Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(6): e2312959121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38300865

RESUMEN

The incorporation of multiple metal ions in metal-organic frameworks (MOFs) through one-pot synthesis can induce unique properties originating from specific atomic-scale spatial apportionment, but the extraction of this crucial information poses challenges. Herein, nondestructive solid-state NMR spectroscopy was used to discern the atomic-scale metal apportionment in a series of bulk Mg1-xCox-MOF-74 samples via identification and quantification of eight distinct arrangements of Mg/Co ions labeled with a 13C-carboxylate, relative to Co content. Due to the structural characteristics of metal-oxygen chains, the number of metal permutations is infinite for Mg1-xCox-MOF-74, making the resolution of atomic-scale metal apportionment particularly challenging. The results were then employed in density functional theory calculations to unravel the molecular mechanism underlying the macroscopic adsorption properties of several industrially significant gases. It is found that the incorporation of weak adsorption sites (Mg2+ for CO and Co2+ for CO2 adsorption) into the MOF structure counterintuitively boosts the gas adsorption energy on strong sites (Co2+ for CO and Mg2+ for CO2 adsorption). Such effect is significant even for Co2+ remote from Mg2+ in the metal-oxygen chain, resulting in a greater enhancement of CO adsorption across a broad composition range, while the enhancement of CO2 adsorption is restricted to Mg2+ with adjacent Co2+. Dynamic breakthrough measurements unambiguously verified the trend in gas adsorption as a function of metal composition. This research thus illuminates the interplay between atomic-scale structures and macroscopic gas adsorption properties in mixed-metal MOFs and derived materials, paving the way for developing superior functional materials.

2.
Small ; 20(2): e2305473, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37688298

RESUMEN

Traditional nonlinear optical (NLO) crystals are exclusively limited to ionic crystals with π-conjugated groups and it is a great challenge to achieve a subtle balance between second-harmonic generation, bandgap, and birefringence for them, especially in the deep-UV spectrum region (Eg  > 6.20 eV). Herein, a non-π-conjugated molecular crystal, NH3 BH3 , which realizes such balance with a large second-harmonic generation response (2.0 × KH2 PO4 at 1064 nm, and 0.45 × ß-BaB2 O4 at 532 nm), deep-UV transparency (Eg > 6.53 eV), and moderate birefringence (Δn = 0.056@550 nm) is reported. As a result, NH3 BH3 exhibits a large quality factor of 0.32, which is evidently larger than those of non-π-conjugated sulfate and phosphate ionic crystals. Using an unpolished NH3 BH3 crystal, effective second-harmonic generation outputs are observed at different wavelengths. These attributes indicate that NH3 BH3 is a promising candidate for deep-UV NLO applications. This work opens up a new door for developing high-performance deep-UV NLO crystals.

3.
Small ; 20(9): e2306158, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37863830

RESUMEN

Birefringent crystals have important applications in optoelectronics areas due to their ability to modulate and polarize light. Despite increasing discovery of the birefringence potential of new crystals, it remains a great challenge to optimize both birefringence and bandgap simultaneously. Herein, a 1D chain-like hybrid perovskite birefringent crystal designed by 3D-to-1D dimensional tailoring, (GAM)2 PbI7 ·H2 O (GAM = C5 N10 H10 ), is presented, showing enlarged birefringence of 0.49@550 nm and enlarged optical bandgap (2.48 eV). Consequently, the birefringent quality factor of (GAM)2 PbI7 ·H2 O is up to 2.8 times that of the template MAPbI3 . In particular, the birefringence is much larger than those of commercial birefringent crystals and surpasses that of the vast majority of hybrid perovskite known to date. Theoretical calculations reveal that the strongly anisotropic arrangement of (GAM)2.5+ π-conjugated cations and ordered PbI6 octahedra contributes to the large birefringence and wide bandgap of (GAM)2 PbI7 ·H2 O. It is believed that this work will provide a new pathway toward the rational design and synthesis of hybrid perovskite birefringent crystals for compact wide-bandgap polarization dependent devices.

4.
Small ; 20(37): e2400549, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38726954

RESUMEN

A large optical anisotropy is the most important parameter of birefringent crystals. Integrating π-conjugated groups with large polarizable anisotropy into target compounds is a common strategy for constructing brilliant birefringent crystals. However, the key problem is to enhance the density of the birefringence-active units and further arrange them parallelly. In this study, three novel birefringent crystals, C9H7NBrX (X = Cl, Br, NO3), are successfully synthesized by introducing a new birefringence-active [C9H7NBr]+ unit. Interestingly, these compounds feature similar layered structures but exhibit different optical anisotropies at 550 nm (0.277 for C9H7NBrCl, 0.328 for C9H7NBrBr, and 0.401 for C9H7NBrNO3) owing to the different anions in them. Particularly, the small trigonal planar NO3 anions perfectly fill the interstices of the π-conjugated [C9H7NBr]+ groups with large optical anisotropy, with the resulting compound C9H7NBrNO3 showing superior optical properties compared to the others. The above findings provide strategies for designing new optical materials with large birefringence by matching birefringence-active groups of different sizes. Additionally, a new theory for predicting and comparing the polarizability anisotropy of compounds is proposed, which would guide in exploring large birefringent crystals.

5.
Small ; 20(3): e2305711, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37697703

RESUMEN

The typical chalcopyrite AgGaQ2 (Q = S, Se) are commercial infrared (IR) second-order nonlinear optical (NLO) materials; however, they suffer from unexpected laser-induced damage thresholds (LIDTs) primairy due to their narrow band gaps. Herein, what sets this apart from previously reported chemical substitutions is the utilization of an unusual cationic substitution strategy, represented by [[SZn4 ]S12 + [S4 Zn13 ]S24 + 11ZnS4 ⇒ MS12 + [M4 Cl]S24 + 11GaS4 ], in which the covalent Sx Zny units in the diamond-like sphalerite ZnS are synergistically replaced by cationic Mx Cly units, resulting in two novel salt-inclusion sulfides, M[M4 Cl][Ga11 S20 ] (M = A/Ba, A = K, 1; Rb, 2). As expected, the introduction of mixed cations in the GaS4 anionic frameworks of 1 and 2 leads to wide band gaps (3.04 and 3.01 eV), which exceeds the value of AgGaS2 , facilitating the improvement of high LIDTs (9.4 and 10.3 × AgGaS2 @1.06 µm, respectively). Furthermore, compounds 1 and 2 exhibit moderate second-harmonic generation intensities (0.84 and 0.78 × AgGaS2 @2.9 µm, respectively), mainly originating from the orderly packing tetrahedral GaS4 units. Importantly, this study demonstrates the successful application of the cationic substitution strategy based on diamond-like structures to provide a feasible chemical design insight for constructing high-performance NLO materials.

6.
Small ; 20(38): e2400605, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38794874

RESUMEN

The developments of mixed matrix membranes (MMMs) are severely hindered by the complex inter-phase interaction and the resulting poor utilization of inorganics' microporosity. Herein, a dual porosity framework is constructed in MMMs to enhance the accessibility of inorganics' microporosity to external gas molecules for the effective application of microporosity for gas separation. Nanocomposite organogels are first prepared from the supramolecular complexation of rigid polymers and 2 nm microporous coordination nanocages (CNCs). The network structures can be maintained with microporous features after solvent removal originated from the rigid nature of polymers, and the strong coordination and hydrogen bond between the two components. Moreover, the strong supramolecular attraction reinforces the frustrated packing of the rigid polymers on CNC surface, leading to polymer networks' extrinsic pores and the interconnection of CNCs' micro-cavities for the fast gas transportation. The gas permeabilities of the MMMs are 869 times for H2 and 1099 times for CO2 higher than those of pure polymers. The open metal sites from nanocage also contribute to the enhanced gas selectivity and the overall performance surpasses 2008 H2/CO2 Robeson upper bound. The supramolecular complexation reinforced packing frustration strategy offers a simple and practical solution to achieve improved gas permselectivity in MMMs.

7.
Small ; 20(10): e2306577, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37875672

RESUMEN

Structural dissymmetry and strong second-harmonic generation (SHG) responses are key conditions for nonlinear optical (NLO) crystals, and targeted combinatorial screening of suitable anionic groups has become extremely effective. Herein, optimal combination of flexible SnSn (n = 5, 6) groups and highly electropositive cations (lanthanides (Ln3+ ) and alkaline earth (Ae2+ : Sr, Ca) metals) affords the successful synthesis of 12 NLO thiostannates including Ln2 Sr3 Sn3 S12 (Pmc21 ) and Ln2 Ca3 Sn3 S12 (P-62m); whereas 17 rigid GeS4 or SiS4 tetrahedra-constructed Ln2 Ae3 Ge3 S12 and Ln2 Ae3 Si3 S12 crystallize in the centrosymmetric (CS) Pnma. This unprecedented CS to noncentrosymmetric (NCS) structural transformation (Pnma to P-62m to Pmc21 ) in the Ln2 Ae3 MIV 3 S12 family indicates that chemical substitution of the tetrahedral GeS4 /SiS4 units with SnSn breaks the original symmetry to form the requisite NCS structures. Remarkably, strong polarization anisotropy and hyperpolarizability of the Sn(4+) S5 unit afford huge performance improvement from the nonphase-matching (NPM) SHG response (1.4 × AgGaS2 and Δn = 0.008) of La2 Ca3 Sn3 S12 to the strong phase-matching (PM) SHG effect (3.0 × AgGaS2 and Δn = 0.086) of La2 Sr3 Sn3 S12 . Therefore, Sn(4+) S5 is proven to be a promising "NLO-active unit." This study verifies that the coupling of flexible SnSn building blocks into structures opens a feasible path for designing targeted NCS crystals with strong nonlinearity and optical anisotropy.

8.
Small ; 20(6): e2304563, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37786270

RESUMEN

It is substantially challenging for non-centrosymmetric (NCS) Hg-based chalcogenides for infrared nonlinear optical (IR-NLO) applications to realize wide band gap (Eg > 3.0 eV) and sufficient phase-matching (PM) second-harmonic-generation intensity (deff > 1.0 × benchmark AgGaS2 ) simultaneously due to the inherent incompatibility. To address this issue, this work presents a diagonal synergetic substitution strategy for creating two new NCS quaternary Hg-based chalcogenides, AEHgGeS4 (AE = Sr and Ba), based on the centrosymmetric (CS) AEIn2 S4 . The derived AEHgGeS4 displays excellent NLO properties such as a wide Eg (≈3.04-3.07 eV), large PM deff (≈2.2-3.0 × AgGaS2 ), ultra-high laser-induced damage threshold (≈14.8-15 × AgGaS2 ), and suitable Δn (≈0.19-0.24@2050 nm), making them highly promising candidates for IR-NLO applications. Importantly, such excellent second-order NLO properties are primarily attributed to the synergistic combination of tetrahedral [HgS4 ] and [GeS4 ] functional primitives, as supported by detailed theoretical calculations. This study reports the first two NCS Hg-based materials with well-balanced comprehensive properties (i.e., Eg > 3.0 eV and deff > 1.0 × benchmark AgGaS2 ) and puts forward a new design avenue for the construction of more efficient IR-NLO candidates.

9.
Chemistry ; 30(12): e202303208, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38038726

RESUMEN

Fluorophores are considered powerful tools for not only enabling the visualization of cell structures, substructures, and biological processes, but also making for the quantitative and qualitative measurement of various analytes in living systems. However, most fluorophores do not meet the diverse requirements for biological applications in terms of their photophysical and biological properties. Hybridization is an important strategy in molecular engineering that provides fluorophores with complementarity and multifunctionality. This review summarizes the basic strategies of hybridization with four classes of fluorophores, including xanthene, cyanine, coumarin, and BODIPY with a focus on their structure-property relationship (SPR) and biological applications. This review aims to provide rational hybrid ideas for expanding the reservoir of knowledge regarding fluorophores and promoting the development of newly produced fluorophores for applications in the field of life sciences.


Asunto(s)
Colorantes Fluorescentes , Xantenos , Colorantes Fluorescentes/química , Xantenos/química , Ionóforos
10.
Chemistry ; 30(17): e202303996, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38165074

RESUMEN

Inorganic-organic hybrid materials are a kind of multiduty materials with high crystallinity and definite structures, built from functional inorganic and organic components with highly tunable photochemical properties. Perylenediimides (PDIs) are a kind of strong visible light-absorbing organic dyes with π-electron-deficient planes and photochemical properties depending on their micro-environment, which provides a platform for designing tunable and efficient hybrid photocatalytic materials. Herein, four radical-doped PDI-based crystalline hybrid materials, Cl4-PDI⋅SiW12O40 (1), Cl4-PDI⋅SiMo12O40 (2), Cl4-PDI⋅PW12O40 (3), and Cl4-PDI⋅PMo12O40 (4), were attained by slow diffusion of polyoxometalates (POMs) into acidified Cl4-PDI solutions. The obtained PDI-based crystalline hybrid materials not only exhibited prominent photochromism, but also possessed reactive organic radicals under ambient conditions. Furthermore, all hybrid materials could be easily photoreduced to their radical anions (Cl4-PDI⋅-), and then underwent a second photoexcitation to form energetic excited state radical anions (Cl4-PDI⋅-*). However, experiments and theoretical calculations demonstrated that the formed energetic Cl4-PDI⋅-* showed unusual POM-dependent photocatalytic efficiencies toward the oxidative coupling of amines and the iodoperfluoroalkylation of alkenes; higher photocatalytic efficiencies were found for hybrid materials 1 (anion: SiW12O40 4-) and 2 (anion: SiMo12O40 4-) compared to 3 (anion: PW12O40 3-) and 4 (anion: PMo12O40 3-). The photocatalytic efficiencies of these hybrid materials are mainly controlled by the energy differences between the SOMO-2 level of Cl4-PDI⋅-* and the LUMO level of the POMs. The structure-photocatalytic activity relationships established in present work provide new research directions to both the photocatalysis and hybrid material fields, and will promote the integration of these areas to explore new materials with interesting properties.

11.
Chemistry ; : e202403515, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39420133

RESUMEN

Two new non-centrosymmetric chalcogenides, ACuGa6S10 (A = Rb, Cs) have been successfully synthesized by an "iterative substitution" strategy based on chalcopyrite CuFeS2 structural template. Benefiting from the substitution of Fe3+ cations by Ga3+ cations, ACuGa6S10 (A = Rb, Cs) exhibit wide suitable band gap of 2.48 and 2.40 eV, respectively, which is about five times higher than their structure template CuFeS2, and the large second harmonic generation response (1.5 and 1.8 × AgGaS2). Combining theoretical calculation and structural analysis confirm that the [GaS4] tetrahedra make the main contribution on their good liner and nonlinear optical (NLO) performances. The "iterative substitution" strategy expands the design idea of materials and can lead to the discovery of a large number of IR NLO compounds.

12.
Biotechnol Bioeng ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267334

RESUMEN

Purification of recombinantly produced biopharmaceuticals involves removal of host cell material, such as host cell proteins (HCPs). For lysates of the common expression host Escherichia coli (E. coli) over 1500 unique proteins can be identified. Currently, understanding the behavior of individual HCPs for purification operations, such as preparative chromatography, is limited. Therefore, we aim to elucidate the elution behavior of individual HCPs from E. coli strain BLR(DE3) during chromatography. Understanding this complex mixture and knowing the chromatographic behavior of each individual HCP improves the ability for rational purification process design. Specifically, linear gradient experiments were performed using ion exchange (IEX) and hydrophobic interaction chromatography, coupled with mass spectrometry-based proteomics to map the retention of individual HCPs. We combined knowledge of protein location, function, and interaction available in literature to identify trends in elution behavior. Additionally, quantitative structure-property relationship models were trained relating the protein 3D structure to elution behavior during IEX. For the complete data set a model with a cross-validated R2 of 0.55 was constructed, that could be improved to a R2 of 0.70 by considering only monomeric proteins. Ultimately this study is a significant step toward greater process understanding.

13.
Mol Pharm ; 21(7): 3356-3374, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805643

RESUMEN

Block copolymers, composed of poly(2-oxazoline)s and poly(2-oxazine)s, can serve as drug delivery systems; they form micelles that carry poorly water-soluble drugs. Many recent studies have investigated the effects of structural changes of the polymer and the hydrophobic cargo on drug loading. In this work, we combine these data to establish an extended formulation database. Different molecular properties and fingerprints are tested for their applicability to serve as formulation-specific mixture descriptors. A variety of classification and regression models are built for different descriptor subsets and thresholds of loading efficiency and loading capacity, with the best models achieving overall good statistics for both cross- and external validation (balanced accuracies of 0.8). Subsequently, important features are dissected for interpretation, and the DrugBank is screened for potential therapeutic use cases where these polymers could be used to develop novel formulations of hydrophobic drugs. The most promising models are provided as an open-source software tool for other researchers to test the applicability of these delivery systems for potential new drug candidates.


Asunto(s)
Sistemas de Liberación de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Aprendizaje Automático , Micelas , Polímeros , Polímeros/química , Sistemas de Liberación de Medicamentos/métodos , Oxazoles/química , Portadores de Fármacos/química , Oxazinas/química , Solubilidad , Química Farmacéutica/métodos
14.
Nanotechnology ; 35(41)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38991516

RESUMEN

In this study, we present a nanosized biosensor based on the photobiological properties of one-dimensional (1D) topological photonic crystals (PCs). A topological structure had been designed by combining two PC structures (PC 1 and PC 2) comprised of functional material layers, Si and SiO2. These two, PC 1 and PC 2, differ in terms of the thickness and arrangement of these dielectric materials. We carried out a comparison between two distinct topological PCs: one using random PCs, and the other featuring a mirror heterostructure. Tuberculosis may be diagnosed by inserting a sensor layer into 1D topological PCs. The sensing process is based on the refractive indexes of the analytes in the sensor layer. When the 1D-topological heterostructure-based PC and its mirror-image structures are stacked together, the sensor becomes more efficient for analyte detection than the conventional PCs. The random-based topological PC outperformed the heterostructure-based topological PC in analyte sensing. Photonic media witness notable blue shifts due to the analytes' variations in refractive index. The numerical results of the sensor are computed using the transfer matrix approach. Effective results are achieved by optimizing the thicknesses of the sensor layer and dielectric layers; number of periods and incident angle. In normal incident light, the developed sensor shows a high sensitivity of 1500 nm RIU-1with a very low limit of detection in the order of 2.2 × 10-06RIU and a high-quality factor of 30 659.54.

15.
Environ Sci Technol ; 58(13): 6049-6057, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38525996

RESUMEN

High Cl- concentration in saline wastewater (e.g., landfill leachate) limits wastewater purification. Catalytic Cl- conversion into reactive chlorine species (RCS) arises as a sustainable strategy, making the salinity profitable for efficient wastewater treatment. Herein, aiming to reveal the structure-property relationship in Cl- utilization, bismuth oxychloride (BiOCl) photocatalysts with coexposed {001} and {110} facets are synthesized. With an increasing {001} ratio, the RCS production efficiency increases from 75.64 to 96.89 µg L-1 min-1. Mechanism investigation demonstrates the fast release of lattice Cl- as an RCS and the compensation of ambient Cl-. Correlation analysis between the internal electric field (IEF, parallel to [001]) and normalized efficiency on {110} (kRCS/S{110}, perpendicular to [001]) displays a coefficient of 0.86, validating that the promoted carrier dynamics eventually affects Cl- conversion on the open layered structure. The BiOCl photocatalyst is well behaved in ammonium (NH4+-N) degradation ranging from 20 to 800 mg N L-1 with different chlorinity (3-12 g L-1 NaCl). The sustainable Cl- conversion into RCS also realizes 85.4% of NH4+-N removal in the treatment of realistic landfill leachate (662 mg of N L-1 NH4+-N). The structure-property relationship provides insights into the design of efficient catalysts for environment remediation using ambient Cl-.


Asunto(s)
Compuestos de Amonio , Bismuto , Contaminantes Químicos del Agua , Aguas Residuales , Contaminantes Químicos del Agua/química , Salinidad
16.
Macromol Rapid Commun ; : e2400517, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39422645

RESUMEN

Thermal conductivity coefficient κ measures the ability of a material to conduct a heat current. In particular, κ is an important property that often dictates the usefulness of a material over a wide range of environmental conditions. For example, while a low κ is desirable for the thermoelectric applications, a large κ is needed when a material is used under the high temperature conditions. These materials range from common crystals to commodity amorphous polymers. The latter is of particular importance because of their use in designing light weight high performance functional materials. In this context, however, one of the major limitations of the amorphous polymers is their low κ, reaching a maximum value of ≈0.4 W/Km that is 2-3 orders of magnitude smaller than the standard crystals. Moreover, when energy is predominantly transferred through the bonded connections, κ ⩾ 100 W/Km. Recently, extensive efforts have been devoted to attain a tunability in κ via macromolecular engineering. In this work, an overview of the recent results on the κ behavior in polymers and polymeric solids is presented. In particular, computational and theoretical results are discussed within the context of complimentary experiments. Future directions are also highlighted.

17.
Macromol Rapid Commun ; 45(18): e2400304, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38837515

RESUMEN

A generic model of elastin-like polypeptides (ELP) is derived that includes proline isomerization (ProI). As a case study, conformational transition of a -[valine-proline-glycine-valine-glycine]- sequence is investigated in aqueous ethanol mixtures. While the non-bonded interactions are based on the Lennard-Jones (LJ) parameters, the effect of ProI is incorporated by tuning the intramolecular 3- and 4-body interactions known from the underlying all-atom simulations into the generic model. One of the key advantages of such a minimalistic model is that it readily decouples the effects of geometry and the monomer-solvent interactions due to the presence of ProI, thus gives a clearer microscopic picture that is otherwise rather nontrivial within the all-atom setups. These results are consistent with the available all-atom and experimental data. The model derived here may pave the way to investigate large scale self-assembly of ELPs or biomimetic polymers in general.


Asunto(s)
Elastina , Péptidos , Prolina , Prolina/química , Elastina/química , Péptidos/química , Isomerismo , Polipéptidos Similares a Elastina
18.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074784

RESUMEN

Correlating the structures and properties of a polymer to its monomer sequence is key to understanding how its higher hierarchy structures are formed and how its macroscopic material properties emerge. Carbohydrate polymers, such as cellulose and chitin, are the most abundant materials found in nature whose structures and properties have been characterized only at the submicrometer level. Here, by imaging single-cellulose chains at the nanoscale, we determine the structure and local flexibility of cellulose as a function of its sequence (primary structure) and conformation (secondary structure). Changing the primary structure by chemical substitutions and geometrical variations in the secondary structure allow the chain flexibility to be engineered at the single-linkage level. Tuning local flexibility opens opportunities for the bottom-up design of carbohydrate materials.

19.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474252

RESUMEN

Na-V-P-Nb-based materials have gained substantial recognition as cathode materials in high-rate sodium-ion batteries due to their unique properties and compositions, comprising both alkali and transition metal ions, which allow them to exhibit a mixed ionic-polaronic conduction mechanism. In this study, the impact of introducing two transition metal oxides, V2O5 and Nb2O5, on the thermal, (micro)structural, and electrical properties of the 35Na2O-25V2O5-(40 - x)P2O5 - xNb2O5 system is examined. The starting glass shows the highest values of DC conductivity, σDC, reaching 1.45 × 10-8 Ω-1 cm-1 at 303 K, along with a glass transition temperature, Tg, of 371 °C. The incorporation of Nb2O5 influences both σDC and Tg, resulting in non-linear trends, with the lowest values observed for the glass with x = 20 mol%. Electron paramagnetic resonance measurements and vibrational spectroscopy results suggest that the observed non-monotonic trend in σDC arises from a diminishing contribution of polaronic conductivity due to the decrease in the relative number of V4+ ions and the introduction of Nb2O5, which disrupts the predominantly mixed vanadate-phosphate network within the starting glasses, consequently impeding polaronic transport. The mechanism of electrical transport is investigated using the model-free Summerfield scaling procedure, revealing the presence of mixed ionic-polaronic conductivity in glasses where x < 10 mol%, whereas for x ≥ 10 mol%, the ionic conductivity mechanism becomes prominent. To assess the impact of the V2O5 content on the electrical transport mechanism, a comparative analysis of two analogue series with varying V2O5 content (10 and 25 mol%) is conducted to evaluate the extent of its polaronic contribution.


Asunto(s)
Niobio , Fosfatos , Fosfatos/química , Vidrio/química , Iones , Espectroscopía de Resonancia por Spin del Electrón , Sodio/química , Cerámica/química
20.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731420

RESUMEN

This article presents a comprehensive investigation into the functionalization of methoxyphenylazobenzene using electron-directing groups located at the meta position relative to the azo group. Spectroscopic analysis of meta-functionalized azobenzenes reveals that the incorporation of electron-withdrawing units significantly influences the absorption spectra of both E and Z isomers, while electron-donating functionalities lead to more subtle changes. The thermal relaxation process from Z to E result in almost twice as prolonged for electron-withdrawing functionalized azobenzenes compared to their electron-rich counterparts. Computational analysis contributes a theoretical understanding of the electronic structure and properties of meta-substituted azobenzenes. This combined approach, integrating experimental and computational techniques, yields significant insights into the structure-property relationship of meta-substituted asymmetrical phenolazobenzenes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA