Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(6): e0052424, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38757972

RESUMEN

Ebola virus glycoprotein (EBOV GP) is one of the most heavily O-glycosylated viral glycoproteins, yet we still lack a fundamental understanding of the structure of its large O-glycosylated mucin-like domain and to what degree the host O-glycosylation capacity influences EBOV replication. Using tandem mass spectrometry, we identified 47 O-glycosites on EBOV GP and found similar glycosylation signatures on virus-like particle- and cell lysate-derived GP. Furthermore, we performed quantitative differential O-glycoproteomics on proteins produced in wild-type HEK293 cells and cell lines ablated for the three key initiators of O-linked glycosylation, GalNAc-T1, -T2, and -T3. The data show that 12 out of the 47 O-glycosylated sites were regulated, predominantly by GalNAc-T1. Using the glycoengineered cell lines for authentic EBOV propagation, we demonstrate the importance of O-linked glycan initiation and elongation for the production of viral particles and the titers of progeny virus. The mapped O-glycan positions and structures allowed to generate molecular dynamics simulations probing the largely unknown spatial arrangements of the mucin-like domain. The data highlight targeting GALNT1 or C1GALT1C1 as a possible way to modulate O-glycan density on EBOV GP for novel vaccine designs and tailored intervention approaches.IMPORTANCEEbola virus glycoprotein acquires its extensive glycan shield in the host cell, where it is decorated with N-linked glycans and mucin-type O-linked glycans. The latter is initiated by a family of polypeptide GalNAc-transferases that have different preferences for optimal peptide substrates resulting in a spectrum of both very selective and redundant substrates for each isoform. In this work, we map the exact locations of O-glycans on Ebola virus glycoprotein and identify subsets of sites preferentially initiated by one of the three key isoforms of GalNAc-Ts, demonstrating that each enzyme contributes to the glycan shield integrity. We further show that altering host O-glycosylation capacity has detrimental effects on Ebola virus replication, with both isoform-specific initiation and elongation playing a role. The combined structural and functional data highlight glycoengineered cell lines as useful tools for investigating molecular mechanisms imposed by specific glycans and for steering the immune responses in future vaccine designs.


Asunto(s)
Ebolavirus , Polisacáridos , Replicación Viral , Ebolavirus/fisiología , Ebolavirus/metabolismo , Humanos , Células HEK293 , Glicosilación , Polisacáridos/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Fiebre Hemorrágica Ebola/virología , Fiebre Hemorrágica Ebola/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Glicoproteínas/metabolismo , Polipéptido N-Acetilgalactosaminiltransferasa
2.
Mol Cell Proteomics ; 22(8): 100608, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356496

RESUMEN

Protein aggregation of amyloid-ß peptides and tau are pathological hallmarks of Alzheimer's disease (AD), which are often resistant to detergent extraction and thus enriched in the insoluble proteome. However, additional proteins that coaccumulate in the detergent-insoluble AD brain proteome remain understudied. Here, we comprehensively characterized key proteins and pathways in the detergent-insoluble proteome from human AD brain samples using differential extraction, tandem mass tag (TMT) labeling, and two-dimensional LC-tandem mass spectrometry. To improve quantification accuracy of the TMT method, we developed a complement TMT-based strategy to correct for ratio compression. Through the meta-analysis of two independent detergent-insoluble AD proteome datasets (8914 and 8917 proteins), we identified 190 differentially expressed proteins in AD compared with control brains, highlighting the pathways of amyloid cascade, RNA splicing, endocytosis/exocytosis, protein degradation, and synaptic activity. To differentiate the truly detergent-insoluble proteins from copurified background during protein extraction, we analyzed the fold of enrichment for each protein by comparing the detergent-insoluble proteome with the whole proteome from the same AD samples. Among the 190 differentially expressed proteins, 84 (51%) proteins of the upregulated proteins (n = 165) were enriched in the insoluble proteome, whereas all downregulated proteins (n = 25) were not enriched, indicating that they were copurified components. The vast majority of these enriched 84 proteins harbor low-complexity regions in their sequences, including amyloid-ß, Tau, TARDBP/TAR DNA-binding protein 43, SNRNP70/U1-70K, MDK, PTN, NTN1, NTN3, and SMOC1. Moreover, many of the enriched proteins in AD were validated in the detergent-insoluble proteome by five steps of differential extraction, proteomic analysis, or immunoblotting. Our study reveals a resource list of proteins and pathways that are exclusively present in the detergent-insoluble proteome, providing novel molecular insights to the formation of protein pathology in AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Proteoma/metabolismo , Detergentes/química , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Encéfalo/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/metabolismo
3.
Mol Cell Proteomics ; 22(8): 100595, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37328064

RESUMEN

B4GALT1 encodes ß-1,4-galactosyltransferase 1, an enzyme that plays a major role in glycan synthesis in the Golgi apparatus by catalyzing the addition of terminal galactose. Studies increasingly suggest that B4GALT1 may be involved in the regulation of lipid metabolism pathways. Recently, we discovered a single-site missense variant Asn352Ser (N352S) in the functional domain of B4GALT1 in an Amish population, which decreases the level of LDL-cholesterol (LDL-c) as well as the protein levels of ApoB, fibrinogen, and IgG in the blood. To systematically evaluate the effects of this missense variant on protein glycosylation, expression, and secretion, we developed a nano-LC-MS/MS-based platform combined with TMT-labeling for in-depth quantitative proteomic and glycoproteomic analyses in the plasma of individuals homozygous for the B4GALT1 missense variant N352S versus non-carriers (n = 5 per genotype). A total of 488 secreted proteins in the plasma were identified and quantified, 34 of which showed significant fold changes in protein levels between N352S homozygotes and non-carriers. We determined N-glycosylation profiles from 370 glycosylation sites in 151 glycoproteins and identified ten proteins most significantly associated with decreased galactosylation and sialyation in B4GALT1 N352S homozygotes. These results further support that B4GALT1 N352S alters the glycosylation profiles of a variety of critical target proteins, thus governing the functions of these proteins in multiple pathways, such as those involved in lipid metabolism, coagulation, and the immune response.


Asunto(s)
Galactosiltransferasas , Proteómica , Humanos , Amish/genética , Galactosiltransferasas/genética , Galactosiltransferasas/química , Galactosiltransferasas/metabolismo , Glicosilación , Espectrometría de Masas en Tándem
4.
J Proteome Res ; 23(1): 397-408, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38096401

RESUMEN

Repeated blast-traumatic brain injury (blast-TBI) has been hypothesized to cause persistent and unusual neurological and psychiatric symptoms in service members returning from war zones. Blast-wave primary effects have been supposed to induce damage and molecular alterations in the brain. However, the mechanisms through which the primary effect of an explosive-driven blast wave generate brain lesions and induce brain consequences are incompletely known. Prior findings from rat brains exposed to two consecutive explosive-driven blasts showed molecular changes (hyperphosphorylated-Tau, AQP4, S100ß, PDGF, and DNA-polymerase-ß) that varied in magnitude and direction across different brain regions. We aimed to compare, in an unbiased manner, the proteomic profile in the hippocampus of double blast vs sham rats using mass spectrometry (MS). Data showed differences in up- and down-regulation for protein abundances in the hippocampus of double blast vs sham rats. Tandem mass tag (TMT)-MS results showed 136 up-regulated and 94 down-regulated proteins between the two groups (10.25345/C52B8VP0X). These TMT-MS findings revealed changes never described before in blast studies, such as increases in MAGI3, a scaffolding protein at cell-cell junctions, which were confirmed by Western blotting analyses. Due to the absence of behavioral and obvious histopathological changes as described in our previous publications, these proteomic data further support the existence of an asymptomatic blast-induced molecular altered status (ABIMAS) associated with specific protein changes in the hippocampus of rats repeatedly expsosed to blast waves generated by explosive-driven detonations.


Asunto(s)
Traumatismos por Explosión , Lesiones Traumáticas del Encéfalo , Sustancias Explosivas , Ratas , Animales , Traumatismos por Explosión/complicaciones , Traumatismos por Explosión/patología , Proteómica , Lesiones Traumáticas del Encéfalo/patología , Hipocampo/patología , Modelos Animales de Enfermedad
5.
Clin Proteomics ; 21(1): 18, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429673

RESUMEN

BACKGROUND: Cardiac rupture (CR) is a rare but catastrophic mechanical complication of acute myocardial infarction (AMI) that seriously threatens human health. However, the reliable biomarkers for clinical diagnosis and the underlying signaling pathways insights of CR has yet to be elucidated. METHODS: In the present study, a quantitative approach with tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry was used to characterize the differential protein expression profiles of patients with CR. Plasma samples were collected from patients with CR (n = 37), patients with AMI (n = 47), and healthy controls (n = 47). Candidate proteins were selected for validation by multiple reaction monitoring (MRM) and enzyme-linked immunosorbent assay (ELISA). RESULTS: In total, 1208 proteins were quantified and 958 differentially expressed proteins (DEPs) were identified. The difference in the expression levels of the DEPs was more noticeable between the CR and Con groups than between the AMI and Con groups. Bioinformatics analysis showed most of the DEPs to be involved in numerous crucial biological processes and signaling pathways, such as RNA transport, ribosome, proteasome, and protein processing in the endoplasmic reticulum, as well as necroptosis and leukocyte transendothelial migration, which might play essential roles in the complex pathological processes associated with CR. MRM analysis confirmed the accuracy of the proteomic analysis results. Four proteins i.e., C-reactive protein (CRP), heat shock protein beta-1 (HSPB1), vinculin (VINC) and growth/differentiation factor 15 (GDF15), were further validated via ELISA. By receiver operating characteristic (ROC) analysis, combinations of these four proteins distinguished CR patients from AMI patients with a high area under the curve (AUC) value (0.895, 95% CI, 0.802-0.988, p < 0.001). CONCLUSIONS: Our study highlights the value of comprehensive proteomic characterization for identifying plasma proteome changes in patients with CR. This pilot study could serve as a valid foundation and initiation point for elucidation of the mechanisms of CR, which might aid in identifying effective diagnostic biomarkers in the future.

6.
Clin Proteomics ; 21(1): 13, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389037

RESUMEN

SARS-CoV-2 infection triggers extensive host immune reactions, leading to severe diseases in certain individuals. However, the molecular basis underlying the excessive yet non-productive immune responses in severe COVID-19 remains incompletely understood. In this study, we conducted a comprehensive analysis of the peripheral blood mononuclear cell (PBMC) proteome and phosphoproteome in sepsis patients positive or negative for SARS-CoV-2 infection, as well as healthy subjects, using quantitative mass spectrometry. Our findings demonstrate dynamic changes in the COVID-19 PBMC proteome and phosphoproteome during disease progression, with distinctive protein or phosphoprotein signatures capable of distinguishing longitudinal disease states. Furthermore, SARS-CoV-2 infection induces a global reprogramming of the kinome and phosphoproteome, resulting in defective adaptive immune response mediated by the B and T lymphocytes, compromised innate immune responses involving the SIGLEC and SLAM family of immunoreceptors, and excessive cytokine-JAK-STAT signaling. In addition to uncovering host proteome and phosphoproteome aberrations caused by SARS-CoV-2, our work recapitulates several reported therapeutic targets for COVID-19 and identified numerous new candidates, including the kinases PKG1, CK2, ROCK1/2, GRK2, SYK, JAK2/3, TYK2, DNA-PK, PKCδ, and the cytokine IL-12.

7.
Phytopathology ; 114(6): 1196-1205, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38281161

RESUMEN

When Pseudomonas savastanoi pv. phaseolicola, the bacterium that causes halo blight, induces hypersensitive immunity in common bean leaves, salicylic acid and phytoalexins accumulate at the site of infection. Both salicylic acid and the phytoalexin resveratrol exert antibiotic activities and toxicities in vitro, adversely disrupting the P. savastanoi pv. phaseolicola proteome and metabolism and stalling replication and motility. These efficacious properties likely contribute to the cessation of bacterial spread in beans. Genistein is an isoflavonoid phytoalexin that also accumulates during bean immunity, so we tested its antibiotic potential in vitro. Quantitative proteomics revealed that genistein did not induce proteomic changes in P. savastanoi pv. phaseolicola in the same way that salicylic acid or resveratrol did. Rather, a dioxygenase that could function to metabolize genistein was among the most highly induced enzymes. Indeed, high-throughput metabolomics provided direct evidence for genistein catabolism. Metabolomics also revealed that genistein induced the bacterium to produce indole compounds, several of which had structural similarity to auxin. Additional mass spectrometry analyses proved that the bacterium produced an isomer of the auxin indole-3-acetic acid but not indole-3-acetic acid proper. These results reveal that P. savastanoi pv. phaseolicola can tolerate bean genistein and that the bacterium likely responds to bean-produced genistein during infection, using it as a signal to increase pathogenicity, possibly by altering host cell physiology or metabolism through the production of potential auxin mimics.


Asunto(s)
Genisteína , Fitoalexinas , Enfermedades de las Plantas , Pseudomonas , Sesquiterpenos , Genisteína/farmacología , Genisteína/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Pseudomonas/efectos de los fármacos , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacología , Indoles/metabolismo , Indoles/farmacología , Ácido Salicílico/metabolismo , Hojas de la Planta/microbiología , Phaseolus/microbiología , Proteómica , Ácidos Indolacéticos/metabolismo , Estilbenos/metabolismo , Estilbenos/farmacología , Resveratrol/farmacología , Resveratrol/metabolismo
8.
Mol Cell Proteomics ; 21(9): 100273, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35918030

RESUMEN

There is a long-held consensus that several proteins are unique to small extracellular vesicles (EVs), such as exosomes. However, recent studies have shown that several of these markers can also be present in other subpopulations of EVs to a similar degree. Furthermore, few markers have been identified as enriched or uniquely present in larger EVs, such as microvesicles. The aim of this study was to address these issues by conducting an in-depth comparison of the proteome of large and small EVs. Large (16,500g) and small EVs (118,000g) were isolated from three cell lines using a combination of differential ultracentrifugation and a density cushion and quantitative mass spectrometry (tandem mass tag-liquid chromatography-tandem mass spectrometry) was used to identify differently enriched proteins in large and small EVs. In total, 6493 proteins were quantified, with 818 and 1567 proteins significantly enriched in small and large EVs, respectively. Tetraspanins, ADAMs and ESCRT proteins, as well as SNAREs and Rab proteins associated with endosomes were enriched in small EVs compared with large EVs, whereas ribosomal, mitochondrial, and nuclear proteins, as well as proteins involved in cytokinesis, were enriched in large EVs compared with small EVs. However, Flotillin-1 was not differently expressed in large and small EVs. In conclusion, our study shows that the proteome of large and small EVs are substantially dissimilar. We validated several proteins previously suggested to be enriched in either small or large EVs (e.g., ADAM10 and Mitofilin, respectively), and we suggest several additional novel protein markers.


Asunto(s)
Vesículas Extracelulares , Proteómica , Biomarcadores/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Proteínas SNARE/análisis , Proteínas SNARE/metabolismo
9.
Alzheimers Dement ; 20(6): 4043-4065, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38713744

RESUMEN

INTRODUCTION: Cerebrovascular dysfunction is a pathological hallmark of Alzheimer's disease (AD). Nevertheless, detecting cerebrovascular changes within bulk tissues has limited our ability to characterize proteomic alterations from less abundant cell types. METHODS: We conducted quantitative proteomics on bulk brain tissues and isolated cerebrovasculature from the same individuals, encompassing control (N = 28), progressive supranuclear palsy (PSP) (N = 18), and AD (N = 21) cases. RESULTS: Protein co-expression network analysis identified unique cerebrovascular modules significantly correlated with amyloid plaques, cerebrovascular amyloid angiopathy (CAA), and/or tau pathology. The protein products within AD genetic risk loci were concentrated within cerebrovascular modules. The overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with cerebrovascular network highlighted a significant increase of matrisome proteins, SMOC1 and SMOC2, in CSF, plasma, and brain. DISCUSSION: These findings enhance our understanding of cerebrovascular deficits in AD, shedding light on potential biomarkers associated with CAA and vascular dysfunction in neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Proteómica , Humanos , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Masculino , Anciano , Femenino , Encéfalo/metabolismo , Tauopatías/líquido cefalorraquídeo , Tauopatías/sangre , Parálisis Supranuclear Progresiva/líquido cefalorraquídeo , Parálisis Supranuclear Progresiva/sangre , Angiopatía Amiloide Cerebral/líquido cefalorraquídeo , Angiopatía Amiloide Cerebral/genética , Persona de Mediana Edad , Anciano de 80 o más Años , Proteínas tau/líquido cefalorraquídeo
10.
J Proteome Res ; 22(1): 204-214, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36512343

RESUMEN

Upon inoculation, common beans immune to Pseudomonas savastanoi pv phaseolicola race 5 (R5) accumulate resveratrol, a phytoalexin. How resveratrol acts upon on this bacterium is not known, although in animal pathogenic bacteria in vitro resveratrol reduces ATPase (ATP = adenosine triphosphate) activity, cellular motility, quorum sensing, and biofilm formation. In this study, mass spectrometry was used to monitor the effects of resveratrol on R5. R5 responded by producing multidrug efflux proteins to pump resveratrol out of cells. Changes in R5 enzyme abundances were consistent with a slowed tricarboxylic acid cycle, the consequence of which likely impeded ATP production by oxidative phosphorylation. There also were enzymatic shifts consistent with decreased amounts of flagellar proteins and decreased pools of purines. A motility assay confirmed a reduction in R5 flagellar movement in resveratrol, and mass spectrometry of metabolite extracts confirmed decreased pools of guanosine 5'-monophosphate and adenosine 5'-monophosphate. Mass spectrometry also detected the accumulation of a reactive aldehyde byproduct of resveratrol catabolism. Overall, the study reveals that resveratrol likely imparts its antibiotic activity during plant immunity by disturbing the bacterial tricarboxylic acid cycle, interfering with ATP biosynthesis at the electron transport chain, and by decreasing bacterial proteins needed for pathogenicity and leaf colonization. Mass spectrometry data files for this study can be retrieved from massive.ucsd.edu (MSV000090171 and MSV000090172).


Asunto(s)
Proteínas Bacterianas , Percepción de Quorum , Animales , Resveratrol/farmacología , Virulencia , Proteínas Bacterianas/metabolismo , Ciclo del Ácido Cítrico
11.
J Proteome Res ; 22(11): 3559-3569, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37793102

RESUMEN

Anastomotic leakage (AL), one of the most severe complications in rectal surgery, is often diagnosed late because of the low specificity of the clinical symptoms and limitations of current clinical investigations. Identification of patients with early AL remains challenging. Here, we explored the protein expression profiles of AL patients to provide potential biomarkers to identify AL in patients who undergo surgery for rectal cancer. We screened differentially expressed proteins (DEPs) in drainage fluid from AL and non-AL patients using a tandem mass tag method. A total of 248 DEPs, including 98 upregulated and 150 downregulated proteins, were identified between AL and non-AL groups. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses suggested that DEPs were enriched in neutrophil degranulation, bacterial infection, proteolysis, hemostasis, and complement and coagulation cascades. The results of enzyme-linked immunosorbent assay validated that the expression of the top three upregulated DEPs, AMY2A, RETN, and CELA3A, was significantly increased in the drainage fluid of AL patients, compared with that of non-AL patients (AMY2A, P = 0.001; RETN, P < 0.0001; and CELA3A, P = 0.023). Thus, our findings provide several potential biomarkers for the early diagnosis of AL after rectal cancer resection.


Asunto(s)
Fuga Anastomótica , Neoplasias del Recto , Humanos , Fuga Anastomótica/diagnóstico , Fuga Anastomótica/etiología , Fuga Anastomótica/cirugía , Proteómica , Detección Precoz del Cáncer , Neoplasias del Recto/cirugía , Neoplasias del Recto/complicaciones , Drenaje/efectos adversos , Drenaje/métodos , Biomarcadores
12.
J Proteome Res ; 22(8): 2629-2640, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37439223

RESUMEN

Thermal proteome profiling (TPP) provides a powerful approach to studying proteome-wide interactions of small therapeutic molecules and their target and off-target proteins, complementing phenotypic-based drug screens. Detecting differences in thermal stability due to target engagement requires high quantitative accuracy and consistent detection. Isobaric tandem mass tags (TMTs) are used to multiplex samples and increase quantification precision in TPP analysis by data-dependent acquisition (DDA). However, advances in data-independent acquisition (DIA) can provide higher sensitivity and protein coverage with reduced costs and sample preparation steps. Herein, we explored the performance of different DIA-based label-free quantification approaches compared to TMT-DDA for thermal shift quantitation. Acute myeloid leukemia cells were treated with losmapimod, a known inhibitor of MAPK14 (p38α). Label-free DIA approaches, and particularly the library-free mode in DIA-NN, were comparable of TMT-DDA in their ability to detect target engagement of losmapimod with MAPK14 and one of its downstream targets, MAPKAPK3. Using DIA for thermal shift quantitation is a cost-effective alternative to labeled quantitation in the TPP pipeline.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , Proteoma , Espectrometría de Masas/métodos , Proteoma/análisis , Proteómica/métodos
13.
Proc Biol Sci ; 290(2006): 20231313, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37700651

RESUMEN

Ejaculate proteins are key mediators of post-mating sexual selection and sexual conflict, as they can influence both male fertilization success and female reproductive physiology. However, the extent and sources of genetic variation and condition dependence of the ejaculate proteome are largely unknown. Such knowledge could reveal the targets and mechanisms of post-mating selection and inform about the relative costs and allocation of different ejaculate components, each with its own potential fitness consequences. Here, we used liquid chromatography coupled with tandem mass spectrometry to characterize the whole-ejaculate protein composition across 12 isogenic lines of Drosophila melanogaster that were reared on a high- or low-quality diet. We discovered new proteins in the transferred ejaculate and inferred their origin in the male reproductive system. We further found that the ejaculate composition was mainly determined by genotype identity and genotype-specific responses to larval diet, with no clear overall diet effect. Nutrient restriction increased proteolytic protein activity and shifted the balance between reproductive function and RNA metabolism. Our results open new avenues for exploring the intricate role of genotypes and their environment in shaping ejaculate composition, or for studying the functional dynamics and evolutionary potential of the ejaculate in its multivariate complexity.


Asunto(s)
Drosophila , Proteoma , Femenino , Masculino , Animales , Drosophila melanogaster/genética , Interacción Gen-Ambiente , Genotipo
14.
Mol Carcinog ; 62(9): 1338-1354, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37378424

RESUMEN

Osteosarcoma is one of the most common orthopedic malignancies and is characterized by rapid disease progression and a poor prognosis. Currently, research on methods to inhibit osteosarcoma proliferation is still limited. In this study, we found that MST4 levels were significantly increased in osteosarcoma cell lines and tumor tissues compared to normal controls and demonstrated that MST4 is an influential factor in promoting osteosarcoma proliferation both in vivo and in vitro. Proteomic analysis was performed on osteosarcoma cells in the MST4 overexpression and vector expression groups, and 545 significantly differentially expressed proteins were identified and quantified. The candidate differentially expressed protein MRC2 was then identified using parallel reaction monitoring validation. Subsequently, MRC2 expression was silenced with small interfering RNA (siRNA), and we were surprised to find that this alteration affected the cell cycle of MST4-overexpressing osteosarcoma cells, promoted apoptosis and impaired the positive regulation of osteosarcoma growth by MST4. In conclusion, this study identified a novel approach for suppressing osteosarcoma proliferation. Reduction of MRC2 activity inhibits osteosarcoma proliferation in patients with high MST4 expression by altering the cell cycle, which may be valuable for treating osteosarcoma and improving patient prognosis.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteómica , Osteosarcoma/patología , ARN Interferente Pequeño/genética , Neoplasias Óseas/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral
15.
Rheumatology (Oxford) ; 62(9): 3161-3168, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36661295

RESUMEN

OBJECTIVES: To identify and validate biomarkers in JDM patients using a multiplexing tandem mass tag urine proteome profiling approach. METHODS: First morning void urine samples were collected from JDM patients (n = 20) and healthy control subjects (n = 21) and processed for analysis using a standardized liquid chromatography-tandem mass spectrometry approach. Biomarkers with significantly altered levels were correlated with clinical measures of myositis disease activity and damage. A subset of candidate biomarkers was validated using commercially available ELISA kits. RESULTS: In total, 2348 proteins were detected in the samples, with 275 proteins quantified across all samples. Among the differentially altered proteins, cathepsin D and galectin-3 binding protein were significantly increased in the urine of JDM patients (adjusted P < 0.05), supporting previous findings in myositis patients. These two candidate biomarkers were confirmed with ELISAs. Cathepsin D positively correlated with Myositis Damage Index (r = 0.57, P < 0.05) and negatively correlated with the Childhood Myositis Assessment Scale (r = -0.54, P < 0.05). We also identified novel JDM candidate biomarkers involved with key features of myositis, including extracellular matrix remodelling proteins. CONCLUSION: This study confirmed the presence of several proteins in the urine of JDM patients that were previously found to be elevated in the blood of myositis patients and identified novel candidate biomarkers that require validation. These results support the use of urine as a source for biomarker development in JDM.


Asunto(s)
Dermatomiositis , Miositis , Humanos , Niño , Catepsina D , Proteómica , Espectrometría de Masas
16.
Virol J ; 20(1): 178, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559147

RESUMEN

Coxsackievirus A16 (CV-A16) is still an important pathogen that causes hand, foot and mouth disease (HFMD) in young children and infants worldwide. Previous studies indicated that CV-A16 infection is usually mild or self-limiting, but it was also found that CV-A16 infection can trigger severe neurological complications and even death. However, there are currently no vaccines or antiviral compounds available to either prevent or treat CV-A16 infection. Therefore, investigation of the virus‒host interaction and identification of host proteins that play a crucial regulatory role in the pathogenesis of CV-A16 infection may provide a novel strategy to develop antiviral drugs. Here, to increase our understanding of the interaction of CV-A16 with the host cell, we analyzed changes in the proteome of 16HBE cells in response to CV-A16 using tandem mass tag (TMT) in combination with LC‒MS/MS. There were 6615 proteins quantified, and 172 proteins showed a significant alteration during CV-A16 infection. These differentially regulated proteins were involved in fundamental biological processes and signaling pathways, including metabolic processes, cytokine‒cytokine receptor interactions, B-cell receptor signaling pathways, and neuroactive ligand‒receptor interactions. Further bioinformatics analysis revealed the characteristics of the protein domains and subcellular localization of these differentially expressed proteins. Then, to validate the proteomics data, 3 randomly selected proteins exhibited consistent changes in protein expression with the TMT results using Western blotting and immunofluorescence methods. Finally, among these differentially regulated proteins, we primarily focused on HMGB1 based on its potential effects on viral replication and virus infection-induced inflammatory responses. It was demonstrated that overexpression of HMGB1 could decrease viral replication and upregulate the release of inflammatory cytokines, but deletion of HMGB1 increased viral replication and downregulated the release of inflammatory cytokines. In conclusion, the results from this study have helped further elucidate the potential molecular pathogenesis of CV-A16 based on numerous protein changes and the functions of HMGB1 Found to be involved in the processes of viral replication and inflammatory response, which may facilitate the development of new antiviral therapies as well as innovative diagnostic methods.


Asunto(s)
Enterovirus , Proteína HMGB1 , Replicación Viral , Humanos , Cromatografía Liquida , Citocinas/metabolismo , Enterovirus/fisiología , Enfermedad de Boca, Mano y Pie , Proteína HMGB1/metabolismo , Proteómica , Espectrometría de Masas en Tándem , Línea Celular
17.
Fish Shellfish Immunol ; 143: 109180, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863124

RESUMEN

Polyascus gregaria, a parasitic barnacle, poses a significant threat to Eriocheir sinensis farms by inhibiting crab growth. However, the molecular and pathological mechanisms behind P. gregaria infection in the hepatopancreas of E. sinensis remain unclear. In this study, we investigated the impact and underlying mechanisms of P. gregaria infection on E. sinensis through analyzing the infected hepatopancreatic tissues by tandem mass tag technology and RNA-Seq high-throughput sequencing. Among the identified 10,693 differentially expressed genes, 294 genes were significantly altered following P. gregaria infection, including 92 upregulated and 202 downregulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses further revealed the involvement of these genes in oxidative decomposition, lipid metabolism, inflammation, and hepatopancreas metabolism. Meanwhile, the identified 253 differentially expressed proteins, including 143 upregulated and 110 downregulated proteins, are mainly related to cellular and metabolic processes, catalytic activity, and cell components. The pathway analysis indicated their enrichment in glycolysis/gluconeogenesis, oxidative phosphorylation, endoplasmic reticulum protein processing, and actin cytoskeleton regulation. The involvement of these differentially expressed genes and proteins in the peroxisome proliferator-activated receptors pathway during host immune responses against P. gregaria infection has been highlighted. Furthermore, pathological examinations and biochemical indicators jointly demonstrated the hepatopancreatic damage and increased oxidative stress and apoptosis in the infected E. sinensis. Collectively, our study provides crucial insights into the mechanisms underlying the E. sinensis-P. gregaria interactions, and may contribute to the development of novel strategies for parasite control and reducing economic losses in aquaculture.


Asunto(s)
Braquiuros , Animales , Multiómica , Hepatopáncreas , Apoptosis , Estrés Oxidativo
18.
Arch Virol ; 168(8): 217, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524962

RESUMEN

Coxsackievirus A10 (CV-A10) is recognized as one of the most important pathogens associated with hand, foot, and mouth disease (HFMD) in young children under 5 years of age worldwide, and it can lead to fatal neurological complications. However, available commercial vaccines fail to protect against CV-A10. Therefore, there is an urgent need to study new protein targets of CV-A10 and develop novel vaccine-based therapeutic strategies. Advances in proteomics in recent years have enabled a comprehensive understanding of host pathogen interactions. Here, to study CV-A10-host interactions, a global quantitative proteomic analysis was conducted to investigate the molecular characteristics of host cell proteins and identify key host proteins involved in CV-A10 infection. Using tandem mass tagging (TMT)-based mass spectrometry, a total of 6615 host proteins were quantified, with 293 proteins being differentially regulated. To ensure the validity and reliability of the proteomics data, three randomly selected proteins were verified by Western blot analysis, and the results were consistent with the TMT results. Further functional analysis showed that the upregulated and downregulated proteins were associated with diverse biological activities and signaling pathways, such as metabolic processes, biosynthetic processes, the AMPK signaling pathway, the neurotrophin signaling pathway, the MAPK signaling pathway, and the GABAergic synaptic signaling. Moreover, subsequent bioinformatics analysis demonstrated that these differentially expressed proteins contained distinct domains, were localized in different subcellular components, and generated a complex network. Finally, high-mobility group box 1 (HMGB1) might be a key host factor involved in CV-A10 replication. In summary, our findings provide comprehensive insights into the proteomic profile during CV-A10 infection, deepen our understanding of the relationship between CV-A10 and host cells, and establish a proteomic signature for this viral infection. Moreover, the observed effect of HMGB1 on CV-A10 replication suggests that it might be a potential therapeutic target treatment of CV-A10 infection.


Asunto(s)
Proteína HMGB1 , Enfermedad de Boca, Mano y Pie , Niño , Humanos , Preescolar , Proteína HMGB1/genética , Proteómica , Reproducibilidad de los Resultados , Proteínas , Replicación Viral
19.
J Integr Neurosci ; 22(2): 33, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36992579

RESUMEN

OBJECTIVE: Ginkgolide B (GB) possesses anti-inflammatory, antioxidant, and anti-apoptotic properties against neurotoxicity induced by amyloid beta (Aß), but the potential neuroprotective effects of GB in Alzheimer's therapies remain elusive. We aimed to conduct proteomic analysis of Aß1-42 induced cell injury with GB pretreatment to uncover the underlying pharmacological mechanisms of GB. METHODS: Tandem mass tag (TMT) labeled liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was applied to analyze protein expression in Aß1-42 induced mouse neuroblastoma N2a cells with or without GB pretreatment. Proteins with fold change >1.5 and p < 0.1 from two independent experiments were regarded as differentially expressed proteins (DEPs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to analyze the functional annotation information of DEPs. Two key proteins osteopontin (SPP1) and ferritin heavy chain 1 (FTH1) were validated in another three samples using western blot and quantitative real-time PCR. RESULTS: We identified a total of 61 DEPs in GB treated N2a cells, including 42 upregulated and 19 downregulated proteins. Bioinformatic analysis showed that DEPs mainly participated in the regulation of cell death and ferroptosis by down-regulating SPP1 protein and up-regulating FTH1 protein. CONCLUSIONS: Our findings demonstrate that GB treatment provides neuroprotective effects on Aß1-42 induced cell injury, which may be related to the regulation of cell death and ferroptosis. The research puts forward new insights into the potential protein targets of GB in the treatment of Alzheimer's disease (AD).


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Ratones , Animales , Péptidos beta-Amiloides , Cromatografía Liquida , Fármacos Neuroprotectores/farmacología , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
20.
Artículo en Inglés | MEDLINE | ID: mdl-38040523

RESUMEN

BACKGROUND: Obesity is a common public health issue and is currently deemed a disease. Research has shown that the risk of gallstones in individuals with obesity is elevated. This study aimed to explore the bile proteomics differences between cholelithiasis patients with obesity and normal body weight. METHODS: Bile samples from 20 patients (10 with obesity and 10 with normal body weight) who underwent laparoscopic cholecystectomy at our center were subjected to tandem mass tag labeling (TMT) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), followed by further bioinformatic analysis. RESULTS: Among the differentially-expressed proteins, 23 were upregulated and 67 were downregulated. Bioinformatic analysis indicated that these differentially-expressed proteins were mainly involved in cell development, inflammatory responses, glycerolipid metabolic processes, and protein activation cascades. In addition, the activity of the peroxisome proliferator-activated receptor (PPAR, a subfamily of nuclear receptors) signaling pathway was decreased in the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Two downregulated proteins in the PPAR signaling pathway, APOA-I and APOA-II, were confirmed using enzyme-linked immunosorbent assay. CONCLUSIONS: The PPAR signaling pathway may play a crucial role in the development of cholelithiasis among patients with obesity. Furthermore, biliary proteomics profiling of gallstones patients with obesity is revealed, providing a reference for future research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA