Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Infect Dis ; 230(3): e605-e615, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38687181

RESUMEN

BACKGROUND: Within a year of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, vaccines inducing a robust humoral and cellular immune response were implemented worldwide. However, emergence of novel variants and waning vaccine-induced immunity led to implementation of additional vaccine boosters. METHODS: This prospective study evaluated the temporal profile of cellular and serological responses in a cohort of 639 SARS-CoV-2-vaccinated participants, of whom a large proportion experienced a SARS-CoV-2 infection. All participants were infection naïve at the time of their first vaccine dose. Proportions of SARS-CoV-2 spike-specific T cells were determined after each vaccine dose using the activation-induced marker assay, while levels of circulating SARS-CoV-2 antibodies were determined by the Meso Scale serology assay. RESULTS: We found a significant increase in SARS-CoV-2 spike-specific CD4+ and CD8+ T-cell responses following the third dose of a SARS-CoV-2 messenger RNA vaccine as well as enhanced CD8+ T-cell responses after the fourth dose. Furthermore, increased age was associated with a poorer response. Finally, we observed that SARS-CoV-2 infection boosts both the cellular and humoral immune response, relative to vaccine-induced immunity alone. CONCLUSIONS: Our findings highlight the boosting effect on T-cell immunity of repeated vaccine administration. The combination of multiple vaccine doses and SARS-CoV-2 infections maintains population T-cell immunity, although with reduced levels in the elderly.


Asunto(s)
Anticuerpos Antivirales , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Masculino , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Estudios Prospectivos , Femenino , Persona de Mediana Edad , Adulto , Linfocitos T CD8-positivos/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Estudios Longitudinales , Linfocitos T CD4-Positivos/inmunología , Inmunidad Celular , Anciano , Vacunación , Inmunización Secundaria , Linfocitos T/inmunología , Adulto Joven
2.
Clin Exp Med ; 23(2): 529-537, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35190936

RESUMEN

A broad understanding on how SARS-CoV-2 infection and vaccination mobilize the immune system is necessary to find the best predictors of long-term protection and identify individuals that would benefit from additional vaccine doses. This study aims to understand the effect of a single dose of Pfizer-BioNTech BNT162b2 COVID-19 vaccine, in individuals recovered from SARS-CoV-2 infection, on circulating CD4+ T follicular helper (Tfh)-cells, Spike-specific T-cells and IgG/IgA antibodies. For that, peripheral blood samples from 50 healthcare professionals, recovered from SARS-CoV-2 infection, collected immediately before (T1) and 15 days after (T2) vaccine administration, were used to analyze the frequency and numbers of Tfh-cells and their subsets, serum titers of SARS-CoV-2-specific antibodies, and SARS-CoV-2-specific T-cells. Six months after infection (T1), 96% of recovered participants presented either IgG or T-cells specific for Spike, however, Spike-specific T-cells were missing in 16% of them. These individuals presented lower levels of Spike-specific IgG (T1 and T2), IgA (T1), and Spike-specific T-cells (T2). Vaccination increased the percentage of participants reactive for Spike-specific T-cells (from 64 to 98%), IgG (from 90 to 100%) and IgA (from 48 to 98%). It also mobilized circulating Tfh-cells, increasing their frequency and activation, and promoting Tfh17 polarization, restoring the decreased numbers of Tfh-cells (especially Tfh17) observed in recovered participants. Interestingly, Tfh percentage correlated with Spike-specific IgG levels. Our data showed that a single dose of vaccine efficiently restored Spike-specific T-cells, and IgG and IgA antibodies. Mobilization of Tfh-cells, and their correlation with IgG levels, suggest that vaccination induced a functional Tfh cell response.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , Vacuna BNT162 , SARS-CoV-2 , Anticuerpos Antivirales , Inmunoglobulina A , Inmunoglobulina G , Vacunación , Atención a la Salud
3.
Front Immunol ; 14: 1061255, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817441

RESUMEN

Introduction: The BNT162b2 mRNA-based vaccine has shown high efficacy in preventing COVID-19 infection but there are limited data on the types and persistence of the humoral and T cell responses to such a vaccine. Methods: Here, we dissect the vaccine-induced humoral and cellular responses in a cohort of six healthy recipients of two doses of this vaccine. Results and discussion: Overall, there was heterogeneity in the spike-specific humoral and cellular responses among vaccinated individuals. Interestingly, we demonstrated that anti-spike antibody levels detected by a novel simple automated assay (Jess) were strongly correlated (r=0.863, P<0.0001) with neutralizing activity; thus, providing a potential surrogate for neutralizing cell-based assays. The spike-specific T cell response was measured with a newly modified T-spot assay in which the high-homology peptide-sequences cross-reactive with other coronaviruses were removed. This response was induced in 4/6 participants after the first dose, and all six participants after the second dose, and remained detectable in 4/6 participants five months post-vaccination. We have also shown for the first time, that BNT162b2 vaccine enhanced T cell responses also against known human common viruses. In addition, we demonstrated the efficacy of a rapid ex-vivo T cell expansion protocol for spike-specific T cell expansion to be potentially used for adoptive-cell therapy in severe COVID-19, immunocompromised individuals, and other high-risk groups. There was a 9 to 13.7-fold increase in the number of expanded T cells with a significant increase of anti-spike specific response showing higher frequencies of both activation and cytotoxic markers. Interestingly, effector memory T cells were dominant in all four participants' CD8+ expanded memory T cells; CD4+ T cells were dominated by effector memory in 2/4 participants and by central memory in the remaining two participants. Moreover, we found that high frequencies of CD4+ terminally differentiated memory T cells were associated with a greater reduction of spike-specific activated CD4+ T cells. Finally, we showed that participants who had a CD4+ central memory T cell dominance expressed a high CD69 activation marker in the CD4+ activated T cells.


Asunto(s)
COVID-19 , Inmunoterapia Adoptiva , Humanos , Vacuna BNT162 , Linfocitos T CD4-Positivos , Proyectos Piloto , Linfocitos T/inmunología , Memoria Inmunológica
4.
Artículo en Inglés | MEDLINE | ID: mdl-34886515

RESUMEN

As is well known, the COVID-19 infection is affecting the whole world, causing a serious health, social and economic crisis. The viral infection can cause a mild or severe illness, depending on how effectively the virus is countered by the immune system. In this context, the position of pregnant women remains rather unknown. The case described here reports the immune response in a woman in good health and in her newborn son, having undergone complete vaccination during the first trimester of her pregnancy. We performed a serological assay, measuring IgG antibodies to SARS-CoV-2, by a fully automated solid phase DELFIA (time-resolved fluorescence) immunoassay in a few drops of blood, collected by a finger-prick and spotted on filter paper. The dried blood spot (DBS) sample we used is the same type of sample routinely used in a newborn screening program test. Such a simple and minimally invasive approach allowed us to monitor both the mother and the newborn soon after birth for their anti-SARS-CoV-2 IgG levels. The serological test on the DBS carried out on both mother and newborn revealed the presence of anti-SARS-CoV-2 IgG antibodies up to 7 months after vaccination in the mother, and already at 48 h of life in the newborn.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Femenino , Humanos , Recién Nacido , Parto , Embarazo , Primer Trimestre del Embarazo , Vacunación
5.
Biomedicines ; 9(8)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34440239

RESUMEN

COVID-19 pandemic has hit people's health, economy, and society worldwide. Great confidence in returning to normality has been placed in the vaccination campaign. The knowledge of individual immune profiles and the time required to achieve immunological protection is crucial to choose the best vaccination strategy. We compared anti-S1 antibody levels produced over time by BNT162b2 and AZD1222 vaccines and evaluated the induction of antigen-specific T-cells. A total of 2569 anti-SARS-CoV-2 IgG determination on dried blood spot samples were carried out, firstly in a cohort of 1181 individuals at random time-points, and subsequently, in an independent cohort of 88 vaccinated subjects, up to the seventeenth week from the first dose administration. Spike-specific T-cells were analysed in seronegative subjects between the two doses. AZD1222 induced lower anti-S1 IgG levels as compared to BNT162b2. Moreover, 40% of AZD1222 vaccinated subjects and 3% of BNT162b2 individuals resulted in seronegative during all the time-points, between the two doses. All these subjects developed antigen-specific T cells, already after the first dose. These results suggest that this test represents an excellent tool for a wide sero-surveillance. Both vaccines induce a favourable immune profile guaranteeing efficacy against severe adverse effects of SARS-CoV-2 infection, already after the first dose administration.

6.
Vaccines (Basel) ; 9(10)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34696272

RESUMEN

The efficacy of SARS-CoV-2 mRNA-based vaccines in preventing COVID-19 disease has been extensively demonstrated; however, it is of uttermost importance to acquire knowledge on the persistence of immune-protection both in terms of levels of neutralizing antibodies and specialized memory cells. This can provide important scientific basis for decisions on the need of additional vaccine doses and on when these should be administered thus resulting in an improvement in vaccination schedules. Here, we briefly report the changes in antibody levels and cellular immunity following BNT162b2 administration. We show an important fall in anti S1-Spike antibodies in BNT162b2 vaccinated subjects overtime, paralleled by a contextual consolidation of specific spike (S) T-cells, mainly of the CD8+ compartment. Contrariwise, CD4+ S-specific response shows a considerable interindividual variability. These data suggest that the well-known antibody drop in vaccinated subjects is replaced by memory cell consolidation that can protect from severe adverse effects of SARS-CoV-2 infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA