Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nanotechnology ; 33(23)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35213855

RESUMEN

A single crystal of SrTiO3doped with 0.5 wt% niobium (Nb-STO) was irradiated with 200 MeV Au32+ions at grazing incidence to characterize the irradiation-induced hillock chains. Exactly the same hillock chains are observed by using atomic force microscopy (AFM) and scanning electron microscopy (SEM) to study the relation between irradiation-induced change of surface topography and corresponding material property changes. As expected, multiple hillocks as high as 5-6 nm are imaged by AFM observation in tapping mode. It is also found that the regions in between the adjacent hillocks are not depressed, and in many cases they are slightly elevated. Line-like contrasts along the ion paths are found in both AFM phase images and SEM images, indicating the formation of continuous ion tracks in addition to multiple hillocks. Validity of preexisting models for explaining the hillock chain formation is discussed based on the present results. In order to obtain new insights related to the ion track formation, cross-sectional transmission electron microscopy (TEM) observation was performed. The ion tracks in the near-surface region are found to be relatively large, whereas buried ion tracks in the deeper region are relatively small. The results suggest that recrystallization plays an important role in the formation of small ion tracks in the deep region, whereas formation of large ion tracks in the near-surface region is likely due to the absence of recrystallization. TEM images also show shape deformation of ion tracks in the near-surface region, suggesting that material transport towards the surface is the reason for the absence of recrystallization.

2.
Luminescence ; 29(5): 480-91, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24753140

RESUMEN

We report a comparative study on structural and thermoluminescence modifications of Y2O3:Eu(3+) phosphor induced by 150 MeV Ni(7+), 120 MeV Ag(9+) and 110 MeV Au(8+) swift heavy ions (SHI) in the fluence range 1 × 10(11) to 1 × 10(13) ions/cm(2). X-Ray diffraction and transition electron microscopy studies confirm the loss of crystallinity of the phosphors after ion irradiation, which is greater in the case of Au ion irradiation. Structural refinement using the Rietveld method yields the various structural parameters of ion-irradiated phosphors. Thermoluminescence glow curves of ion-irradiated phosphors show a small shift in the position of the peaks, along with an increase in intensity with ion fluence. Stopping range of ions in Matter (SRIM) calculations were performed to correlate the change in thermoluminescence properties of various ion-irradiated phosphors. It shows that the defects created by 110 MeV Au(8+) ions are greater in number. Trapping parameters of ion-irradiated phosphors were calculated from thermoluminescence data using various glow curve analysis methods.


Asunto(s)
Europio/química , Oro/química , Níquel/química , Plata/química , Itrio/química , Iones Pesados , Luminiscencia , Mediciones Luminiscentes , Difracción de Rayos X
3.
Materials (Basel) ; 17(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38591410

RESUMEN

Natural monoclinic zirconia (baddeleyite) was irradiated with 340 MeV Au ions, and the irradiation-induced nanostructures (i.e., ion tracks and nanohillocks) were observed using transmission electron microscopy. The diameter of the nanohillocks was approximately 10 nm, which was similar to the maximum molten region size calculated using the analytical thermal spike model. Ion tracks were imaged as strained regions that maintained their crystalline structure. The cross-sections of most of the ion tracks were imaged as rectangular contrasts as large as 10 nm. These results strongly indicated that the molten region was recrystallized anisotropically, reflecting the lattice structure. Furthermore, low-density track cores were formed in the center of the ion tracks. The formation of low-density track cores can be attributed to the ejection of molten matter toward the surface. A comparison of the ion tracks in the synthetic zirconia nanoparticles and those in larger natural zirconia samples showed that the interface between the strained track contrast and the matrix was less clear in the former than in the latter. These findings suggest that the recrystallization process was affected by the size of the irradiated samples.

4.
J Phys Condens Matter ; 35(13)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36657170

RESUMEN

This study reports the effect of 120 MeV swift Au9+ion irradiation on the structures of monoclinic, tetragonal and cubic ZrO2, probed through x-ray diffraction (XRD) and Raman spectroscopy. Three phases of ZrO2were prepared using the solution combustion method. The tetragonal and cubic phases of ZrO2were stabilized at room temperature by adding 6% and 10% of yttrium ions, respectively. Both the XRD and Raman results confirm the partial phase transition from monoclinic to tetragonal, which was approximately 74%. Tetragonal ZrO2is stable under 120 MeV Au9+ion irradiation. Interestingly, a phase transition from cubic to tetragonal ZrO2was observed under 120 MeV Au9+ion irradiation. The roles of transient temperature, defects and strain in the lattice induced by swift heavy ions are discussed. This study reveals the structural stability of different phases of ZrO2under swift heavy ion irradiation and should be helpful in choosing potential hosts for various applications such as inert fuel matrix inside the core of nuclear reactors, oxygen sensors and accelerators, and radiation shielding.

5.
Polymers (Basel) ; 15(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36850192

RESUMEN

The novelty of the study is that the ordering that occurs in a PET film under the action of SHI irradiation manifests itself as an increase in the integral intensity of intrinsic luminescence. The Urbach behaviour of the red shift of the absorption edge is used as a baseline for further analysis of experimental optical transmission spectra of PET films irradiated by swift heavy ions (SHI) previously published by the authors. Negative deviations of the experimental spectra from the Urbach baseline in the visible and UV parts of the spectrum are attributed to enhanced by SHI irradiation intrinsic luminescence. The observed dependence of the integral intensity of luminescence of irradiated PET films on the SHI fluence and ion charge provides further confirmation of the presence of SHI-induced ordering of the molecular structure in SHI latent tracks.

6.
Polymers (Basel) ; 15(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37896294

RESUMEN

We present here a novel experimental study of changes after contact electrification in the optical transmission spectra of samples of both pristine and irradiated PET film treated with Kr+15 ions of energy of 1.75 MeV and a fluence of 3 × 1010 cm2. We used a non-standard electrification scheme for injecting electrons into the film by applying negative electrodes to both its surfaces and using the positively charged inner regions of the film itself as the positive electrode. Electrification led to a decrease in the intensity of the internal electric fields for both samples and a hypsochromic (blue) shift in their spectra. For the irradiated PET sample, electrification resulted in a Gaussian modulation of its optical properties in the photon energy range 2.3-3.6 eV. We associate this Gaussian modulation with the partial decay of non-covalent extended conjugated systems that were formed under the influence of the residual radial electric field of the SHI latent tracks. Our studies lead us to suggest the latent track in the PET film can be considered as a variband material in the radial direction. Consideration of our results along with other published experimental results leads us to conclude that these can all be consistently understood by taking into account both the swift and slow electrons produced by SHI irradiation, and that it appears that the core of a latent track is negatively charged, and the periphery is positively charged.

7.
ACS Appl Mater Interfaces ; 15(38): 45426-45440, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37712830

RESUMEN

While gold nanoparticles (Au NPs) are widely used as surface-enhanced Raman spectroscopy (SERS) substrates, their agglomeration and dynamic movement under laser irradiation result in the major drawback in SERS applications, viz., the repeatability of SERS signals. We tune the optical and structural properties of size- and shape-modified Au NPs embedded in a thin silicon nitride (Si3N4) matrix by intense electronic excitation with swift heavy ion (SHI) irradiation with the aim of overcoming this classical SERS disadvantage. We demonstrate the shape evolution of a single layer of Au NPs inserted between amorphous Si3N4 thin films under fluences of 120 MeV Au9+ ions ranging between 1 × 1011 and 1 × 1013 ions cm-2. This shape modification results in the gradual blue shift of the localized surface plasmon resonance (LSPR) dip until 1 × 1012 ions/cm2 and then a sudden diminishment at 1 × 1013 ions/cm2. Finite domain time difference (FDTD) simulations further justify our experimental optical spectra. The dynamical NP aggregation and dissolution, in addition to NP elongation and deformation at different fluences, are noted from 2D grazing incidence small-angle X-ray scattering (GISAXS) profiles, as well as cross-sectional transmission electron microscopy (X-TEM). The systematic shape evolution of metal NPs embedded in the insulating matrix is shown to be due to thermal spike-induced localized melting and a localized pressure hike upon SHI irradiation. Utilizing this specific control over the characteristics of Au NPs, viz., shape, size, interparticle gap, and corresponding optical response via SHI irradiation, we demonstrate their applications as very stable SERS substrates, where the separation between NPs and analyte does not alter under laser illumination. Thus, these irradiated SERS active substrates with controlled NP size and gap provide the optimal conditions for creating localized electromagnetic hotspots that amplify the SERS signals, which do not alter with time or laser exposure. We found that the film irradiated with 1 × 1011 exhibits the highest SERS intensity due to its optimal NP size distribution and shape. Thus, not only our study provides a SERS substrate for stable and repeatable signals but also the understanding depicted here opens new research avenues in designing SERS substrates, photovoltaics, optoelectronic devices, etc. with ion beam irradiation.

8.
Nanomaterials (Basel) ; 12(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35745301

RESUMEN

57Fe transmission and conversion electron Mössbauer spectroscopy as well as XRD were used to study the effect of swift heavy ion irradiation on stress-annealed FINEMET samples with a composition of Fe73.5Si13.5Nb3B9Cu1. The XRD of the samples indicated changes neither in the crystal structure nor in the texture of irradiated ribbons as compared to those of non-irradiated ones. However, changes in the magnetic anisotropy both in the bulk as well as at the surface of the FINEMET alloy ribbons irradiated by 160 MeV 132Xe ions with a fluence of 1013 ion cm-2 were revealed via the decrease in relative areas of the second and fifth lines of the magnetic sextets in the corresponding Mössbauer spectra. The irradiation-induced change in the magnetic anisotropy in the bulk was found to be similar or somewhat higher than that at the surface. The results are discussed in terms of the defects produced by irradiation and corresponding changes in the orientation of spins depending on the direction of the stress generated around these defects.

9.
Nanomaterials (Basel) ; 12(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36432317

RESUMEN

The size uniformity and spatial dispersion of nanoparticles (NPs) formed by ion implantation must be further improved due to the characteristics of the ion implantation method. Therefore, specific swift heavy ion irradiation and thermal annealing are combined in this work to regulate the size and spatial distributions of embedded Au NPs formed within LiTaO3 crystals. Experimental results show that small NPs migrate to deeper depths induced by 656 MeV Xe35+ ion irradiation. During thermal annealing, the growth of large Au NPs is limited due to the reductions in the number of small Au NPs, and the migrated Au NPs aggregate at deeper depths, resulting in a more uniform size distribution and an increased spatial distribution of Au NPs. The present work presents a novel method to modify the size and spatial distributions of embedded NPs.

10.
Nanomaterials (Basel) ; 11(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34947521

RESUMEN

The purpose of this study is to assess the effect of doping ZrO2 ceramics with MgO on radiation swelling and polymorphic transformations, as a result of irradiation with heavy ions. Interest in these types of materials is due to the great prospects for their use as structural materials for new-generation reactors. The study established the dependences of the phase composition formation and changes in the structural parameters following a change in the concentration of MgO. It has been established that the main mechanism for changing the structural properties of ceramics is the displacement of the cubic c-ZrO2 phase by the Zr0.9Mg0.1O2 substitution phase, which leads to an increase in the stability of ceramic properties to irradiation. It has been determined that an increase in MgO concentration leads to the formation of an impurity phase Zr0.9Mg0.1O2 due to the type of substitution, resulting in changes to the structural parameters of ceramics. During studies of changes in the strength properties of irradiated ceramics, it was found that the formation of a phase in the Zr0.9Mg0.1O2 structure leads to an increase in the resistance to cracking and embrittlement of the surface layers of ceramics.

11.
Materials (Basel) ; 14(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34771815

RESUMEN

High energy ion irradiation is an important tool for nanoscale modification of materials. In the case of thin targets and 2D materials, which these energetic ions can pierce through, nanoscale modifications such as production of nanopores can open up pathways for new applications. However, materials modifications can be hindered because of subsequent energy release via electron emission. In this work, we follow energy dissipation after the impact of an energetic ion in thin graphite target using Geant4 code. Presented results show that significant amount of energy can be released from the target. Especially for thin targets and highest ion energies, almost 40% of deposited energy has been released. Therefore, retention of deposited energy can be significantly altered and this can profoundly affect ion track formation in thin targets. This finding could also have broader implications for radiation hardness of other nanomaterials such as nanowires and nanoparticles.

12.
Materials (Basel) ; 14(8)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920388

RESUMEN

Both silicon and graphite are radiation hard materials with respect to swift heavy ions like fission fragments and cosmic rays. Recrystallisation is considered to be the main mechanism of prompt damage anneal in these two materials, resulting in negligible amounts of damage produced, even when exposed to high ion fluences. In this work we present evidence that these two materials could be susceptible to swift heavy ion irradiation effects even at low energies. In the case of silicon, ion channeling and electron microscopy measurements reveal significant recovery of pre-existing defects when exposed to a swift heavy ion beam. In the case of graphite, by using ion channeling, Raman spectroscopy and atomic force microscopy, we found that the surface of the material is more prone to irradiation damage than the bulk.

13.
Materials (Basel) ; 10(9)2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878186

RESUMEN

The aim of this work is to investigate the feasibility of ion beam analysis techniques for monitoring swift heavy ion track formation. First, the use of the in situ Rutherford backscattering spectrometry in channeling mode to observe damage build-up in quartz SiO₂ after MeV heavy ion irradiation is demonstrated. Second, new results of the in situ grazing incidence time-of-flight elastic recoil detection analysis used for monitoring the surface elemental composition during ion tracks formation in various materials are presented. Ion tracks were found on SrTiO₃, quartz SiO₂, a-SiO₂, and muscovite mica surfaces by atomic force microscopy, but in contrast to our previous studies on GaN and TiO₂, surface stoichiometry remained unchanged. Third, the usability of high resolution particle induced X-ray spectroscopy for observation of electronic dynamics during early stages of ion track formation is shown.

14.
Mater Sci Eng C Mater Biol Appl ; 33(8): 4900-4, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24094203

RESUMEN

In this work, the effect of 100 MeV Si(9+) ion beam with four different fluences on antioxidant and structural properties of polypyrrole nanotubes has been investigated. Polypyrrole nanotubes have been synthesized by reactive self degrade template method. Fragmentation of the polypyrrole nanotubes at higher fluence is revealed from the high resolution transmission electron micrograph (HRTEM) and X-ray diffraction (XRD) results. The decrease in characteristics band of polypyrrole in Fourier transmission of infrared spectra (FTIR) spectra suggests the main chain scission of polypyrrole during irradiation. The free radical scavenging activity of pristine and irradiated samples are evaluated by using α, α-diphenyl-ß-picrylhydrazyl (DPPH) assay. The decline of the UV-visible absorbance at 516 nm suggests the neutralization of DPPH free radicals through the reaction with polypyrrole. Significant increase in antioxidant activity of polypyrrole nanotubes is observed with increase in ion fluence.


Asunto(s)
Antioxidantes/química , Nanotubos/química , Polímeros/química , Pirroles/química , Radiación Ionizante , Silicio/química , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA