Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2311323121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38294941

RESUMEN

Microbiota-centric interventions are limited by our incomplete understanding of the gene functions of many of its constituent species. This applies in particular to small RNAs (sRNAs), which are emerging as important regulators in microbiota species yet tend to be missed by traditional functional genomics approaches. Here, we establish CRISPR interference (CRISPRi) in the abundant microbiota member Bacteroides thetaiotaomicron for genome-wide sRNA screens. By assessing the abundance of different protospacer-adjacent motifs, we identify the Prevotella bryantii B14 Cas12a as a suitable nuclease for CRISPR screens in these bacteria and generate an inducible Cas12a expression system. Using a luciferase reporter strain, we infer guide design rules and use this knowledge to assemble a computational pipeline for automated gRNA design. By subjecting the resulting guide library to a phenotypic screen, we uncover the sRNA BatR to increase susceptibility to bile salts through the regulation of genes involved in Bacteroides cell surface structure. Our study lays the groundwork for unlocking the genetic potential of these major human gut mutualists and, more generally, for identifying hidden functions of bacterial sRNAs.


Asunto(s)
Bacteroides thetaiotaomicron , ARN Pequeño no Traducido , Humanos , Bacteroides thetaiotaomicron/genética , ARN Guía de Sistemas CRISPR-Cas , Bilis , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética
2.
Proc Natl Acad Sci U S A ; 121(28): e2318691121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968121

RESUMEN

Dietary lipids play an essential role in regulating the function of the gut microbiota and gastrointestinal tract, and these luminal interactions contribute to mediating host metabolism. Palmitic Acid Hydroxy Stearic Acids (PAHSAs) are a family of lipids with antidiabetic and anti-inflammatory properties, but whether the gut microbiota contributes to their beneficial effects on host metabolism is unknown. Here, we report that treating chow-fed female and male germ-free (GF) mice with PAHSAs improves glucose tolerance, but these effects are lost upon high fat diet (HFD) feeding. However, transfer of feces from PAHSA-treated, but not vehicle-treated, chow-fed conventional mice increases insulin sensitivity in HFD-fed GF mice. Thus, the gut microbiota is necessary for, and can transmit, the insulin-sensitizing effects of PAHSAs in HFD-fed GF male mice. Analyses of the cecal metagenome and lipidome of PAHSA-treated mice identified multiple lipid species that associate with the gut commensal Bacteroides thetaiotaomicron (Bt) and with insulin sensitivity resulting from PAHSA treatment. Supplementing live, and to some degree, heat-killed Bt to HFD-fed female mice prevented weight gain, reduced adiposity, improved glucose tolerance, fortified the colonic mucus barrier and reduced systemic inflammation compared to HFD-fed controls. These effects were not observed in HFD-fed male mice. Furthermore, ovariectomy partially reversed the beneficial Bt effects on host metabolism, indicating a role for sex hormones in mediating the Bt probiotic effects. Altogether, these studies highlight the fact that PAHSAs can modulate the gut microbiota and that the microbiota is necessary for the beneficial metabolic effects of PAHSAs in HFD-fed mice.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Resistencia a la Insulina , Obesidad , Animales , Masculino , Femenino , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/metabolismo , Obesidad/microbiología , Obesidad/etiología , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Ácidos Esteáricos/metabolismo , Ácido Palmítico/metabolismo , Heces/microbiología , Ratones Obesos
3.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G607-G621, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38502145

RESUMEN

Fecal microbiota transplantation (FMT) is a promising therapy for inflammatory bowel disease (IBD) via rectifying gut microbiota. The aim of this study was to identify a mechanism of how specific bacteria-associated immune response contributes to alleviated colitis. Forty donors were divided into high (donor H) and low (donor L) groups according to the diversity and the abundance of Bacteroides and Faecalibacterium by 16S rRNA sequencing. FMT was performed on dextran sulfate sodium (DSS)-induced colitis in mice. Mice with colitis showed significant improvement in intestinal injury and immune imbalance after FMT with group donor H (P < 0.05). Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii were identified as targeted strains in donor feces by real-time PCR and droplet digital PCR. Mice with colitis were treated with mono- or dual-bacterial gavage therapy. Dual-bacterial therapy significantly ameliorated intestinal injury compared with mono-bacterial therapy (P < 0.05). Dual-bacterial therapy increased the M2/M1 macrophage polarization and improved the Th17/Treg imbalance and elevated IL-10 production by Tregs compared with the DSS group (P < 0.05). Metabolomics showed increased abundance of lecithin in the glycerophospholipid metabolism pathway. In conclusion, B. thetaiotaomicron and F. prausnitzii, as the key bacteria in donor feces, alleviate colitis in mice. The mechanism may involve increasing lecithin and regulating IL-10 production of intestinal Tregs.NEW & NOTEWORTHY We demonstrate that donors with high abundance of Bacteroides and Faecalibacterium ameliorate dextran sulfate sodium (DSS)-induced colitis in mice by fecal microbiota transplantation (FMT). The combination therapy of Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii is superior to mono-bacterial therapy in ameliorating colitis in mice, of which mechanism may involve promoting lecithin and inducing IL-10 production of intestinal Tregs.


Asunto(s)
Bacteroides thetaiotaomicron , Colitis , Faecalibacterium prausnitzii , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Animales , Colitis/terapia , Colitis/microbiología , Colitis/inducido químicamente , Colitis/inmunología , Ratones , Masculino , Humanos , Sulfato de Dextran , Ratones Endogámicos C57BL , Interleucina-10/metabolismo , Adulto , Femenino , Heces/microbiología , Modelos Animales de Enfermedad , Persona de Mediana Edad
4.
Pharmacol Res ; 200: 107071, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218354

RESUMEN

Plant-derived exosome-like nanoparticles (ELNs) have drawn considerable attention for oral treatment of colonic diseases. However, the roles of ELNs derived from garlic on colitis remain unclear. Here, we demonstrate that garlic ELNs (GELNs), with desirable particle sizes (79.60 nm) and trafficking large amounts of functional proteins and microRNAs, stably roam in the gut and confer protection against ulcerative colitis (UC). In mice with DSS-induced colitis, orally administered GELNs effectively ameliorated bloody diarrhea, normalized the production of proinflammatory cytokines, and prevented colonic barrier impairment. Mechanistically, GELNs were taken up by gut microbes and reshaped DSS-induced gut microbiota dysbiosis, in which Bacteroides was the dominant respondent genus upon GELNs treatment. Notably, GELNs-enriched peu-MIR2916-p3 specifically promoted the growth of Bacteroides thetaiotaomicron, an intestinal symbiotic bacterium with palliative effects on colitis. Our findings provide new insights into the medicinal application of GELNs and highlight their potential as natural nanotherapeutic agents for preventing and treating UC.


Asunto(s)
Bacteroides thetaiotaomicron , Colitis Ulcerosa , Colitis , Exosomas , Ajo , Microbioma Gastrointestinal , Ratones , Animales , Exosomas/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/microbiología , Colon , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
5.
ACS Synth Biol ; 13(2): 648-657, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38224571

RESUMEN

The genus Bacteroides, a predominant group in the human gut microbiome, presents significant potential for microbiome engineering and the development of live biotherapeutics aimed at treating gut diseases. Despite its promising capabilities, tools for effectively engineering Bacteroides species have been limited. In our study, we have made a breakthrough by identifying novel signal peptides in Bacteroides thetaiotaomicron and Akkermansia muciniphila. These peptides facilitate efficient protein transport across cellular membranes in Bacteroides, a critical step for therapeutic applications. Additionally, we have developed an advanced episomal plasmid system. This system demonstrates superior protein secretion capabilities compared to traditional chromosomal integration plasmids, making it a vital tool for enhancing the delivery of therapeutic proteins in Bacteroides species. Initially, the stability of this episomal plasmid posed a challenge; however, we have overcome this by incorporating an essential gene-based selection system. This novel strategy not only ensures plasmid stability but also aligns with the growing need for antibiotic-free selection methods in clinical settings. Our work, therefore, not only provides a more robust secretion system for Bacteroides but also sets a new standard for the development of live biotherapeutics.


Asunto(s)
Bacteroides thetaiotaomicron , Bacteroides , Humanos , Bacteroides/genética , Bacteroides/metabolismo , Señales de Clasificación de Proteína/genética , Plásmidos/genética , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Transporte de Proteínas
6.
Gut Microbes ; 16(1): 2297846, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38270111

RESUMEN

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and emerging evidence suggests that the gut microbiota may play a role in its development and progression. In this study, the association between B. thetaiotaomicron, a gut microbiota species, and HCC recurrence, as well as patient clinical outcomes, was investigated. It was observed that B. thetaiotaomicron-derived acetic acid has the potential to modulate the polarization of pro-pro-inflammatory macrophagess, which promotes the function of cytotoxic CD8+ T cells. The increased biosynthesis of fatty acids was implicated in the modulation of pro-inflammatory macrophages polarization by B. thetaiotaomicron-derived acetic acid. Furthermore, B. thetaiotaomicron-derived acetic acid was found to facilitate the transcription of ACC1, a key enzyme involved in fatty acid biosynthesis, through histone acetylation modification in the ACC1 promoter region. Curcumin, an acetylation modification inhibitor, significantly blocked the inhibitory effects of B. thetaiotaomicron and acetic acid on HCC tumor growth. These findings highlight the potential role of gut microbiota-derived acetic acid in HCC recurrence and patient clinical outcomes, and suggest a complex interplay between gut microbiota, immune modulation, fatty acid metabolism, and epigenetic regulation in the context of HCC development. Further research in this area may provide insights into novel strategies for HCC prevention and treatment by targeting the gut microbiota and its metabolites.


Asunto(s)
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Humanos , Ácido Acético , Epigénesis Genética , Ácidos Grasos , Microambiente Tumoral
7.
Clin Res Hepatol Gastroenterol ; 48(2): 102276, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38158154

RESUMEN

BACKGROUND: Studies have demonstrated that Bacteroides thetaiotaomicron (BT) has protective effect against colon inflammation in murine models. Macrophages play an important role in gut immunity. However, the specific mechanisms of BT on macrophage are still unelucidated. Thus, our study investigates the anti-inflammatory effect of BT and its heat-treated inactivated bacteria on experimental colitis and macrophages. METHODS: A dextran sulfate sodium (DSS)-induced acute colitis model with male C57BL/6 mice, BT (ATCC29148) strain, THP1 cell lines were used in this study. Live and heat-treated inactivated BT (IBT) solution (1 × 10^9cfu/ml) were intragastrically gavaged daily for 14 days. Colonic inflammation was determined by the disease activity index (DAI) score, colon length, histological score, and inflammatory factors. THP1 cells were induced towards M1, then treated with different concentrations of inactivated BT solution and p38 inhibitor. Western blotting, immunohistochemistry, immunofluorescence and qRT-PCR were performed to assess the levels of inflammatory cytokines and molecules of MAPK pathway including IL-6, TNF-α, IL-1ß, IL-22, p38 and phosphor-p38 expressions. Moreover, 16S rRNA sequencing of colitis murine fecal samples was applied to investigate the influence of supplementation of BT to the gut microbiota homeostasis. RESULTS: Both live and heat-treated inactivated BT decreased the DAI and histological scores as well as levels of inflammatory factors, particularly IL-6 while increasing IL-22 of DSS-induced colitis murine models. The cell experiments showed that inactivated BT downregulates IL-6 expression in THP1 via inhibiting p38 phosphorylation and affecting M1 polarization. Moreover, the 16S rRNA sequencing results showed that BT and IBT gavage could increase beta-diversity of gut flora in DSS-induced colitis mice. Furthermore, the significance test for differences between the groups showed that BT could increase Faecalebaculum, Lactobacillus and Bacteroides, while decreasing Akkermansia. CONCLUSION: In summary, our findings imply that BT and its heat-treated inactivated bacteria exert a protective effect by suppressing macrophage-induced IL-6 through the inhibition of p38 MAPK pathway and ameliorating intestinal gut dysbiosis in experimental colitis.


