Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 23(23): 10772-10778, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37988604

RESUMEN

Freestanding films provide a versatile platform for materials engineering thanks to additional structural motifs not found in films with a substrate. A ubiquitous example is wrinkles, yet little is known about how they can develop over as fast as a few picoseconds due to a lack of experimental probes to visualize their dynamics in real time on the nanoscopic scale. Here, we use time-resolved electron diffraction to directly observe light-activated wrinkling formation in freestanding La2/3Ca1/3MnO3 films. Via a "lock-in" analysis of oscillations in the diffraction peak position, intensity, and width, we quantitatively reconstructed how wrinkles develop on the time scale of lattice vibration. Contrary to the common assumption of fixed boundary conditions, we found that wrinkle development is associated with ultrafast delamination at the film boundaries. Our work provides a generic protocol to quantify wrinkling dynamics in freestanding films and highlights the importance of the film-substrate interaction in determining the properties of freestanding structures.

2.
Nano Lett ; 19(11): 8311-8317, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31644875

RESUMEN

Artificial complex-oxide heterostructures containing ultrathin buried layers grown along the pseudocubic [111] direction have been predicted to host a plethora of exotic quantum states arising from the graphene-like lattice geometry and the interplay between strong electronic correlations and band topology. To date, however, electronic-structural investigations of such atomic layers remain an immense challenge due to the shortcomings of conventional surface-sensitive probes with typical information depths of a few angstroms. Here, we use a combination of bulk-sensitive soft X-ray angle-resolved photoelectron spectroscopy (SX-ARPES), hard X-ray photoelectron spectroscopy (HAXPES), and state-of-the-art first-principles calculations to demonstrate a direct and robust method for extracting momentum-resolved and angle-integrated valence-band electronic structure of an ultrathin buckled graphene-like layer of NdNiO3 confined between two 4-unit cell-thick layers of insulating LaAlO3. The momentum-resolved dispersion of the buried Ni d states near the Fermi level obtained via SX-ARPES is in excellent agreement with the first-principles calculations and establishes the realization of an antiferro-orbital order in this artificial lattice. The HAXPES measurements reveal the presence of a valence-band bandgap of 265 meV. Our findings open a promising avenue for designing and investigating quantum states of matter with exotic order and topology in a few buried layers.

3.
Sci Technol Adv Mater ; 19(1): 899-908, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31001365

RESUMEN

We review recent advances in strongly correlated oxides as thermoelectric materials in pursuit of energy harvesting. We discuss two topics: one is the enhancement of the ordinary thermoelectric properties by controlling orbital degrees of freedom and orbital fluctuation not only in bulk but also at the interface of correlated oxides. The other topic is the use of new phenomena driven by spin-orbit coupling (SOC) of materials. In 5d electron oxides, we show some SOC-related transport phenomena, which potentially contribute to energy harvesting. We outline the current status and a future perspective of oxides as thermoelectric materials.

4.
Nano Lett ; 17(2): 794-799, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28103040

RESUMEN

We demonstrate a novel pathway to control and stabilize oxygen vacancies in complex transition-metal oxide thin films. Using atomic layer-by-layer pulsed laser deposition (PLD) from two separate targets, we synthesize high-quality single-crystalline CaMnO3 films with systematically varying oxygen vacancy defect formation energies as controlled by coherent tensile strain. The systematic increase of the oxygen vacancy content in CaMnO3 as a function of applied in-plane strain is observed and confirmed experimentally using high-resolution soft X-ray absorption spectroscopy (XAS) in conjunction with bulk-sensitive hard X-ray photoemission spectroscopy (HAXPES). The relevant defect states in the densities of states are identified and the vacancy content in the films quantified using the combination of first-principles theory and core-hole multiplet calculations with holistic fitting. Our findings open up a promising avenue for designing and controlling new ionically active properties and functionalities of complex transition-metal oxides via strain-induced oxygen-vacancy formation and ordering.

5.
Materials (Basel) ; 13(2)2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31936337

RESUMEN

Memristive devices are attracting a great attention for memory, logic, neural networks, and sensing applications due to their simple structure, high density integration, low-power consumption, and fast operation. In particular, multi-terminal structures controlled by active gates, able to process and manipulate information in parallel, would certainly provide novel concepts for neuromorphic systems. In this way, transistor-based synaptic devices may be designed, where the synaptic weight in the postsynaptic membrane is encoded in a source-drain channel and modified by presynaptic terminals (gates). In this work, we show the potential of reversible field-induced metal-insulator transition (MIT) in strongly correlated metallic oxides for the design of robust and flexible multi-terminal memristive transistor-like devices. We have studied different structures patterned on YBa2Cu3O7-δ films, which are able to display gate modulable non-volatile volume MIT, driven by field-induced oxygen diffusion within the system. The key advantage of these materials is the possibility to homogeneously tune the oxygen diffusion not only in a confined filament or interface, as observed in widely explored binary and complex oxides, but also in the whole material volume. Another important advantage of correlated oxides with respect to devices based on conducting filaments is the significant reduction of cycle-to-cycle and device-to-device variations. In this work, we show several device configurations in which the lateral conduction between a drain-source channel (synaptic weight) is effectively controlled by active gate-tunable volume resistance changes, thus providing the basis for the design of robust and flexible transistor-based artificial synapses.

6.
ACS Appl Mater Interfaces ; 10(36): 30522-30531, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30109805

RESUMEN

Modulation of carrier concentration in strongly correlated oxides offers the unique opportunity to induce different phases in the same material, which dramatically change their physical properties, providing novel concepts in oxide electronic devices with engineered functionalities. This work reports on the electric manipulation of the superconducting to insulator phase transition in YBa2Cu3O7-δ thin films by electrochemical oxygen doping. Both normal state resistance and the superconducting critical temperature can be reversibly manipulated in confined active volumes of the film by gate-tunable oxygen diffusion. Vertical and lateral oxygen mobility may be finely modulated, at the micro- and nano-scale, by tuning the applied bias voltage and operating temperature thus providing the basis for the design of homogeneous and flexible transistor-like devices with loss-less superconducting drain-source channels. We analyze the experimental results in light of a theoretical model, which incorporates thermally activated and electrically driven volume oxygen diffusion.

7.
Adv Mater ; 29(22)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28370578

RESUMEN

Transition metal oxides having a perovskite structure form a wide and technologically important class of compounds. In these systems, ferroelectric, ferromagnetic, ferroelastic, or even orbital and charge orderings can develop and eventually coexist. These orderings can be tuned by external electric, magnetic, or stress field, and the cross-couplings between them enable important multifunctional properties, such as piezoelectricity, magneto-electricity, or magneto-elasticity. Recently, it has been proposed that additional to typical fields, the chemical potential that controls the concentration of ion vacancies in these systems may reveal an efficient alternative parameter to further tune their properties and achieve new functionalities. In this study, concretizing this proposal, the authors show that the control of the content of oxygen vacancies in perovskite thin films can indeed be used to tune their magnetic properties. Growing PrVO3 thin films epitaxially on an SrTiO3 substrate, the authors reveal a concrete pathway to achieve this effect. The authors demonstrate that monitoring the concentration of oxygen vacancies through the oxygen partial pressure or the growth temperature can produce a substantial macroscopic tensile strain of a few percent. In turn, this strain affects the exchange interactions, producing a nontrivial evolution of Néel temperature in a range of 30 K.

8.
Adv Mater ; 29(31)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28628278

RESUMEN

Heteroepitaxial coupling at complex oxide interfaces presents a powerful tool for engineering the charge degree of freedom in strongly correlated materials, which can be utilized to achieve tailored functionalities that are inaccessible in the bulk form. Here, the charge-transfer effect between two strongly correlated oxides, Sm0.5 Nd0.5 NiO3 (SNNO) and La0.67 Sr0.33 MnO3 (LSMO), is exploited to realize a giant enhancement of the ferroelectric field effect in a prototype Mott field-effect transistor. By switching the polarization field of a ferroelectric Pb(Zr,Ti)O3 (PZT) gate, nonvolatile resistance modulation in the Mott transistors with single-layer SNNO and bilayer SNNO/LSMO channels is induced. For the same channel thickness, the bilayer channels exhibit up to two orders of magnitude higher resistance-switching ratio at 300 K, which is attributed to the intricate interplay between the charge screening at the PZT/SNNO interface and the charge transfer at the SNNO/LSMO interface. X-ray absorption spectroscopy and X-ray photoelectron spectroscopy studies of SNNO/LSMO heterostructures reveal about 0.1 electron per 2D unit cell transferred between the interfacial Mn and Ni layers, which is corroborated by first-principles density functional theory calculations. The study points to an effective strategy to design functional complex oxide interfaces for developing high-performance nanoelectronic and spintronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA