RESUMEN
While it is known that temperature sensors trigger calcium (Ca2+) signaling to confer cold tolerance in cells, less is known about sensors that couple with other secondary messengers. Here, we identify a cold sensor complex of CHILLING-TOLERANCE DIVERGENCE 6 (COLD6) and osmotin-like 1 (OSM1), which triggers 2',3'-cyclic adenosine monophosphate (2',3'-cAMP) production to enhance cold tolerance in rice. COLD6, which is encoded by a major quantitative trait locus (QTL) gene, interacts with the rice G protein α subunit (RGA1) at the plasma membrane under normal conditions. Upon exposure to chilling, cold-induced OSM1 binds to COLD6, kicking out RGA1 from interaction. This triggers an elevation of 2',3'-cAMP levels for enhancing chilling tolerance. Genetic data show that COLD6 negatively regulates cold tolerance and functionally depends on OSM1 in chilling stress. COLD6 alleles were selected during rice domestication. Knockout and natural variation of COLD6 in hybrid rice enhanced chilling tolerance, hinting design potential for breeding. This highlighted a module triggering 2',3'-cAMP to improve chilling tolerance in crops.
RESUMEN
The extent and ecological significance of intraspecific functional diversity within marine microbial populations is still poorly understood, and it remains unclear if such strain-level microdiversity will affect fitness and persistence in a rapidly changing ocean environment. In this study, we cultured 11 sympatric strains of the ubiquitous marine picocyanobacterium Synechococcus isolated from a Narragansett Bay (RI) phytoplankton community thermal selection experiment. Thermal performance curves revealed selection at cool and warm temperatures had subdivided the initial population into thermotypes with pronounced differences in maximum growth temperatures. Curiously, the genomes of all 11 isolates were almost identical (average nucleotide identities of >99.99%, with >99% of the genome aligning) and no differences in gene content or single nucleotide variants were associated with either cool or warm temperature phenotypes. Despite a very high level of genomic similarity, sequenced epigenomes for two strains showed differences in methylation on genes associated with photosynthesis. These corresponded to measured differences in photophysiology, suggesting a potential pathway for future mechanistic research into thermal microdiversity. Our study demonstrates that present-day marine microbial populations can harbor cryptic but environmentally relevant thermotypes which may increase their resilience to future rising temperatures.
Asunto(s)
Synechococcus , Synechococcus/metabolismo , Ecotipo , Temperatura , Frío , Nucleótidos/metabolismo , Agua de Mar/microbiologíaRESUMEN
Enzymes from ectotherms living in chronically cold environments have evolved structural innovations to overcome the effects of temperature on catalysis. Cold adaptation of soluble enzymes is driven by changes within their primary structure or the aqueous milieu. For membrane-embedded enzymes, like the Na+/K+-ATPase, the situation is different because changes to the lipid bilayer in which they operate may also be relevant. Although much attention has been focused on thermal adaptation within lipid bilayers, relatively little is known about the contribution of structural changes within membrane-bound enzymes themselves. The identification of specific mutations that confer temperature compensation is complicated by the presence of neutral mutations, which can be more numerous. In the present study, we identified specific amino acids in a Na+/K+-ATPase from an Antarctic octopus that underlie cold resistance. Our approach was to generate chimeras between an Antarctic clone and a temperate ortholog and then study their temperature sensitivities in Xenopus oocytes using an electrophysiological approach. We identified 12 positions in the Antarctic Na+/K+-ATPase that, when transferred to the temperate ortholog, were sufficient to confer cold tolerance. Furthermore, although all 12 Antarctic mutations were required for the full phenotype, a single leucine in the third transmembrane segment (M3) imparted most of it. Mutations that confer cold resistance are mostly in transmembrane segments, at positions that face the lipid bilayer. We propose that the interface between a transmembrane enzyme and the lipid bilayer is a critical determinant of temperature sensitivity and, accordingly, has been a prime evolutionary target for thermal adaptation.
Asunto(s)
Membrana Dobles de Lípidos , Octopodiformes , ATPasa Intercambiadora de Sodio-Potasio , Aclimatación/genética , Aminoácidos , Regiones Antárticas , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Octopodiformes/enzimología , AnimalesRESUMEN
The thioredoxin system is a ubiquitous oxidoreductase system consisting of the enzyme thioredoxin reductase, the protein thioredoxin, and the cofactor nicotinamide adenine dinucleotide phosphate. The system has been comprehensively studied from many organisms, such as Escherichia coli; however, structural and functional analysis of this system from psychrophilic bacteria has not been as extensive. In this study, the thioredoxin system proteins of a psychrophilic bacterium, Colwellia psychrerythraea, were characterized using biophysical and biochemical techniques. Analysis of the complete genome sequence of the C. psychrerythraea thioredoxin system suggested the presence of a putative thioredoxin reductase and at least three thioredoxin. In this study, these identified putative thioredoxin system components were cloned, overexpressed, purified, and characterized. Our studies have indicated that the thioredoxin system proteins from E. coli were more stable than those from C. psychrerythraea. Consistent with these results, kinetic assays indicated that the thioredoxin reductase from E. coli had a higher optimal temperature than that from C. psychrerythraea.
Asunto(s)
Alteromonadaceae , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Proteínas Bacterianas/química , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismoRESUMEN
The evolution of phenotypic plasticity plays an essential role in adaptive responses to climate change; however, its regulatory mechanisms in marine organisms which exhibit high phenotypic plasticity still remain poorly understood. The temperature-responsive trait oleic acid content and its major gene stearoyl-CoA desaturase (Scd) expression have diverged in two allopatric congeneric oyster species, cold-adapted Crassostrea gigas and warm-adapted Crassostrea angulata. In this study, genetic and molecular methods were used to characterize fatty acid desaturation and membrane fluidity regulated by oyster Scd. Sixteen causative single-nucleotide polymorphisms (SNPs) were identified in the promoter/cis-region of the Scd between wild C. gigas and C. angulata. Further functional experiments showed that an SNP (g.-333C [C. gigas allele] >T [C. angulata allele]) may influence Scd transcription by creating/disrupting the binding motif of the positive trans-factor Y-box factor in C. gigas/C. angulata, which mediates the higher/lower constitutive expression of Scd in C. gigas/C. angulata. Additionally, the positive trans-factor sterol-regulatory element-binding proteins (Srebp) were identified to specifically bind to the promoter of Scd in both species, and were downregulated during cold stress in C. gigas compared to upregulated in C. angulata. This partly explains the relatively lower environmental sensitivity (plasticity) of Scd in C. gigas. This study serves as an experimental case to reveal that both cis- and trans-variations shape the diverged pattern of phenotypic plasticity, which provides new insights into the formation of adaptive traits and the prediction of the adaptive potential of marine organisms to future climate change.
Asunto(s)
Crassostrea , Estearoil-CoA Desaturasa , Animales , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Temperatura , Adaptación Fisiológica/genética , Polimorfismo de Nucleótido Simple , Crassostrea/genética , Crassostrea/metabolismoRESUMEN
Transcription factors (TFs) play a crucial role in gene expression, and studying them can lay the foundation for future research on the functional characterization of TFs involved in various biological processes. In this study, we conducted a genome-wide identification and analysis of TFs in the thermotolerant basidiomycete fungus, Coriolopsis trogii. The TF repertoire of C. trogii consisted of 350 TFs, with C2H2 and Zn2C6 being the largest TF families. When the mycelia of C. trogii were cultured on PDA and transferred from 25 to 35 °C, 14 TFs were up-regulated and 14 TFs were down-regulated. By analyzing RNA-seq data from mycelia cultured at different temperatures and under different carbon sources, we identified 22 TFs that were differentially expressed in more than three comparisons. Co-expression analysis revealed that seven differentially expressed TFs, including four Zn2C6s, one Hap4_Hap_bind, one HMG_box, and one Zinc_knuckle, showed significant correlation with 729 targeted genes. Overall, this study provides a comprehensive characterization of the TF family and systematically screens TFs involved in the high-temperature adaptation of C. trogii, laying the groundwork for further research into the specific roles of TFs in the heat tolerance mechanisms of filamentous fungi.
Asunto(s)
Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Calor , Micelio/genética , Micelio/metabolismo , Micelio/crecimiento & desarrollo , Termotolerancia/genética , Perfilación de la Expresión Génica , Adaptación Fisiológica/genéticaRESUMEN
Self-oscillating gel systems exhibiting an expanded operating temperature and accompanying functional adaptability are showcased. The developed system contains nonthermoresponsive main-monomers, such as N,N-dimethylacrylamide (DMAAm) or 2-acrylamido-2-methylpropane sulfonic acid (AMPS) or acrylamide (AAm) or 3-(methacryloylamino)propyl trimethylammonium chloride (MAPTAC). The gels volumetrically self-oscillate within the range of the conventional (20.0 °C) and extended (27.0 and 36.5 °C) temperatures. Moreover, the gels successfully adapt to the environmental changes; they beat faster and smaller as the temperature increases. The period and amplitude are also controlled by tuning the amount of main-monomers and N-(3-aminopropyl) acrylamide. Furthermore, the record amplitude in the bulk gel system consisting of polymer strand and cross-linker at 36.5 °C is achieved (≈10.8%). The study shows new self-oscillation systems composed of unprecedented combinations of materials, giving the community a robust material-based insight for developing more life-like autonomous biomimetic soft robots with various operating temperatures and beyond.
Asunto(s)
Geles , Temperatura , Geles/química , Acrilamidas/química , Polímeros/química , Materiales Biomiméticos/química , Biomimética/métodosRESUMEN
Hydrophobic interactions and hydrogen bonds are 2 types of noncovalent interactions that play distinct roles in the folding and structural stability of proteins. However, the specific roles of these interactions in hydrophobic or hydrophilic environments in α/ß-hydrolases are not fully understood. A hyperthermophilic esterase EstE1 in a dimer maintains the C-terminal ß8-α9 strand-helix via hydrophobic interactions (Phe276 and Leu299), constituting a closed dimer interface. Moreover, a mesophilic esterase rPPE in a monomer maintains the same strand-helix via a hydrogen bond (Tyr281 and Gln306). Unpaired polar residues (F276Y in EstE1 and Y281A/F and Q306A in rPPE) or reduced hydrophobic interactions (F276A/L299A in EstE1) between the ß8-α9 strand-helix decrease thermal stability. EstE1 (F276Y/L299Q) and rPPE WT, both with the ß8-α9 hydrogen bond, showed the same thermal stability as EstE1 WT and rPPE (Y281F/Q306L), which possess hydrophobic interactions instead. However, EstE1 (F276Y/L299Q) and rPPE WT exhibited higher enzymatic activity than EstE1 WT and rPPE (Y281F/Q306L), respectively. This suggests that α/ß-hydrolases favor the ß8-α9 hydrogen bond for catalytic activity in monomers or oligomers. Overall, these findings demonstrate how α/ß-hydrolases modulate hydrophobic interactions and hydrogen bonds to adapt to different environments. Both types of interactions contribute equally to thermal stability, but the hydrogen bond is preferred for catalytic activity. IMPORTANCE Esterases hydrolyze short to medium-chain monoesters and contain a catalytic His on a loop between the C-terminal ß8-strand and α9-helix. This study explores how hyperthermophilic esterase EstE1 and mesophilic esterase rPPE adapt to different temperatures by utilizing the ß8-α9 hydrogen bonds or hydrophobic interactions differently. EstE1 forms a hydrophobic dimer interface, while rPPE forms a monomer stabilized by a hydrogen bond. The study demonstrates that these enzymes stabilize ß8-α9 strand-helix differently but achieve similar thermal stability. While the ß8-α9 hydrogen bond or hydrophobic interactions contribute equally to thermal stability, the hydrogen bond provides higher activity due to increased catalytic His loop flexibility in both EstE1 and rPPE. These findings reveal how enzymes adapt to extreme environments while maintaining their functions and have implications for engineering enzymes with desired activities and stabilities.
Asunto(s)
Proteínas Bacterianas , Esterasas , Esterasas/metabolismo , Proteínas Bacterianas/metabolismoRESUMEN
Soybean is a major plant protein source for both human food and animal feed, but to meet global demands as well as a trend towards regional production, soybean cultivation needs to be expanded to higher latitudes. In this study, we developed a large diversity panel consisting of 1503 early-maturing soybean lines and used genome-wide association mapping to dissect the genetic architecture underlying two crucial adaptation traits, flowering time and maturity. This revealed several known maturity loci, E1, E2, E3, and E4, and the growth habit locus Dt2 as causal candidate loci, and also a novel putative causal locus, GmFRL1, encoding a homolog of the vernalization pathway gene FRIGIDA-like 1. In addition, the scan for quantitative trait locus (QTL)-by-environment interactions identified GmAPETALA1d as a candidate gene for a QTL with environment-dependent reversed allelic effects. The polymorphisms of these candidate genes were identified using whole-genome resequencing data of 338 soybeans, which also revealed a novel E4 variant, e4-par, carried by 11 lines, with nine of them originating from Central Europe. Collectively, our results illustrate how combinations of QTL and their interactions with the environment facilitate the photothermal adaptation of soybean to regions far beyond its center of origin.
Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Humanos , Glycine max/genética , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Adaptación Fisiológica/genética , FloresRESUMEN
Climate change leads to increasing temperature and more extreme hot and drought events. Ecosystem capability to cope with climate warming depends on vegetation's adjusting pace with temperature change. How environmental stresses impair such a vegetation pace has not been carefully investigated. Here we show that dryness substantially dampens vegetation pace in warm regions to adjust the optimal temperature of gross primary production (GPP) ( T opt GPP ) in response to change in temperature over space and time. T opt GPP spatially converges to an increase of 1.01°C (95% CI: 0.97, 1.05) per 1°C increase in the yearly maximum temperature (Tmax ) across humid or cold sites worldwide (37o S-79o N) but only 0.59°C (95% CI: 0.46, 0.74) per 1°C increase in Tmax across dry and warm sites. T opt GPP temporally changes by 0.81°C (95% CI: 0.75, 0.87) per 1°C interannual variation in Tmax at humid or cold sites and 0.42°C (95% CI: 0.17, 0.66) at dry and warm sites. Regardless of the water limitation, the maximum GPP (GPPmax ) similarly increases by 0.23 g C m-2 day-1 per 1°C increase in T opt GPP in either humid or dry areas. Our results indicate that the future climate warming likely stimulates vegetation productivity more substantially in humid than water-limited regions.
Asunto(s)
Cambio Climático , Plantas , Estrés Fisiológico , Temperatura , Sequías , EcosistemaRESUMEN
Chinese mitten crab (Eriocheir sinensis) is an economically important aquaculture species, and its growth and development are regulated by temperature, but the molecular mechanisms of the responses to temperature remain unclear. Herein, we identified TRPA1 from E. sinensis, a member of the TRP family of heat receptor potential channels, performed RACE cloning and bioinformatics analysis, and investigated the effect of TRPA1 on temperature responses and molting by real-time PCR and RNA interference (RNAi). The open reading frame of Es-TRPA1 is 3660 bp, and the encoded protein has a molecular weight of 136.91 kDa, and is expressed in embryos and juveniles. RNAi-mediated silencing decreased Es-TRPA1 expression in juvenile crabs, molting rate was decreased, mortality was increased, and crabs avoided cold areas (4 °C) much less than control juvenile crabs. The results suggest that Es-TRPA1 is involved in regulating temperature adaptation and molting processes in E. sinensis. The findings lay a foundation for further exploration of temperature regulation mechanisms in E. sinensis and other crustaceans.
Asunto(s)
Braquiuros , Muda , Animales , Secuencia de Aminoácidos , Temperatura , Muda/fisiología , Crustáceos/genética , Clonación Molecular , Braquiuros/genética , FilogeniaRESUMEN
Experimental evolution combined with whole-genome sequencing (evolve and resequence (E&R)) is a powerful approach to study the adaptive architecture of selected traits. Nevertheless, so far the focus has been on the selective response triggered by a single stressor. Building on the highly parallel selection response of founder populations with reduced variation, we evaluated how the presence of a second stressor affects the genomic selection response. After 20 generations of adaptation to laboratory conditions at either 18°C or 29°C, strong genome-wide selection signatures were observed. Only 38% of the selection signatures can be attributed to laboratory adaptation (no difference between temperature regimes). The remaining selection responses are either caused by temperature-specific effects, or reflect the joint effects of temperature and laboratory adaptation (same direction, but the magnitude differs between temperatures). The allele frequency changes resulting from the combined effects of temperature and laboratory adaptation were more extreme in the hot environment for 83% of the affected genomic regions-indicating widespread synergistic effects of the two stressors. We conclude that E&R with reduced genetic variation is a powerful approach to study genome-wide fitness consequences driven by the combined effects of multiple environmental factors.
Asunto(s)
Drosophila melanogaster , Selección Genética , Animales , Drosophila melanogaster/genética , Genoma , Frecuencia de los Genes , Adaptación Fisiológica/genéticaRESUMEN
BACKGROUND: Low temperatures greatly limit the growth of microorganisms. Low-temperature adaptation in microorganisms involves multiple mechanisms. Carotenoids are naturally occurring lipid-soluble pigments that act as antioxidants and protect cells and tissues from the harmful effects of free radicals and singlet oxygen. However, studies on the regulation of carotenoid biosynthesis at low temperatures in microorganisms are limited. In this study, we investigated the correlation between carotenoids and low-temperature adaptation in the cold-adapted strain of Rhodosporidium kratochvilovae YM25235. RESULTS: Carotenoid biosynthesis in YM25235 was inhibited by knocking out the bifunctional lycopene cyclase/phytoene synthase gene (RKCrtYB) using the established CRISPR/Cas9 gene-editing system based on endogenous U6 promoters. The carotenoids were extracted with acetone, and the content and composition of the carotenoids were analyzed by spectrophotometry and HPLC. Then, the levels of reactive oxygen species (ROS) and the growth rate in YM25235 were determined at a low temperature. The results indicated that the carotenoid biosynthesis and ROS levels were increased in the YM25235 strain at a low temperature and inhibition of carotenoid biosynthesis was associated with higher ROS levels and a significant decrease in the growth rate of YM25235 at a low temperature. CONCLUSIONS: The regulation of carotenoid biosynthesis was associated with low-temperature adaptation in YM25235. Our findings provided a strong foundation for conducting further studies on the mechanism by which YM25235 can adapt to low-temperature stress.
Asunto(s)
Antioxidantes , Carotenoides , Temperatura , Especies Reactivas de OxígenoRESUMEN
High-temperature stress inhibits normal cellular processes and results in abnormal growth and development in plants. However, the mechanisms by which rice (Oryza sativa) copes with high temperature are not yet fully understood. In this study, we identified a rice high temperature enhanced lesion spots 1 (hes1) mutant, which displayed larger and more dense necrotic spots under high temperature conditions. HES1 encoded a UDP-N-acetylglucosamine pyrophosphorylase, which had UGPase enzymatic activity. RNA sequencing analysis showed that photosystem-related genes were differentially expressed in the hes1 mutant at different temperatures, indicating that HES1 plays essential roles in maintaining chloroplast function. HES1 expression was induced under high temperature conditions. Furthermore, loss-of-function of HES1 affected heat shock factor expression and its mutation exhibited greater vulnerability to high temperature. Several experiments revealed that higher accumulation of reactive oxygen species occurred in the hes1 mutant at high temperature. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and comet experiments indicated that the hes1 underwent more severe DNA damage at high temperature. The determination of chlorophyll content and chloroplast ultrastructure showed that more severe photosystem defects occurred in the hes1 mutant under high temperature conditions. This study reveals that HES1 plays a key role in adaptation to high-temperature stress in rice.
Asunto(s)
Oryza , Regulación de la Expresión Génica de las Plantas , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , TemperaturaRESUMEN
Shifts in trait means are widely considered as evidence for adaptive responses, but the impact on phenotypic variance remains largely unexplored. Classic quantitative genetics provides a theoretical framework to predict how selection on phenotypic mean affects the variance. In addition to this indirect effect, it is also possible that the variance of the trait is the direct target of selection, but experimentally characterized cases are rare. Here, we studied gene expression variance of Drosophila simulans males before and after 100 generations of adaptation to a novel hot laboratory environment. In each of the two independently evolved populations, the variance of 125 and 97 genes was significantly reduced. We propose that the drastic loss in environmental complexity from nature to the laboratory may have triggered selection for reduced variance. Our observation that selection could drive changes in the variance of gene expression could have important implications for studies of adaptation processes in natural and experimental populations.
Asunto(s)
Adaptación Fisiológica , Drosophila simulans , Aclimatación , Animales , Evolución Biológica , Masculino , Fenotipo , Selección GenéticaRESUMEN
Temperature is a key climate indicator, whose distribution is expected to shift right in a warming world. However, the high-temperature tolerance of trees is less widely understood than their drought tolerance, especially when it comes to sub-lethal impacts of temperature on tree growth. I use a large data set of annual tree ring widths, combined with a flexible degree day model, to estimate the relationship between temperature and tree radial growth. I find that tree radial growth responds non-linearly to temperature across many ecoregions of the United States: across temperate and/or dry ecoregions, spring-summer temperature increases are beneficial or mostly neutral for tree growth up to around 25-30°C in humid climates and 10-15°C in dry climates, beyond which temperature increases suppress growth. Thirty additional degree days above the optimal temperature breakpoint lead to an average decrease in tree ring width of around 1%-5%, depending on ecoregions, seasons, and inclusion or exclusion of temperature-mediated drought impacts. High temperatures have legacy effects across a 5-year horizon in dry ecoregions, but none in the temperate-humid South-East or among temperature-sensitive trees. I find limited evidence that trees acclimatize to high temperatures within their lifetime: local variation in early exposure to high temperatures, which stems from local variation in the timing of tree birth, does not significantly impact the response to high temperatures, although temperature-sensitive trees acquire some heightened sensitivity from early exposure. I also find some evidence that trees adapt to high temperatures in the long run: across humid ecoregions of the United States, high temperatures are 40% less harmful to tree growth, where their average incidence is one standard deviation above average. Overall, these results highlight the strength of a new methodology which, applied to representative tree ring data, could contribute to predicting forest carbon uptake potential and composition under global change.
La température est un indicateur clé du climat, dont la distribution se décale vers la droite dans le contexte actuel d'un monde en réchauffement. Pourtant, la capacité des arbres à tolérer les hautes températures est moins documentée que leur capacité à tolérer la sécheresse, notamment en ce qui concerne l'impact non mortel de la température sur la croissance des arbres. Dans cette étude, j'évalue la relation entre la température et la croissance radiale des arbres à travers différentes écorégions des Etats-Unis, à l'aide d'une grande base de données sur les anneaux de croissance des arbres, que je combine avec un modèle de température flexible basé sur les degrés-jours. J'estime que la croissance radiale des arbres réagit à la température de façon non-linéaire dans beaucoup d'écorégions : dans les régions tempérées et/ou sèches, une augmentation de température est bénéfique ou essentiellement neutre pour la croissance des arbres jusqu'à 25-30°C en zone humide et 10-15°C en zone sèche, puis devient néfaste au delà de ces seuils. Une augmentation de trente degrés-jours au dessus du point de rupture, est associée à une diminution de la croissance de 1-5% en moyenne, avec des variations selon les écorégions, les saisons, and l'inclusion ou l'exclusion du couplage température/sécheresse. Les températures hautes ont un impact prolongé sur cinq ans dans les écorégions sèches, mais pas dans le Sud-Est tempéré et humide des Etats-Unis, ni parmi les arbres sensibles à la température. J'observe peu d'acclimatation des arbres aux hautes températures au cours de leur vie : les variations locales d'exposition des arbres aux hautes températures, qui découlent de variations locales dans leur date de naissance, n'impactent pas significativement la réponse des arbres à ces températures, hormis une légère aggravation de la sensibilité des arbres sensibles à la température après une exposition précoce. J'observe également une certaine adaptation des arbres aux hautes températures sur le long terme : à travers les écorégions humides des Etats-Unis, les hautes températures sont 40% moins nocives à la croissance des arbres, dans les endroits où la fréquence des ces températures est un écart-type au dessus de la moyenne. Dans l'ensemble, ces résultats illustrent le potentiel d'une nouvelle méthode, qui pourrait être appliquée à des données de croissance des arbres plus représentatives, et ainsi aider à prédire les variations de croissance, de fixation du carbone, et de composition des forêts, liées aux changements planétaires.
Asunto(s)
Cambio Climático , Árboles , Sequías , Bosques , TemperaturaRESUMEN
The effect of temperature and light intensity on the polar lipidome of endophytic brown algae Streblonema corymbiferum and Streblonema sp. in vitro was investigated. More than 460 molecular species have been identified in four glycoglycerolipids classes, five phosphoglycerolipids classes and one betaine lipid class. The lipids glucuronosyldiacylglycerol and diacylglyceryl-N,N,N-trimethyl-homoserine were found in the algae of the order Ectocarpales for the first time. A decrease in cultivation temperature led to an increase in the unsaturation level in all classes of polar lipids. Thus, at low temperatures, the content of 18:4/18:4 monogalactosyldiacylglycerol (MGDG), 20:5/18:4 digalactosyldiacylglycerol (DGDG), 18:3/16:0 sulfoquinovosyldiacylglycerol (SQDG), 18:3/18:3 and 18:3/18:4 phosphatidylglycerol (PG), 20:4/20:5 and 20:5/20:5 phosphatidylethanolamine (PE), 14:0/20:5, 16:0/20:5 and 20:5/20:5 phosphatidylcholine (PC), 20:5/20:4 phosphatidylhydroxyethylglycine and 18:1/18:2 DGTS increased. At high temperatures, an increase in the content of chloroplast-derived MGDG, DGDG and PG was observed. Both low and high light intensities caused an increase in 20:5/18:3 MGDG and 18:3/16:1 PG. At low light intensity, the content of DGDG with fatty acid (FA) 18:3 increased, and at high light intensity, it was with FA 20:5. The molecular species composition of extraplastid lipids also showed a dependence on light intensity. Thus, the content of PC and PE species with C20-polyunsaturated FA at both sn-positions, 18:1/18:1 DGTS and 16:0/18:1 phosphatidylinositol increased. Low light intensity induced a significant increase in the content of chloroplast-derived 18:1/16:1 phosphatidylethanolamine.
Asunto(s)
Lipidómica , Phaeophyceae , Ácidos Grasos , Fosfatidiletanolaminas , TemperaturaRESUMEN
KEY MESSAGE: Total of 14 SNPs associated with overwintering-related traits and 75 selective regions were detected. Important candidate genes were identified and a possible network of cold-stress responses in woody plants was proposed. Local adaptation to low temperature is essential for woody plants to against changeable climate and safely survive the winter. To uncover the specific molecular mechanism of low temperature adaptation in woody plants, we sequenced 134 core individuals selected from 494 paper mulberry (Broussonetia papyrifera), which naturally distributed in different climate zones and latitudes. The population structure analysis, PCA analysis and neighbor-joining tree analysis indicated that the individuals were classified into three clusters, which showed forceful geographic distribution patterns because of the adaptation to local climate. Using two overwintering phenotypic data collected at high latitudes of 40°N and one bioclimatic variable, genome-phenotype and genome-environment associations, and genome-wide scans were performed. We detected 75 selective regions which possibly undergone temperature selection and identified 14 trait-associated SNPs that corresponded to 16 candidate genes (including LRR-RLK, PP2A, BCS1, etc.). Meanwhile, low temperature adaptation was also supported by other three trait-associated SNPs which exhibiting significant differences in overwintering traits between alleles within three geographic groups. To sum up, a possible network of cold signal perception and responses in woody plants were proposed, including important genes that have been confirmed in previous studies while others could be key potential candidates of woody plants. Overall, our results highlighted the specific and complex molecular mechanism of low temperature adaptation and overwintering of woody plants.
Asunto(s)
Adaptación Fisiológica/genética , Frío , Fenómenos Fisiológicos de las Plantas , Plantas/genética , Alelos , Secuencia de Bases , Clima , Estudio de Asociación del Genoma Completo , Morus/genética , Morus/fisiología , Fenotipo , Polimorfismo de Nucleótido Simple , TemperaturaRESUMEN
Ecological adaptation is frequently inferred by the comparison of natural populations from different environments. Nevertheless, inference of the selective forces suffers the challenge that many environmental factors covary. With well-controlled environmental conditions, experimental evolution provides a powerful approach to complement the analysis of natural populations. On the other hand, it is apparent that laboratory conditions differ in many ways from natural environments, which raises the question as to what extent selection responses in experimental evolution studies can inform us about adaptation processes in the wild. In this study, we compared the expression profiles of replicated Drosophila melanogaster populations which have been exposed to two distinct temperature regimes (18/28 and 10/20°C) in the laboratory for more than 80 generations. Using gene-wise differential expression analysis and co-expression network analysis, we identified 541 genes and three coregulated gene modules that evolved in the same direction in both temperature regimes, and most of these changes probably reflect an adaptation to the space constraint or diurnal temperature fluctuation that is common in both selection regimes. In total, 203 genes and seven modules evolved temperature-specific expression changes. Remarkably, we detected a significant overlap of these temperature-adaptive genes/modules from experimental evolution with temperature-adaptive genes inferred from natural Drosophila populations covering two different temperature clines. We conclude that well-designed experimental evolution studies are a powerful tool to dissect evolutionary responses.
Asunto(s)
Drosophila melanogaster , Laboratorios , Aclimatación , Adaptación Fisiológica/genética , Animales , Evolución Biológica , Drosophila melanogaster/genética , Expresión Génica , Selección GenéticaRESUMEN
Alternative splicing occurs in all eukaryotic organisms. Since the first description of multiexon genes and the splicing machinery, the field has expanded rapidly, especially in animals and yeast. However, our knowledge about splicing in plants is still quite fragmented. Though eukaryotes show some similarity in the composition and dynamics of the splicing machinery, observations of unique plant traits are only starting to emerge. For instance, plant alternative splicing is closely linked to their ability to perceive various environmental stimuli. Due to their sessile lifestyle, temperature is a central source of information allowing plants to adjust their development to match current growth conditions. Hence, seasonal temperature fluctuations and day-night cycles can strongly influence plant morphology across developmental stages. Here we discuss the available data about temperature-dependent alternative splicing in plants. Given its fragmented state it is not always possible to fit specific observations into a coherent picture, yet it is sufficient to estimate the complexity of this field and the need of further research. Better understanding of alternative splicing as a part of plant temperature response and adaptation may also prove to be a powerful tool for both, fundamental and applied sciences.