Asunto(s)
Bacteroides thetaiotaomicron , Colitis , Masculino , Animales , Ratones , ARN Ribosómico 16S/metabolismo , Interleucina-6/metabolismo , Activación de Macrófagos , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/patología , Inflamación , Modelos Animales de Enfermedad , Colon/patología
8.
Sci Rep ; 14(1): 16300, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009605

RESUMEN

Adenoid cystic carcinoma (ACC) is a rare, usually slow-growing yet aggressive head and neck malignancy. Despite its clinical significance, our understanding of the cellular evolution and microenvironment in ACC remains limited. We investigated the intratumoral microbiomes of 50 ACC tumor tissues and 33 adjacent normal tissues using 16S rRNA gene sequencing. This allowed us to characterize the bacterial communities within the ACC and explore potential associations between the bacterial community structure, patient clinical characteristics, and tumor molecular features obtained through RNA sequencing. The bacterial composition in the ACC was significantly different from that in adjacent normal salivary tissue, and the ACC exhibited diverse levels of species richness. We identified two main microbial subtypes within the ACC: oral-like and gut-like. Oral-like microbiomes, characterized by increased diversity and abundance of Neisseria, Leptotrichia, Actinomyces, Streptococcus, Rothia, and Veillonella (commonly found in healthy oral cavities), were associated with a less aggressive ACC-II molecular subtype and improved patient outcomes. Notably, we identified the same oral genera in oral cancer and head and neck squamous cell carcinomas. In both cancers, they were part of shared oral communities associated with a more diverse microbiome, less aggressive tumor phenotype, and better survival that reveal the genera as potential pancancer biomarkers for favorable microbiomes in ACC and other head and neck cancers. Conversely, gut-like intratumoral microbiomes, which feature low diversity and colonization by gut mucus layer-degrading species, such as Bacteroides, Akkermansia, Blautia, Bifidobacterium, and Enterococcus, were associated with poorer outcomes. Elevated levels of Bacteroides thetaiotaomicron were independently associated with significantly worse survival and positively correlated with tumor cell biosynthesis of glycan-based cell membrane components.


Asunto(s)
Carcinoma Adenoide Quístico , Neoplasias de Cabeza y Cuello , Microbiota , ARN Ribosómico 16S , Humanos , Carcinoma Adenoide Quístico/microbiología , Carcinoma Adenoide Quístico/patología , Neoplasias de Cabeza y Cuello/microbiología , Neoplasias de Cabeza y Cuello/patología , Femenino , Masculino , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Anciano , Adulto , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación
9.
Methods Mol Biol ; 2760: 117-132, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468085

RESUMEN

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system has enabled rapid advances in genomic engineering and transcriptional regulation. Specifically, CRISPR interference (CRISPRi) system has been used to systematically investigate the gene functions of microbial strains in a high-throughput manner. This method involves growth profiling using cells that have been transformed with the deactivated Cas9 (dCas9) and single-guide RNA (sgRNA) libraries that target individual genes. The fitness scores of each gene are calculated by measuring the abundance of individual sgRNAs during cell growth and represent gene essentiality. In this chapter, a process is described for functional genetic screening using CRISPRi at the whole-genome scale, starting from the synthesis of sgRNA libraries, construction of CRISPRi libraries, and identification of essential genes through growth profiling. The commensal bacterium Bacteroides thetaiotaomicron was used to implement the protocol. This method is expected to be applicable to a broader range of microorganisms to explore the novel phenotypic characteristics of microorganisms.


Asunto(s)
Regulación de la Expresión Génica , ARN Guía de Sistemas CRISPR-Cas , Fenotipo , Pruebas Genéticas , Sistemas CRISPR-Cas
10.
Biomed Pharmacother ; 172: 116302, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387133

RESUMEN

Ulcerative colitis (UC) represents an inflammatory disease characterized by fluctuations in severity, posing substantial challenges in treatment. The gut microbiota plays a pivotal role in the pathogenesis of UC. This study sought to identify drugs specifically targeting the gut microbiota to mitigate UC. We initiated a meta-analysis on gut microbiota in UC patients to identify UC-associated bacterial strains. Subsequently, we screened 164 dietary herbal medicines in vitro to identify potential prebiotics for the UC-associated bacterium, Bacteroides thetaiotaomicron. The DSS-induced colitis mouse model was utilized to evaluate the anti-colitis efficacy of the identified dietary herbal medicine. Full-length 16 S rRNA amplicon sequencing was employed to observe changes in gut microbiota following dietary herbal medicine intervention. The relative abundance of Bacteroides was notably diminished in UC patients compared to their healthy counterparts. B. thetaiotaomicron exhibited an inverse relationship with UC symptoms, indicating its potential as an anti-colitis agent. In vitro assessments revealed that H. Herba significantly bolstered the proliferation of B. thetaiotaomicron. Further experiments showed that treating DSS-induced mice with an aqueous extract of H. Herba considerably alleviated colitis indicators such as weight loss, colon shortening, disease activity score (DAI), and systemic inflammation. Microbial analysis revealed B. thetaiotaomicron as the sole bacterium substantially augmented by H. Herba in vivo. Overall H. Herba emerges as a promising prebiotic for B. thetaiotaomicron, offering significant anti-colitis benefits. Employing a gut microbiota-centric approach proves valuable in the quest for drug discovery.This study provides a new paradigm for drug discovery that targets the gut microbiota to treat UC.


Asunto(s)
Bacteroides thetaiotaomicron , Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Humanos , Animales , Ratones , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Bacteroides , Prebióticos
11.
mBio ; 15(5): e0348823, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38534200

RESUMEN

Bacteroides thetaiotaomicron is a prominent member of the human gut microbiota contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm lifestyle, and it was recently shown that B. thetaiotaomicron biofilm formation is promoted by the presence of bile. This process also requires a B. thetaiotaomicron extracellular DNase, which is not, however, regulated by bile. Here, we showed that bile induces the expression of several Resistance-Nodulation-Division (RND) efflux pumps and that inhibiting their activity with a global competitive efflux inhibitor impaired bile-dependent biofilm formation. We then showed that, among the bile-induced RND-efflux pumps, only the tripartite BT3337-BT3338-BT3339 pump, re-named BipABC [for Bile Induced Pump A (BT3337), B (BT3338), and C (BT3339)], is required for biofilm formation. We demonstrated that BipABC is involved in the efflux of magnesium to the biofilm extracellular matrix, which leads to a decrease of extracellular DNA concentration. The release of magnesium in the biofilm matrix also impacts biofilm structure, potentially by modifying the electrostatic repulsion forces within the matrix, reducing interbacterial distance and allowing bacteria to interact more closely and form denser biofilms. Our study therefore, identified a new molecular determinant of B. thetaiotaomicron biofilm formation in response to bile salts and provides a better understanding on how an intestinal chemical cue regulates biofilm formation in a major gut symbiont.IMPORTANCEBacteroides thetaiotaomicron is a prominent member of the human gut microbiota able to degrade dietary and host polysaccharides, altogether contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm community lifestyle, providing protection against environmental factors that might, in turn, protect the host from dysbiosis and dysbiosis-related diseases. It was recently shown that B. thetaiotaomicron exposure to intestinal bile promotes biofilm formation. Here, we reveal that a specific B. thetaiotaomicron membrane efflux pump is induced in response to bile, leading to the release of magnesium ions, potentially reducing electrostatic repulsion forces between components of the biofilm matrix. This leads to a reduction of interbacterial distance and strengthens the biofilm structure. Our study, therefore, provides a better understanding of how bile promotes biofilm formation in a major gut symbiont, potentially promoting microbiota resilience to stress and dysbiosis events.


Asunto(s)
Proteínas Bacterianas , Bacteroides thetaiotaomicron , Bilis , Biopelículas , Magnesio , Biopelículas/crecimiento & desarrollo , Bacteroides thetaiotaomicron/fisiología , Bacteroides thetaiotaomicron/metabolismo , Magnesio/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Bilis/metabolismo , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Microbioma Gastrointestinal/fisiología , Regulación Bacteriana de la Expresión Génica
12.
Gut Microbes ; 16(1): 2390133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132815

RESUMEN

Vancomycin (VAN) treatment in Clostridioides difficile infection (CDI) suffers from a relatively high rate of recurrence, with a variety of reasons behind this, including biofilm-induced recurrent infections. C. difficile can form monophyletic or symbiotic biofilms with other microbes in the gut, and these biofilms protect C. difficile from being killed by antibiotics. In this study, we analyzed the ecological relationship between Bacteroides thetaiotaomicron and C. difficile and their formation of symbiotic biofilm in the VAN environment. The production of symbiotic biofilm formed by C. difficile and B. thetaiotaomicron was higher than that of C. difficile and B. thetaiotaomicron alone in the VAN environment. In symbiotic biofilms, C. difficile was characterized by increased production of the toxin protein TcdA and TcdB, up-regulation of the expression levels of the virulence genes tcdA and tcdB, enhanced bacterial cell swimming motility and c-di-GMP content, and increased adhesion to Caco-2 cells. The scanning electron microscope (SEM) combined with confocal laser scanning microscopy (CLSM) results indicated that the symbiotic biofilm was elevated in thickness, dense, and had an increased amount of mixed bacteria, while the fluorescence in situ hybridization (FISH) probe and plate colony counting results further indicated that the symbiotic biofilm had a significant increase in the amount of C. difficile cells, and was able to better tolerate the killing of the simulated intestinal fluid. Taken together, C. difficile and B. thetaiotaomicron become collaborative in the VAN environment, and targeted deletion or attenuation of host gut B. thetaiotaomicron content may improve the actual efficacy of VAN in CDI treatment.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Bacteroides thetaiotaomicron , Biopelículas , Clostridioides difficile , Simbiosis , Vancomicina , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/fisiología , Clostridioides difficile/genética , Humanos , Vancomicina/farmacología , Antibacterianos/farmacología , Células CACO-2 , Bacteroides thetaiotaomicron/efectos de los fármacos , Bacteroides thetaiotaomicron/metabolismo , Bacteroides thetaiotaomicron/fisiología , Bacteroides thetaiotaomicron/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Enterotoxinas/metabolismo , Enterotoxinas/genética , Adhesión Bacteriana/efectos de los fármacos
13.
Front Microbiol ; 15: 1332105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800758

RESUMEN

Introduction: Research on the mechanism of marine polysaccharide utilization by Bacteroides thetaiotaomicron has drawn substantial attention in recent years. Derived from marine algae, the marine algae polysaccharides could serve as prebiotics to facilitate intestinal microecological balance and alleviate colonic diseases. Bacteroides thetaiotaomicron, considered the most efficient degrader of polysaccharides, relates to its capacity to degrade an extensive spectrum of complex polysaccharides. Polysaccharide utilization loci (PULs), a specialized organization of a collection of genes-encoded enzymes engaged in the breakdown and utilization of polysaccharides, make it possible for Bacteroides thetaiotaomicron to metabolize various polysaccharides. However, there is still a paucity of comprehensive studies on the procedure of polysaccharide degradation by Bacteroides thetaiotaomicron. Methods: In the current study, the degradation of four kinds of marine algae polysaccharides, including sodium alginate, fucoidan, laminarin, and Pyropia haitanensis polysaccharides, and the underlying mechanism by Bacteroides thetaiotaomicron G4 were investigated. Pure culture of Bacteroides thetaiotaomicron G4 in a substrate supplemented with these polysaccharides were performed. The change of OD600, total carbohydrate contents, and molecular weight during this fermentation were determined. Genomic sequencing and bioinformatic analysis were further performed to elucidate the mechanisms involved. Specifically, Gene Ontology (GO) annotation, Clusters of Orthologous Groups (COG) annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were utilized to identify potential target genes and pathways. Results: Underlying target genes and pathways were recognized by employing bioinformatic analysis. Several PULs were found that are anticipated to participate in the breakdown of these four polysaccharides. These findings may help to understand the interactions between these marine seaweed polysaccharides and gut microorganisms. Discussion: The elucidation of polysaccharide degradation mechanisms by Bacteroides thetaiotaomicron provides valuable insights into the utilization of marine polysaccharides as prebiotics and their potential impact on gut health. Further studies are warranted to explore the specific roles of individual PULs and their contributions to polysaccharide metabolism in the gut microbiota.

14.
Gut Microbes ; 16(1): 2304159, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38277137

RESUMEN

Gut microbiota plays an essential role in the progression of nonalcoholic fatty liver disease (NAFLD), making the gut-liver axis a potential therapeutic strategy. Bacteroides genus, the enriched gut symbionts, has shown promise in treating fatty liver. However, further investigation is needed to identify specific beneficial Bacteroides strains for metabolic disorders in NAFLD and elucidate their underlying mechanisms. In this study, we observed a positive correlation between the abundance of Bacteroides thetaiotaomicron (B. theta) and the alleviation of metabolic syndrome in the early and end stages of NAFLD. Administration of B. theta to HFD-fed mice for 12 weeks reduced body weight and fat accumulation, decreased hyperlipidemia and insulin resistance, and prevented hepatic steatohepatitis and liver injury. Notably, B. theta did not affect these indicators in low-fat diet (LFD)-fed mice and exhibited good safety. Mechanistically, B. theta regulated gut microbial composition, characterized by a decreased Firmicutes/Bacteroidetes ratio in HFD-Fed mice. It also increased gut-liver folate levels and hepatic metabolites, alleviating metabolic dysfunction. Additionally, treatment with B. theta increased the proportion of polyunsaturated fatty acid in the mouse liver, offering a widely reported benefit for NAFLD improvement. In conclusion, this study provides evidence that B. theta ameliorates NAFLD by regulating gut microbial composition, enhancing gut-liver folate and unsaturated fatty acid metabolism, highlighting the therapeutic role of B. theta as a potential probiotic for NAFLD.


Asunto(s)
Bacteroides thetaiotaomicron , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Ratones Endogámicos C57BL
15.
Front Nutr ; 11: 1360199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389799

RESUMEN

To produce the health-associated metabolite propionate, gut microbes require vitamin B12 as a cofactor to convert succinate to propionate. B12 is sourced in the human gut from the unabsorbed dietary fraction and in situ microbial production. However, experimental data for B12 production by gut microbes is scarce, especially on their produced B12-analogues. Further, the promotion of propionate production by microbially-produced and dietary B12 is not yet fully understood. Here, we demonstrated B12 production in 6 out of 8 in silico predicted B12-producing bacteria from the human gut. Next, we showed in vitro that B12 produced by Blautia hydrogenotrophica, Marvinbryantia formatexigens, and Blautia producta promoted succinate to propionate conversion of two prevalent B12-auxotrophic gut bacteria, Akkermansia muciniphila and Bacteroides thetaiotaomicron. Finally, we examined the propiogenic effect of commercially available B12-analogues present in the human diet (cyano-B12, adenosyl-B12 and hydroxy-B12) at two doses. The low dose resulted in partial conversion of succinate to propionate for A. muciniphila when grown with adenosyl-B12 (14.6 ± 2.4 mM succinate and 18.7 ± 0.6 mM propionate) and hydroxy-B12 (13.0 ± 1.1 mM and 21.9 ± 1.2 mM), in comparison to cyano-B12 (0.7 ± 0.1 mM and 34.1 ± 0.1 mM). Higher doses of adenosyl-B12 and hydroxy-B12 resulted in significantly more conversion of succinate to propionate in both propionate-producing species, compared to the low dose. B12 analogues have different potential to impact the propionate metabolism of prevalent propionate producers in the gut. These results could contribute to strategies for managing gut disorders associated with decreased propionate production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA