenomenon in ionic Cu4I6(4-dimethylamino-1-ethylpyridinium)2 crystals for the first time, which is based on dominant through-space charge-transfer (TSCT). Herein, we reveal that the more advantageous through-space interactions in the competition between coprophilic interactions and through-space interactions can lead to a blue-shifted luminescence. High-pressure angle-dispersive X-ray diffraction and high-pressure infrared experiments show that the enhanced through-space interactions mainly originate from forming new intermolecular C-H···I hydrogen bonds and the enhancement of van der Waals interactions between organic cations and anionic clusters. Theoretical calculations and experimental studies of excited-state dynamics confirm that the blue-shifted emission is due to the increased energy gap between the excited triplet and ground states caused by the electron delocalization under stronger through-space interactions. This work deepens previous understanding and provides a new avenue to design and synthetic ionic copper-iodine clusters with high-energy TSCT emission.

10.
Small ; 19(48): e2303631, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37403282

RESUMEN

Metal oxide gas sensors have long faced the challenge of low response and poor selectivity, especially at room temperature (RT). Herein, a synergistic effect of electron scattering and space charge transfer is proposed to comprehensively improve gas sensing performance of n-type metal oxides toward oxidizing NO2 (electron acceptor) at RT. To this end, the porous SnO2 nanoparticles (NPs) assembled from grains of about 4 nm with rich oxygen vacancies are developed through an acetylacetone-assisted solvent evaporation approach combined with precise N2 and air calcinations. The results show that the as-fabricated porous SnO2 NPs sensor exhibits an unprecedented NO2 -sensing performance, including outstanding response (Rg /Ra  = 772.33 @ 5 ppm), fast recovery (<2 s), an extremely low detection limit (10 ppb), and exceptional selectivity (response ratio >30) at RT. Theoretical calculation and experimental tests confirm that the excellent NO2 sensing performance is mainly attributed to the unique synergistic effect of electron scattering and space charge transfer. This work proposes a useful strategy for developing high-performance RT NO2 sensors using metal oxides, and provides an in-depth understanding for the basic characteristics of the synergistic effect on gas sensing, paving the way for efficient and low power consumption gas detection at RT.

11.
Small ; 19(52): e2305241, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37635103

RESUMEN

Space charge transfer is an effective strategy to regulate the electron density of narrow bandgap semiconductors for enhancing electrocatalytic activity. Herein, the CoNiLDH/FeOOH n-n heterojunction hollow nanocages structure is constructed. The hollow structure provides abundant catalytic active sites and enhances mass transfer. The space charge region in the n-n heterojunction significantly promotes the adsorption of OH- and electron transfer; and the built-in electric field accelerates the electron transport, optimizes the electronic structure during the catalytic reaction process, and ensures the stability of surface charged active center sites in the heterojunction. Thus, CoNiLDH/FeOOH delivers an excellent oxygen evolution reaction (OER) overpotential of 250 mV to achieve a current density of 10 mA cm-2 with a small Tafel slope of 60 mV dec-1 , and superior electrocatalytic durability for 210 h at a high current density. Density functional theory calculations further verify that the space charge effect and built-in electric field in the n-n heterojunction of CoNiLDH/FeOOH can improve the electron transfer and lower the adsorption energy of OH- and the reaction energy barrier of the rate-determining step. This work provides a new fundamental understanding of the space charge effect of semiconductor heterojunction during the electrocatalytic process for developing more efficient OER electrocatalysts.

12.
Mass Spectrom Rev ; 41(2): 314-337, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33462876

RESUMEN

Ion cyclotron resonance (ICR) cells provide stability and coherence of ion oscillations in crossed electric and magnetic fields over extended periods of time. Using the Fourier transform enables precise measurements of ion oscillation frequencies. These precisely measured frequencies are converted into highly accurate mass-to-charge ratios of the analyte ions by calibration procedures. In terms of resolution and mass accuracy, Fourier transform ICR mass spectrometry (FT-ICR MS) offers the highest performance of any MS technology. This is reflected in its wide range of applications. However, in the most challenging MS application, for example, imaging, enhancements in the mass accuracy of fluctuating ion fluxes are required to continue advancing the field. One approach is to shift the ion signal power into the peak corresponding to the true cyclotron frequency instead of the reduced cyclotron frequency peak. The benefits of measuring the true cyclotron frequency include increased tolerance to electric fields within the ICR cell, which enhances frequency measurement precision. As a result, many attempts to implement this mode of FT-ICR MS operation have occurred. Examples of true cyclotron frequency measurements include detection of magnetron inter-harmonics of the reduced cyclotron frequency (i.e., the sidebands), trapping field-free (i.e., screened) ICR cells, and hyperbolic ICR cells with quadrupolar ion detection. More recently, ICR cells with spatially distributed ion clouds have demonstrated attractive performance characteristics for true cyclotron frequency ion detection. Here, we review the corresponding developments in FT-ICR MS over the past 40 years.


Asunto(s)
Ciclotrones , Calibración , Análisis de Fourier , Iones/química , Espectrometría de Masas/métodos
13.
Chemphyschem ; 24(21): e202300142, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37646108

RESUMEN

Cu2 ZnSnS4 (CZTS) active material-based resistive random-access memory (RRAM) devices are investigated to understand the impact of three different Cu, Ag, and Al top electrodes. The dual resistance switching (RS) behaviour of spin coated CZTS on ITO/Glass is investigated up to 102 cycles. The stability of all the devices (Cu/CZTS/ITO, Ag/CZTS/ITO, and Al/CZTS/ITO) is investigated up to 103  sec in low- (LRS) and high- (HRS) resistance states at 0.2 V read voltage. The endurance up to 102 cycles with 30 msec switching width shows stable write and erase current. Weibull cumulative distribution plots suggest that Ag top electrode is relatively more stable for set and reset state with 33.61 and 25.02 shape factors, respectively. The charge carrier transportation is explained by double logarithmic plots, Schottky emission plots, and band diagrams, substantiating that at lower applied electric field intrinsic copper ions dominate in Cu/CZTS/ITO, whereas, at higher electric filed, top electrodes (Cu and Ag) dominate over intrinsic copper ions. Intrinsic Cu+ in CZTS plays a decisive role in resistive switching with Al electrode. Further, the impedance spectroscopy measurements suggest that Cu+ and Ag+ diffusion is the main source for the resistive switching with Cu and Ag electrodes.

14.
Nanotechnology ; 34(37)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37279715

RESUMEN

Perovskite oxide-based memristors have been extensively investigated for the application of non-volatile memories, and the oxygen vacancies associated with Schottky barrier changing are considered as the origin of the memristive behaviors. However, due to the difference of device fabrication progress, various resistive switching (RS) behaviors have been observed even in one device, deteriorating the stability and reproducibility of devices. Precisely controlling the oxygen vacancies distribution and shedding light on the behind physic mechanism of these RS behaviors, are highly desired to help improve the performance and stability of such Schottky junction-based memristors. In this work, the epitaxial LaNiO3(LNO)/Nb:SrTiO3(NSTO) is adopted to explore the influence of oxygen vacancy profiles on these abundant RS phenomena. It demonstrates that the migration of oxygen vacancy in LNO films plays a key role in memristive behaviors. When the effect of oxygen vacancies at the LNO/NSTO interface is negligible, improving the oxygen vacancies concentration in LNO film could facilitate resistance on/off ratio of HRS and LRS, and the corresponding conducting mechanisms attributes to the thermionic emission and tunneling-assisted thermionic emission, respectively. Moreover, it is found that reasonably increasing the oxygen vacancies at LNO/NSTO interface makes trap-assisted tunneling possible, also providing an effective way to improve the performance of the device. The results in this work have clearly elucidated the relationship between oxygen vacancy profile and RS behaviors, and give physical insights into the strategies for improving the device performance of Schottky junction-based memristors.


Asunto(s)
Niobio , Oxígeno , Reproducibilidad de los Resultados
15.
Sensors (Basel) ; 23(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37050577

RESUMEN

In this paper, an angular radial extended interaction amplifier (AREIA) that consists of a pair of angular extended interaction cavities is proposed. Both the convergence angle cavity and the divergence angle cavity, which are designed for the converging beam and diverging beam, respectively, are investigated to present the potential of the proposed AREIA. They are proposed and explored to improve the beam-wave interaction capability of W-band extended interaction klystrons (EIKs). Compared to conventional radial cavities, the angular cavities have greatly decreased the ohmic loss area and increased the characteristic impedance. Compared to the sheet beam (0°) cavity, it has been found that the convergence angle cavity has a higher effective impedance and the diverging beam has a weaker space-charge effect under the same ideal electron beam area; the advantages become more obvious as the propagation distance increases. Particle-in-cell (PIC) results have shown that the diverging beam (8°) EIA performs better at an output power of 94 GHz under the condition of lossless, while the converging beam (-2°) EIA has a higher output power of 6.24 kW under the conditions of ohmic loss, an input power of 0.5 W, and an ideal electron beam of 20.5 kV and 1.5 A. When the loss increases and the beam current decreases, the output power of the -2° EIA can be improved by nearly 30% compared to the 0° EIA, and the -2° EIA has a greatly improved beam-wave interaction capacity than conventional EIAs under those conditions. In addition, an angular radial electron gun is designed.

16.
Sensors (Basel) ; 23(24)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38139708

RESUMEN

The spectrometric characteristics of CdZnTe detectors are largely determined by the nonuniformity of the material and the influence of the negative polarization effects associated with the formation of space charges in the sensitive volume of the detector. They change the electric field distribution in the detector and affect the efficiency of the charge carrier collection. An analysis of the waveforms of the output pulses was used to investigate the uniformity of the charge collection and electric field distribution in the detectors when irradiated by the alpha particles. The influence of infrared (IR) illumination on these parameters was evaluated. IR illumination had no positive effect on the planar detector but greatly improved the charge collection in quasi-hemispherical detectors in the peripheral (corner) regions. The output pulse amplitude increased, and the rise time notably decreased. Polarization that occurred predominantly in the corner regions at low temperatures (from -30 °C to -20 °C) was eliminated using IR illumination.

17.
Nano Lett ; 22(23): 9544-9550, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36442685

RESUMEN

A key issue in the development of high-performance semiconductor devices is the ability to properly measure active dopants at the nanometer scale. In a p-n junction, the abruptness of the dopant profile around the metallurgical junction directly influences the electric field. Here, a contacted nominally symmetric and highly doped (NA = ND = 9 × 1018 cm-3) silicon p-n specimen is studied through in situ biased four-dimensional scanning transmission electron microscopy (4D-STEM). Measurements of electric field, built-in voltage, depletion region width, and charge density are combined with analytical equations and finite-element simulations in order to evaluate the quality of the junction interface. It is shown that all the junction parameters measured are compatible with a linearly graded junction. This hypothesis is also consistent with the evolution of the electric field with bias as well as off-axis electron holography data. These results demonstrate that in situ biased 4D-STEM can allow a better understanding of the electrostatics of semiconductor p-n junctions with nm-scale resolution.

18.
Molecules ; 28(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37513408

RESUMEN

In the design and manufacturing of epoxy resin insulation components, complex structures can be achieved through multiple pours, thereby forming the structure of interface of laminated epoxy resin. This type of interface structure is often considered a weak link in performance which can easily accumulate charges and cause electric field distortion. However, research on the interlayer interface of epoxy resin has received little attention. In this study, epoxy samples with and without interlayer interfaces were prepared, and the space charge accumulation characteristics and trap characteristics of the samples were analyzed via pulsed electro-acoustic (PEA) and thermally stimulated depolarization current (TSDC) methods. The experimental results indicate that the Maxwell-Wagner interface polarization model cannot fully explain the charge accumulation at the interface. Due to the influence of the secondary curing, the functional groups in the post-curing epoxy resin can move and react with the partially reacted functional groups in the prefabricated epoxy resin layer, resulting in a weak cross-linking network at the interface. With the increase in temperature, the molecular chain segments in the weak cross-linked region of the interface become more active and introduce deep traps at the interface, thereby exacerbating the accumulation of interface charges. In addition, due to the influence of interface polarization and weak cross-linking, the ability of the interface charges to cause field strength distortions decreases with the increase in applied field strength. This research study can provide a theoretical reference for the interfacial space charge transport characteristics of epoxy-cured cross-linked layers and provide ideas for regulating interfacial cross-linking to suppress interfacial charge accumulation.

19.
Angew Chem Int Ed Engl ; 62(49): e202310943, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37851366

RESUMEN

B- and N-embedded multiple resonance (MR) type thermally activated delayed fluorescence (TADF) emitters usually suffer from slow reverse intersystem crossing (RISC) process and aggregation-caused emission quenching. Here, we report the design of a sandwich structure by placing the B-N MR core between two electron-donating moieties, inducing through-space charge transfer (TSCT) states. The proper adjusting of the energy levels brings about a 10-fold higher RISC rate in comparison with the parent B-N molecule. In the meantime, a high photoluminescence quantum yield of 91 % and a good color purity were maintained. Organic light-emitting diodes based on the new MR emitter achieved a maximum external quantum efficiency of 31.7 % and small roll-offs at high brightness. High device efficiencies were also obtained for a wide range of doping concentrations of up to 20 wt % thanks to the steric shielding of the B-N core. A good operational stability with LT95 of 85.2 h has also been revealed. The dual steric and electronic effects resulting from the introduction of a TSCT state offer an effective molecular design to address the critical challenges of MR-TADF emitters.

20.
Angew Chem Int Ed Engl ; 62(32): e202303262, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37259616

RESUMEN

Highly adjustable photonic modules were constructed based on the heterostructures crystals of a new series of donor-acceptor metal-organic framework (D-A MOF) featuring highly tunable thermally activated delayed fluorescence (TADF). By introducing N-phenylcarbazole and derivatives as donor guests into the acceptor host NKU-111, highly tunable through-space charge transfer based TADF could be achieved through the engineering of heavy atom effect, which result in modulatable emission wavelength (540 to 600 nm) and enhanced quantum yield (up to 30.86 %). Furthermore, by rationally integrating the D-A MOFs with distinctive emissions, rod-like heterostructures crystals featuring excitation position dependent tip emissions in wide wavelength range (495 to 598 nm) could be fabricated, which could serve as highly potential photonic modules for photonic circuit applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA