Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(35): 10928-10935, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39162303

RESUMEN

Single-atom Rh1 alloyed Co (Rh1Co) is explored as an efficient catalyst for urea electrosynthesis via coelectrolysis of CO2 and NO3- (UECN). Theoretical calculations and in situ spectroscopic measurements unravel the synergetic effect of Co and Rh1 in promoting the UECN process, where the Rh1 site activates NO3- to form *NH2, while the Co site activates CO2 to form *CO. The formed *CO then desorbs from the Co site and transfers to the Rh1 site, followed by continuous C-N coupling with *NH2 formed on the Rh1 site to synthesize urea. Remarkably, Rh1Co assembled in a flow cell delivers the exceptional urea yield rate of 24.9 mmol h-1 g-1 and Faradaic efficiency of 51.1%, outperforming most previously reported UECN catalysts.

2.
Nano Lett ; 24(2): 541-548, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38185876

RESUMEN

Electrochemical reduction of NO to NH3 (NORR) offers a prospective method for efficient NH3 electrosynthesis. Herein, we first design single-atom Pd-alloyed Cu (Pd1Cu) as an efficient and robust NORR catalyst at industrial-level current densities (>0.2 A cm-2). Operando spectroscopic characterizations and theoretical computations unveil that Pd1 strongly electronically couples its adjacent two Cu atoms (Pd1Cu2) to enhance the NO activation while promoting the NO-to-NH3 protonation energetics and suppressing the competitive hydrogen evolution. Consequently, the flow cell assembled with Pd1Cu exhibits an unprecedented NH3 yield rate of 1341.3 µmol h-1 cm-2 and NH3-Faradaic efficiency of 85.5% at an industrial-level current density of 210.3 mA cm-2, together with an excellent long-term durability for 200 h of electrolysis, representing one of the highest NORR performances on record.

3.
J Comput Chem ; 45(18): 1603-1613, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38520729

RESUMEN

It is of great importance and worthy of efforts to give a clear structure-property relationship and microscopic mechanism of fluorescence emitters with high quantum yield. In this work, we perform a detailed computational investigation to give an explanation to the high efficiency of a fluorescence emitter XBTD-NPh based TADF sensitized fluorescence (TSF) OLEDs, and construct a symmetry structure DSBNA-BTD. Theoretical calculations show that XBTD-NPh is a long-time phosphorescent material at 77 K and TADF is attributed to the RISC of T1 to S1 state. For DSBNA-BTD, excitons arrived at T1 state comes to a large rate of nonradiatively path to the ground state, meaning it is may not be an efficient TADF molecule. For both molecules, the fast IC between T2 and T1 state results in that the hot exciton channel T1-Tn-S1 makes no contribution to the TADF.

4.
J Comput Chem ; 45(22): 1914-1920, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38695838

RESUMEN

Compounds containing the thiophene moiety find several applications in physics and chemistry, such as electrical conduction, which depends on specific conformations to properly exhibiting the desired properties. In turn, chalcogen bonding has found to modulate the conformation of some N-thiophen-2-ylfomamides. Since halogens participate in a kin interaction (halogen bonding) and are abundant in agrochemicals, pharmaceuticals, and materials, we have quantum-chemically explored the interaction between organic halogen and thiophene as a conformational modulator in some model compounds. Although such interaction indeed appears, as demonstrated by atoms in molecules and natural bond orbital analysis, it is inefficient to control the conformational equilibrium. An energy decomposition analysis scheme demonstrated that halomethane and thiophene tend to move away from one another due to a core component (Pauli repulsion and exchange), which is mainly due to a deformation term. Therefore, chalcogen bonds with halogens appear weaker than with other chalcogens.

5.
Small ; 20(5): e2304424, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37726235

RESUMEN

Peptide assemblies are promising nanomaterials, with their properties and technological applications being highly hinged on their supramolecular architectures. Here, how changing the chirality of the terminal charged residues of an amphiphilic hexapeptide sequence Ac-I4 K2 -NH2 gives rise to distinct nanostructures and supramolecular handedness is reported. Microscopic imaging and neutron scattering measurements show thin nanofibrils, thick nanofibrils, and wide nanotubes self-assembled from four stereoisomers. Spectroscopic and solid-state nuclear magnetic resonance (NMR) analyses reveal that these isomeric peptides adopt similar anti-parallel ß-sheet secondary structures. Further theoretical calculations demonstrate that the chiral alterations of the two C-terminal lysine residues cause the formation of diverse single ß-strand conformations, and the final self-assembled nanostructures and handedness are determined by the twisting direction and degree of single ß-strands. This work not only lays a useful foundation for the fabrication of diverse peptide nanostructures by manipulating the chirality of specific residues but also provides a framework for predicting the supramolecular structures and handedness of peptide assemblies from single molecule conformations.


Asunto(s)
Lateralidad Funcional , Nanoestructuras , Péptidos/química , Nanoestructuras/química , Isomerismo , Estructura Secundaria de Proteína
6.
Small ; 20(5): e2305998, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37726243

RESUMEN

Rechargeable aluminum batteries (RABs) are an emerging energy storage device owing to the vast Al resources, low cost, and high safety. However, the poor cyclability and inferior reversible capacity of cathode materials have limited the enhancement of RABs performance. Herein, a high configurational entropy strategy is presented to improve the electrochemical properties of RABs for the first time. The high-entropy (Fe, Mn, Ni, Zn, Mg)3 O4 cathode exhibits an ultra-stable cycling ability (109 mAh g-1 after 3000 cycles), high specific capacity (268 mAh g-1 at 0.5 A g-1 ), and rapid ion diffusion. Ex situ characterizations indicate that the operational mechanism of (Fe, Mn, Ni, Zn, Mg)3 O4 cathode is mainly based on the redox process of Fe, Mn, and Ni. Theoretical calculations demonstrate that the oxygen vacancies make a positive contribution to adjusting the distribution of electronic states, which is crucial for enhancing the reaction kinetics at the electrolyte and cathode interface. These findings not only propose a promising cathode material for RABs, but also provide the first elucidation of the operational mechanism and intrinsic information of high-entropy electrodes in multivalent ion batteries.

7.
Small ; : e2312122, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709229

RESUMEN

Management of functional groups in hole transporting materials (HTMs) is a feasible strategy to improve perovskite solar cells (PSCs) efficiency. Therefore, starting from the carbazole-diphenylamine-based JY7 molecule, JY8 and JY9 molecules are incorporated into the different electron-withdrawing groups of fluorine and cyano groups on the side chains. The theoretical results reveal that the introduction of electron-withdrawing groups of JY8 and JY9 can improve these highest occupied molecular orbital (HOMO) energy levels, intermolecular stacking arrangements, and stronger interface adsorption on the perovskite. Especially, the results of molecular dynamics (MD) indicate that the fluorinated JY8 molecule can yield a preferred surface orientation, which exhibits stronger interface adsorption on the perovskite. To validate the computational model, the JY7-JY9 are synthesized and assembled into PSC devices. Experimental results confirm that the HTMs of JY8 exhibit outstanding performance, such as high hole mobility, low defect density, and efficient hole extraction. Consequently, the PSC devices based on JY8 achieve a higher PCE than those of JY7 and JY9. This work highlights the management of the electron-withdrawing groups in HTMs to realize the goal of designing HTMs for the improvement of PSC efficiency.

8.
Small ; : e2310573, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453689

RESUMEN

Electrochemical synthesis of H2 and high-value-added chemicals is an efficient and cost-effective approach that can be powered using renewable electricity. Compared to a conventional electrochemical production system, the modular electrochemical production system (MEPS) based on a solid redox mediator (SRM) can separate the anodic and cathodic reactions in time and space. The MEPS can avoid the use of membranes and formation of useless products, as well as eliminate the mutual dependence of production rates at anode and cathode. The SRM can temporarily store or release electrons and ions to pair with cathodic and anodic reactions, respectively, in MEPS. Designing of SRMs with large charge capacity and good cyclability is of great significance for constructing a high-performance MEPS. This work summarizes the design principles, recent advances in MEPS based on SRM, and application in redox flow cells. Moreover, structure design strategies as well as in situ characterization techniques and theoretical calculations for SRM is also proposed. It is expected to promote the vigorous development of MEPS based on SRM. Finally, the challenges and perspectives of MEPS based on SRM are discussed.

9.
Chemistry ; 30(46): e202401710, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38845405

RESUMEN

A series of homoleptic Ni bis-1,1-dithiolates, [Ni(S2C2RR')2]2- (R=CN, R'=CN, CO2Et, CONH2, Ph, Ph-4-Cl, Ph-4-OMe, Ph-4-NO2, Ph-3-CF3, Ph-4-CF3, Ph-4-CN; R=NO2, R'=H; R=R'=CO2Et) have been synthesized from the reaction of the alkali metal salt of the ligand and nickel chloride, and isolated as tetraphenylphosphonium or tetrabutylammonium salts. The complexes were characterized by X-ray crystallography, high-resolution mass spectrometry, and infrared (IR), nuclear magnetic resonance (NMR) and electronic absorption spectroscopies. The molecular structures show a rigidly square planar Ni(II) center linking two four-membered chelate rings whose dimensions are constant across the series. The electronic effect of the ligand substituent is revealed in the 13C NMR and electronic spectra, and corroborated by density functional calculations. Electron withdrawing groups deshield the low-field CS2 resonance, and the signature charge transfer band in the visible region is red-shifted. These observables have been accurately reproduced computationally, and revealed the Ni contribution to the ground state diminishes with decreasing electron withdrawing capacity of the ligand substituent. In contrast to 1,2-dithiolates, the redox inactivity afforded by 1,1-dithiolates stems from the smaller chelate ring and substantially reduced sulfur content that is key to stabilizing the radical form.

10.
J Fluoresc ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958906

RESUMEN

Three d10 metal complexes, ZnL(OAc)2 (1), CdL(OAc)2 (2) and [CdL2(NO3)2]·CH3CN (3) were synthesized using the ligand (E)-N-(3-methoxy-4-methylphenyl)-1-(quinolin-2-yl)methanimine (L) and characterized by FT-IR spectra, NMR spectra, and CHN elemental analysis. Single-crystal X-ray diffraction analysis revealed that complexes 1 and 2 are isostructural, with the central metal adopting a hexacoordinate octahedral geometry, while complex 3 adopts a triangular dodecahedron geometry. Thermal gravimetric analysis showed that these complexes exhibit good thermal stability. Solid-state fluorescence spectroscopy measurements demonstrated that complexes 1-3 exhibit bright yellow-green fluorescence (λem = 564 nm for 1; 524 nm for 2; 542 nm for 3), suggesting their potential as photoluminescent materials. Furthermore, DFT calculations, including frontier molecular orbitals, energy levels, and surface electrostatic potential, provided insights into the structural and electronic spectral properties of complexes 1-3.

11.
J Fluoresc ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507128

RESUMEN

In this study, we present a comprehensive photophysical investigation of ESIPT-reactive benzazole derivatives in both solution and the solid state. These derivatives incorporate different chalcogen atoms (O, S, and Se) into their structures, and we explore how these variations impact their electronic properties in both ground and excited states. Changes in the UV-Vis absorption and fluorescence emission spectra were analyzed and correlated with the chalcogen atom and solvent polarity. In general, the spectral band of the benzazole derivative containing selenium was redshifted in both the ground and excited states compared to that of its oxygen and sulfur counterparts. Furthermore, we observed that the solvent played a distinctive role in influencing the ESIPT process within these compounds, underscoring once again the significant influence of the chalcogen atom on their photophysical behavior. Theoretical calculations provided a deeper understanding of the molecular dynamics, electronic structures, and photophysical properties of these compounds. These calculations highlighted the effect of chalcogen atoms on the molecular geometry, absorption and emission characteristics, and intramolecular hydrogen bonding, revealing intricate details of the ESIPT mechanism. The integration of experimental and computational data offers a detailed view of the structural and electronic factors governing the photophysical behavior of benzazole derivatives.

12.
Bioorg Chem ; 150: 107598, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38959645

RESUMEN

A completely green protocol was developed for the synthesis of a series of arylaminonaphthol derivatives in the presence of N-ethylethanolamine (NEEA) as a catalyst under ultrasonic irradiation and solventless conditions. The major assets of this methodology were the use of non-toxic organic medium, available catalyst, mild reaction condition, and good to excellent yield of desired products. All of the synthesized products were screened for their in vitro antioxidant activity using DPPH, ABTS, and Ferric-phenanthroline assays and it was found that most of them are potent antioxidant agents. Also, their butyrylcholinesterase inhibitory activity has been investigated in vitro. All tested compounds exhibited potential inhibitory activity toward BuChE when compared to standard reference drug galantamine, however, compounds 4r, 4u, 4 g and 4x gave higher butyrylcholinesterase inhibitory with IC50 values of 14.78 ± 0.65 µM, 16.18 ± 0.50 µM, 20.00 ± 0.50 µM, and 20.28 ± 0.08 µM respectively. On the other hand, we employed density functional theory (DFT), calculations to analyze molecular geometry and global reactivity descriptors, and MESP analysis to predict electrophilic and nucleophilic attacks. A quantitative structure-activity relationship (QSAR) investigation was conducted on the antioxidant and butyrylcholinesterase properties of 25 arylaminonaphthol derivatives, resulting in robust and satisfactory models. To evaluate their anti-Alzheimer's activity, compounds 4 g, 4q, 4r, 4u, and 4x underwent docking simulations at the active site of the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), revealing why these compounds displayed superior activity, consistent with the biological findings.


Asunto(s)
Antioxidantes , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Antioxidantes/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Estructura Molecular , Humanos , Relación Dosis-Respuesta a Droga , Acetilcolinesterasa/metabolismo
13.
Chirality ; 36(5): e23668, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747133

RESUMEN

The absolute configuration of three chiral eugenol derivatives was assigned by a multi-step methodology based on enantioselective HPLC combined with spectroscopic and theoretical calculations. Milligram amounts of enantiopure forms used for stereochemical characterization were isolated by HPLC on the immobilized amylose-based chiral stationary phase Chiralpak IG using normal phase elution conditions. The absolute configuration was indirectly determined for one of the three compounds by 1H NMR via methoxy-α-trifluoromethyl-α-phenylacetic acid derivatization (Mosher's acid). Comparison of the experimental and predicted electronic circular dichroism spectra confirmed the stereochemical assignment by Mosher's method and extended the absolute configuration assignment to two other chiral compounds.

14.
Mar Drugs ; 22(8)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39195476

RESUMEN

Four new polyketides, namely furantides A-B (1-2), talamin E (3) and arugosinacid A (4), and two known polyketides were obtained from the mangrove-derived fungus Penicillium sp. HDN15-312 using the One Strain Many Compounds (OSMAC) strategy. Their chemical structures, including configurations, were elucidated by detailed analysis of extensive NMR spectra, HRESIMS and ECD. The DPPH radicals scavenging activity of 3, with an IC50 value of 6.79 µM, was better than vitamin C.


Asunto(s)
Penicillium , Policétidos , Penicillium/química , Policétidos/farmacología , Policétidos/química , Policétidos/aislamiento & purificación , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Estructura Molecular , Picratos , Rhizophoraceae/microbiología , Compuestos de Bifenilo
15.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892465

RESUMEN

The bottom-up fabrication of supramolecular and self-assembly on various substrates has become an extremely relevant goal to achieve prospects in the development of nanodevices for electronic circuitry or sensors. One of the branches of this field is the self-assembly of functional molecular components driven through non-covalent interactions on the surfaces, such as van der Waals (vdW) interactions, hydrogen bonding (HB), electrostatic interactions, etc., allowing the controlled design of nanostructures that can satisfy the requirements of nanoengineering concepts. In this context, non-covalent interactions present opportunities that have been previously explored in several molecular systems adsorbed on surfaces, primarily due to their highly directional nature which facilitates the formation of well-ordered structures. Herein, we review a series of research works by combining STM (scanning tunneling microscopy) with theoretical calculations, to reveal the processes used in the area of self-assembly driven by molecule Landers equipped with functional groups on the metallic surfaces. Combining these processes is necessary for researchers to advance the self-assembly of supramolecular architectures driven by multiple non-covalent interactions on solid surfaces.


Asunto(s)
Nanoestructuras , Propiedades de Superficie , Nanoestructuras/química , Microscopía de Túnel de Rastreo , Enlace de Hidrógeno , Electricidad Estática , Adsorción , Nanotecnología/métodos
16.
Molecules ; 29(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39124988

RESUMEN

Reactions of bis(benzene)chromium (Bz2Cr) and ozone (O3) were studied using low-temperature argon matrix-isolation infrared spectroscopy with supporting DFT calculations. When Bz2Cr and O3 were co-deposited, they reacted upon matrix deposition to produce two new prominent peaks in the infrared spectrum at 431 cm-1 and 792 cm-1. These peaks increased upon annealing the matrix to 35 K and decreased upon UV irradiation at λ = 254 nm. The oxygen-18 and mixed oxygen-16,18 isotopic shift pattern of the peak at 792 cm-1 is consistent with the antisymmetric stretch of a symmetric ozonide species. DFT calculations of many possible ozonide products of this reaction were made. The formation of a hydrogen ozonide (H2O3) best fits the original peaks and the oxygen-18 isotope shift pattern. Energy considerations lead to the conclusion that the chromium-containing product of this reaction is the coupled product benzene-chromium-biphenyl-chromium-benzene (BzCrBPCrBz). 2Bz2Cr+O3→H2O3+BzCrBPCrBz, ∆Ecalc=-52.13kcal/mol.

17.
Molecules ; 29(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38893582

RESUMEN

Although the crystals of coordination polymer {[CuCl(µ-O,O'-L-Br2Tyr)]}n (1) (L-Br2Tyr = 3,5-dibromo-L-tyrosine) were formed under basic conditions, crystallographic studies revealed that the OH group of the ligand remained protonated. Two adjacent [CuCl(L-Br2Tyr)] monomers, bridged by the carboxylate group of the ligand in the syn-anti bidentate bridging mode, are differently oriented to form a polymeric chain; this specific bridging was detected also by FT-IR and EPR spectroscopy. Each Cu(II) ion in polymeric compound 1 is coordinated in the xy plane by the amino nitrogen and carboxyl oxygen of the parent ligand and the oxygen of the carboxyl group from the symmetry related ligand of the adjacent [Cu(L-Br2Tyr)Cl] monomer, as well as an independent chlorine ion. In addition, the Cu(II) ion in the polymer chain participates in long-distance intermolecular contacts with the oxygen and bromine atoms of the ligands located in the adjacent chains; these intramolecular contacts were also supported by NCI and NBO quantum chemical calculations and Hirshfeld surface analysis. The resulting elongated octahedral geometry based on the [CuCl(L-Br2Tyr)] monomer has a lower than axial symmetry, which is also reflected in the symmetry of the calculated molecular EPR g tensor. Consequently, the components of the d-d band obtained by analysis of the NIR-VIS-UV spectrum were assigned to the corresponding electronic transitions.

18.
Molecules ; 29(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38792240

RESUMEN

The photocatalyst (PC) zinc tetraphenylporphyrin (ZnTPP) is highly efficient for photoinduced electron/energy transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. However, ZnTPP suffers from poor absorbance of orange light by the so-called Q-band of the absorption spectrum (maximum absorption wavelength λmax = 600 nm, at which molar extinction coefficient εmax = 1.0×104 L/(mol·cm)), hindering photo-curing applications that entail long light penetration paths. Over the past decade, there has not been any competing candidate in terms of efficiency, despite a myriad of efforts in PC design. By theoretical evaluation, here we rationally introduce a peripheral benzo moiety on each of the pyrrole rings of ZnTPP, giving zinc tetraphenyl tetrabenzoporphyrin (ZnTPTBP). This modification not only enlarges the conjugation length of the system, but also alters the a1u occupied π molecular orbital energy level and breaks the accidental degeneracy between the a1u and a2u orbitals, which is responsible for the low absorption intensity of the Q-band. As a consequence, not only is there a pronounced hyperchromic and bathochromic effect (λmax = 655 nm and εmax = 5.2×104 L/(mol·cm)) of the Q-band, but the hyperchromic effect is achieved without increasing the intensity of the less useful, low wavelength absorption peaks of the PC. Remarkably, this strong 655 nm absorption takes advantage of deep-red (650-700 nm) light, a major component of solar light exhibiting good atmosphere penetration, exploited by the natural PC chlorophyll a as well. Compared with ZnTPP, ZnTPTBP displayed a 49% increase in PET-RAFT polymerization rate with good control, marking a significant leap in the area of photo-controlled polymerization.

19.
Small ; 19(47): e2304388, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37490526

RESUMEN

Second-harmonic generation (SHG) response and birefringence are crucial properties for linear and nonlinear optical (NLO) materials, while it is difficult to further optimize these two key properties by using a single traditional functional building block (FBB) in one compound. Herein, a novel IO4 5- unit is identified, which possesses a square-planar configuration and two stereochemically active lone-pairs (SCALPs). By combining IO4 5- and IO3 - units, the first examples of mixed-valent polyiodates featuring an unprecedented bowl-shaped I5 O12 - polymerized unit, namely (NH4 )2 (I5 O12 )(IO3 ) and K1.03 (NH4 )0.97 (I5 O12 )(IO3 ), are successfully synthesized. Excitingly, both crystals exhibit strong SHG responses (16 × KDP and 19.5 × KDP @1064 nm) as well as giant birefringence (∆nexp  = 0.431 and 0.405 @546 nm). Detailed structure-property analyses reveal that the parallel aligned planar IO4 5- units induce the properly aligned high-density SCALPs, leading to strong SHG response and giant birefringence for both materials. This work not only provides two new potential NLO and birefringent crystals, but also discovers a novel promising FBB (IO4 5- ) for developing high-performance linear and nonlinear optical materials.

20.
Small ; 19(30): e2300843, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37035959

RESUMEN

Lithium-sulfur battery (LSB) is widely regarded as the most promising next-generation energy storage system owing to its high theoretical capacity and low cost. However, the practical application of LSBs is mainly hampered by the low electronic conductivity of the sulfur cathode and the notorious "shuttle effect", which lead to high voltage polarization, severe over-charge behavior, and rapid capacity decay. To address these issues, a novel sulfur reservoir is synthesized by coating polypyrrole (PPy) thin film on hollow layered double hydroxide (LDH) (PPy@LDH). After compositing with sulfur, such PPy@LDH-S cathode shows a multi-functional effect to reserve lithium polysulfides (LiPSs). In addition, the unique architecture provides sufficient inner space to encapsulate the volume expansion and enhances the reaction kinetics of sulfur-based redox chemistry. Theoretical calculations have illustrated that the PPy@LDH has shown stronger chemical adsorption capability for LiPSs than those of porous carbon and LDH, preventing the shuttling of LiPSs and enhancing the nucleation affinity of liquid-solid conversion. As a result, the PPy@LDH-S electrode delivers a stable cycling performance and a superior rate capability. Flexible battery has demonstrated this PPy@LDH-S electrode can work properly with treatments of bending, folding, and even twisting, paving the way for wearable devices and flexible electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA