Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542150

RESUMEN

Kemerovo virus (KEMV) is a tick-borne orbivirus transmitted by ticks of the genus Ixodes. Previous animal experimentation studies with orbiviruses, in particular the interferon receptor double knock-out (IFNAR(-/-)) mouse model, did not indicate bias that is related to age or sex. We endeavoured to assess the effect of serial and alternated passages of KEMV in mammalian or Ixodes cells on virus replication and potential virulence in male or female IFNAR(-/-) mice, with important age differences: younger males (4-5 months old), older males (14-15 months old), and old females (14-15 months old). After 30 serial passages in mammalian or tick cells, or alternated passages in the two cell types, older female mice which were inoculated with the resulting virus strains were the first to show clinical signs and die. Younger males behaved differently from older males whether they were inoculated with the parental strain of KEMV or with any of the cell culture-passaged strains. The groups of male and female mice inoculated with the mammalian cell culture-adapted KEMV showed the lowest viraemia. While older female and younger male mice died by day 6 post-inoculation, surprisingly, the older males survived until the end of the experiment, which lasted 10 days. RNA extracted from blood and organs of the various mice was tested by probe-based KEMV real-time RT-PCR. Ct values of the RNA extracts were comparable between older females and younger males, while the values for older males were >5 Ct units higher for the various organs, indicating lower levels of replication. It is noteworthy that the hearts of the old males were the only organs that were negative for KEMV RNA. These results suggest, for the first time, an intriguing age- and sex-related bias for an orbivirus in this animal model. Changes in the amino acid sequence of the RNA-dependent RNA polymerase of Kemerovo virus, derived from the first serial passage in Ixodes cells (KEMV Ps.IRE1), were identified in the vicinity of the active polymerase site. This finding suggests that selection of a subpopulation of KEMV with better replication fitness in tick cells occurred.


Asunto(s)
Ixodes , Orbivirus , Animales , Femenino , Masculino , Ratones , Secuencia de Aminoácidos , Técnicas de Cultivo de Célula , Ixodes/genética , Mamíferos/genética , Orbivirus/genética , ARN Viral/genética
2.
J Virol ; 95(24): e0163821, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34613808

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) is a severe disease of humans caused by CCHF virus (CCHFV), a biosafety level (BSL)-4 pathogen. Ticks of the genus Hyalomma are the viral reservoir, and they represent the main vector transmitting the virus to its hosts during blood feeding. We have previously shown that CCHFV can persistently infect Hyalomma-derived tick cell lines. However, the mechanism allowing the establishment of persistent viral infections in ticks is still unknown. Hazara virus (HAZV) can be used as a BSL-2 model virus instead of CCHFV to study virus/vector interactions. To investigate the mechanism behind the establishment of a persistent infection, we developed an in vitro model with Hyalomma-derived tick cell lines and HAZV. As expected, HAZV, like CCHFV, persistently infects tick cells without any sign of cytopathic effect, and the infected cells can be cultured for more than 3 years. Most interestingly, we demonstrated the presence of short viral-derived DNA forms (vDNAs) after HAZV infection. Furthermore, we demonstrated that the antiretroviral drug azidothymine triphosphate could inhibit the production of vDNAs, suggesting that vDNAs are produced by an endogenous retrotranscriptase activity in tick cells. Moreover, we collected evidence that vDNAs are continuously synthesized, thereby downregulating viral replication to promote cell survival. Finally, vDNAs were also detected in CCHFV-infected tick cells. In conclusion, vDNA synthesis might represent a strategy to control the replication of RNA viruses in ticks allowing their persistent infection. IMPORTANCE Crimean-Congo hemorrhagic fever (CCHF) is an emerging tick-borne viral disease caused by CCHF virus (CCHFV). Ticks of the genus Hyalomma can be persistently infected with CCHFV representing the viral reservoir, and the main vector for viral transmission. Here we showed that tick cells infected with Hazara virus, a nonpathogenic model virus closely related to CCHFV, contained short viral-derived DNA forms (vDNAs) produced by endogenous retrotranscriptase activity. vDNAs are transitory molecules requiring viral RNA replication for their continuous synthesis. Interestingly, vDNA synthesis seemed to be correlated with downregulation of viral replication and promotion of tick cell viability. We also detected vDNAs in CCHFV-infected tick cells suggesting that they could represent a key element in the cell response to nairovirus infection and might represent a more general mechanism of innate immunity against RNA viral infection.


Asunto(s)
ADN Viral/metabolismo , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Nairovirus/genética , Garrapatas/virología , Replicación Viral/genética , Animales , Línea Celular , ADN Viral/genética , Filogenia , ARN Viral/genética , Garrapatas/citología
3.
BMC Biol ; 18(1): 136, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33032594

RESUMEN

BACKGROUND: African swine fever virus (ASFV) is a most devastating pathogen affecting swine. In 2007, ASFV was introduced into Eastern Europe where it continuously circulates and recently reached Western Europe and Asia, leading to a socio-economic crisis of global proportion. In Africa, where ASFV was first described in 1921, it is transmitted between warthogs and soft ticks of the genus Ornithodoros in a so-called sylvatic cycle. However, analyses into this virus' evolution are aggravated by the absence of any closely related viruses. Even ancient endogenous viral elements, viral sequences integrated into a host's genome many thousand years ago that have proven extremely valuable to analyse virus evolution, remain to be identified. Therefore, the evolution of ASFV, the only known DNA virus transmitted by arthropods, remains a mystery. RESULTS: For the identification of ASFV-like sequences, we sequenced DNA from different recent Ornithodoros tick species, e.g. O. moubata and O. porcinus, O. moubata tick cells and also 100-year-old O. moubata and O. porcinus ticks using high-throughput sequencing. We used BLAST analyses for the identification of ASFV-like sequences and further analysed the data through phylogenetic reconstruction and molecular clock analyses. In addition, we performed tick infection experiments as well as additional small RNA sequencing of O. moubata and O. porcinus soft ticks. CONCLUSION: Here, we show that soft ticks of the Ornithodoros moubata group, the natural arthropod vector of ASFV, harbour African swine fever virus-like integrated (ASFLI) elements corresponding to up to 10% (over 20 kb) of the ASFV genome. Through orthologous dating and molecular clock analyses, we provide data suggesting that integration could have occurred over 1.47 million years ago. Furthermore, we provide data showing ASFLI-element specific siRNA and piRNA in ticks and tick cells allowing for speculations on a possible role of ASFLI-elements in RNA interference-based protection against ASFV in ticks. We suggest that these elements, shaped through many years of co-evolution, could be part of an evolutionary virus-vector 'arms race', a finding that has not only high impact on our understanding of the co-evolution of viruses with their hosts but also provides a glimpse into the evolution of ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Vectores Artrópodos/genética , Evolución Molecular , Genoma , Ornithodoros/genética , Animales , Evolución Biológica , Filogenia , Análisis de Secuencia de ADN
4.
Viruses ; 16(4)2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675918

RESUMEN

Cell cultures derived from ticks have become a commonly used tool for the isolation and study of tick-borne pathogens and tick biology. The IRE/CTVM19 cell line, originating from embryos of Ixodes ricinus, is one such line. Previously, reovirus-like particles, as well as sequences with similarity to rhabdoviruses and iflaviruses, were detected in the IRE/CTVM19 cell line, suggesting the presence of multiple persisting viruses. Subsequently, the full genome of an IRE/CTVM19-associated rhabdovirus was recovered from a cell culture during the isolation of the Alongshan virus. In the current work, we used high-throughput sequencing to describe a virome of the IRE/CTVM19 cell line. In addition to the previously detected IRE/CTVM19-associated rhabdovirus, two rhabdoviruses were detected: Chimay rhabdovirus and Norway mononegavirus 1. In the follow-up experiments, we were able to detect both positive and negative RNA strands of the IRE/CTVM19-associated rhabdovirus and Norway mononegavirus 1 in the IRE/CTVM19 cells, suggesting their active replication in the cell line. Passaging attempts in cell lines of mammalian origin failed for all three discovered rhabdoviruses.


Asunto(s)
Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Rhabdoviridae , Rhabdoviridae/genética , Rhabdoviridae/aislamiento & purificación , Rhabdoviridae/clasificación , Animales , Línea Celular , Filogenia , Replicación Viral , ARN Viral/genética , Viroma/genética , Infecciones por Rhabdoviridae/virología , Infecciones por Rhabdoviridae/veterinaria
5.
Ticks Tick Borne Dis ; 13(4): 101951, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35427959

RESUMEN

The establishment and characterization of the ASE-14 cell line derived from embryos of Amblyomma sculptum is described here. Primary cultures were started, and after 60 days of culturing a confluent monolayer was formed and the first subculture was then carried out. After this, new subcultures were carried out every 4 weeks. Cryopreservation of cells was successful only after the 14th subculture. We compared the chromosomes of the ASE-14 cell line with those of parental ticks. Cytogenetic analysis revealed occurrences of variable and increased diploid numbers in the ASE-14 cell line in comparison with adult ticks, probably through polyploidization events, chromosome fusions and translocations, which allowed generation of cells with distinct diploid numbers. Confirmation of the origin of the A. sculptum cell line was obtained through conventional PCR and sequencing of a fragment of the mitochondrial 16S rRNA gene. In addition, no DNA from Anaplasma marginale, Anaplasma spp., Babesia/Theileria spp., Bartonella spp., Coxiella spp., Ehrlichia canis, Mycoplasma spp. or Rickettsia spp. was detected in the cells through PCR assays. Cytological analyses were performed using live phase contrast microscopy and cytocentrifuge smears stained with Giemsa, while periodic acid-Schiff and bromophenol blue staining techniques were used to detect polysaccharides and protein, respectively. In conclusion, a new cell line derived from embryos of A. sculptum was generated and characterized in this study. The ASE-14 cell line was deposited in the Tick Cell Biobank at the University of Liverpool, and in the Tick Cell Biobank South America Outpost at the Oswaldo Cruz Foundation (FIOCRUZ). The ASE-14 cell line is an important addition to the existing panel of tick cell lines and can be used as a tool for advancing research in various areas of the virology, bacteriology, biology and control of this tick.


Asunto(s)
Ixodidae , Rickettsia , Garrapatas , Amblyomma , Animales , Brasil , Línea Celular , Ixodidae/microbiología , ARN Ribosómico 16S , Rickettsia/genética , Garrapatas/genética
6.
Viruses ; 14(9)2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36146715

RESUMEN

Members of the jingmenviruses group have been found in arthropods and mammals on all continents except Australia and Antarctica. Two viruses of this group were isolated from patients with fever after a tick bite. Using a nested RT-PCR assay targeting a jingmenvirus polymerase gene fragment, we screened ticks collected in seven regions of Russia and found that the abundant jingmenvirus-positive were of Ixodes ricinus species, with the prevalence ranging from 19.8% to 34.3%. In all cases, DNase/RNase treatment suggested that the detected molecule was DNA and subsequent next generation sequencing (NGS) proved that the viral polymerase gene was integrated in the I. ricinus genome. The copy number of the integrated polymerase gene was quantified by qPCR relative to the ITS2 gene and estimated as 1.32 copies per cell. At least three different genetic variants of the integrated polymerase gene were found in the territory of Russia. Phylogenetic analysis of the integrated jingmenvirus polymerase gene showed the highest similarity with the sequence of the correspondent gene obtained in Serbia from I. ricinus.


Asunto(s)
Ixodes , Animales , Desoxirribonucleasas , Genoma de los Insectos , Humanos , Mamíferos , Filogenia , Reacción en Cadena de la Polimerasa , Ribonucleasas
7.
Microorganisms ; 10(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35744603

RESUMEN

Tick cell lines are important tools for research on ticks and the pathogens they transmit. Here, we report the establishment of ten new cell lines from European ticks of the genera Argas, Dermacentor, Hyalomma, Ixodes and Rhipicephalus originating from Germany and Spain. For each cell line, the method used to generate the primary culture, a morphological description of the cells and species confirmation by sequencing of the partial 16S rRNA gene are presented. Further molecular analysis of the two new Ixodes ricinus cell lines and three existing cell lines of the same species revealed genetic variation between cell lines derived from ticks collected in the same or nearby locations. Collectively, these new cell lines will support research into a wide range of viral, bacterial and protozoal tick-borne diseases prevalent in Europe.

8.
Viruses ; 14(12)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36560703

RESUMEN

In this work, we presented data from a two-year study of flavi-, flavi-like, and phenuiviruses circulation in the population of ixodid ticks in the Chelyabinsk region. We isolated three tick-borne encephalitis virus (TBEV) strains from I. persulcatus, which was not detected in the ticks of the genus Dermacentor. The virus prevalence ranged from 0.66% to 2.28%. The Yanggou tick virus (YGTV) is widespread in steppe and forest-steppe zones and is mainly associated with ticks of the genus Dermacentor. We isolated 26 strains from D. reticulatus, D. marginatus, and I. persulcatus ticks in the HAE/CTVM8 tick cell line. The virus prevalence ranged from 1.58% to 4.18% in D. reticulatus, ranged from 0.78% to 3.93% in D. marginatus, and was 0.66% in I. persulcatus. There was combined focus of TBEV and YGTV in the territory of the Chelyabinsk region. The Alongshan virus (ALSV) was found to be associated with I. persulcatus ticks and is spread in forest zone. We detected 12 amplicons and isolated 7 strains of ALSV in tick cells. The virus prevalence ranged from 1.13% to 6.00%. The phlebovirus Gomselga and unclassified phenuivirus Stavropol were associated with I. persulcatus and D. reticulatus ticks, respectively. Virus prevalence of the unclassified phenuivirus Stavropol in the Chelyabinsk region is lower than that in neighbouring regions.


Asunto(s)
Dermacentor , Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Ixodes , Ixodidae , Animales , Federación de Rusia/epidemiología , Bosques , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/epidemiología
9.
Front Vet Sci ; 8: 659786, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33842580

RESUMEN

Spiroplasma are vertically-transmitted endosymbionts of ticks and other arthropods. Field-collected Ixodes persulcatus have been reported to harbour Spiroplasma, but nothing is known about their persistence during laboratory colonisation of this tick species. We successfully isolated Spiroplasma from internal organs of 6/10 unfed adult ticks, belonging to the third generation of an I. persulcatus laboratory colony, into tick cell culture. We screened a further 51 adult male and female ticks from the same colony for presence of Spiroplasma by genus-specific PCR amplification of fragments of the 16S rRNA and rpoB genes; 100% of these ticks were infected and the 16S rRNA sequence showed 99.8% similarity to that of a previously-published Spiroplasma isolated from field-collected I. persulcatus. Our study shows that Spiroplasma endosymbionts persist at high prevalence in colonised I. persulcatus through at least three generations, and confirms the usefulness of tick cell lines for isolation and cultivation of this bacterium.

10.
Microorganisms ; 9(7)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202443

RESUMEN

Rickettsia raoultii is one of the causative agents of tick-borne lymphadenopathy in humans. This bacterium was previously isolated and propagated in tick cell lines; however, the growth characteristics have not been investigated. Here, we present the replication kinetics of R. raoultii in cell lines derived from different tick genera (BME/CTVM23, RSE/PILS35, and IDE8). Tick cell cultures were infected in duplicate with cryopreserved R. raoultii prepared from homologous cell lines. By 12-14 days post infection, 100% of the cells were infected, as visualized in Giemsa-stained cytocentrifuge smears. R. raoultii growth curves, determined by rickettsiae-specific gltA qPCR, exhibited lag, exponential, stationary and death phases. Exponential phases of 4-12 days and generation times of 0.9-2.6 days were observed. R. raoultii in BME/CTVM23 and RSE/PILS35 cultures showed, respectively, 39.5- and 37.1-fold increases compared to the inoculum. In contrast, multiplication of R. raoultii in the IDE8 cultures was 110.1-fold greater than the inoculum with a 7-day stationary phase. These findings suggest variation in the growth kinetics of R. raoultii in the different tick cell lines tested, amongst which IDE8 cells could tolerate the highest levels of R. raoultii replication. Further studies of R. raoultii are needed for a better understanding of its persistence within tick populations.

11.
Insects ; 12(10)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34680640

RESUMEN

Endosymbiotic intracellular bacteria of the genus Wolbachia are harboured by many species of invertebrates. They display a wide range of developmental, metabolic and nutritional interactions with their hosts and may impact the transmission of arboviruses and protozoan parasites. Wolbachia have occasionally been isolated during insect cell line generation. Here, we report the isolation of two strains of Wolbachia, wPip and wPap, during cell line generation from their respective hosts, the mosquito Culex pipiens and the sand fly Phlebotomus papatasi. wPip was pathogenic for both new C. pipiens cell lines, CPE/LULS50 and CLP/LULS56, requiring tetracycline treatment to rescue the lines. In contrast, wPap was tolerated by the P. papatasi cell line PPL/LULS49, although tetracycline treatment was applied to generate a Wolbachia-free subline. Both Wolbachia strains were infective for a panel of heterologous insect and tick cell lines, including two novel lines generated from the sand fly Lutzomyia longipalpis, LLE/LULS45 and LLL/LULS52. In all cases, wPip was more pathogenic for the host cells than wPap. These newly isolated Wolbachia strains, and the novel mosquito and sand fly cell lines reported here, will add to the resources available for research on host-endosymbiont relationships, as well as on C. pipiens, P. papatasi, L. longipalpis and the pathogens that they transmit.

12.
Viruses ; 13(3)2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799742

RESUMEN

The genus Flavivirus includes related, unclassified segmented flavi-like viruses, two segments of which have homology with flavivirus RNA-dependent RNA polymerase NS5 and RNA helicase-protease NS3. This group includes such viruses as Jingmen tick virus, Alongshan virus, Yanggou tick virus and others. We detected the Yanggou tick virus in Dermacentor nuttalli and Dermacentor marginatus ticks in two neighbouring regions of Russia. The virus prevalence ranged from 0.5% to 8.0%. We detected RNA of the Alongshan virus in 44 individuals or pools of various tick species in eight regions of Russia. The virus prevalence ranged from 0.6% to 7.8%. We demonstrated the successful replication of the Yanggou tick virus and Alongshan virus in IRE/CTVM19 and HAE/CTVM8 tick cell lines without a cytopathic effect. According to the phylogenetic analysis, we divided the Alongshan virus into two groups: an Ixodes persulcatus group and an Ixodes ricinus group. In addition, the I. persulcatus group can be divided into European and Asian subgroups. We found amino acid signatures specific to the I. ricinus and I. persulcatus groups and also distinguished between the European and Asian subgroups of the I. persulcatus group.


Asunto(s)
Dermacentor/virología , Infecciones por Flaviviridae/epidemiología , Flaviviridae/genética , Ixodes/virología , Proteínas no Estructurales Virales/genética , Sustitución de Aminoácidos/genética , Animales , Vectores Arácnidos/virología , Línea Celular , Culicidae/virología , Flaviviridae/aislamiento & purificación , Filogenia , ARN Helicasas/genética , ARN Viral/genética , Federación de Rusia/epidemiología , Serina Endopeptidasas/genética
13.
Ticks Tick Borne Dis ; 11(5): 101501, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32723658

RESUMEN

Trypanosomes have long been recognised as being amongst the most important protozoan parasites of vertebrates, from both medical and veterinary perspectives. Whilst numerous insect species have been identified as vectors, the role of ticks is less well understood. Here we report the isolation and partial molecular characterisation of a novel trypanosome from questing Ixodes ricinus ticks collected in Slovakia. The trypanosome was isolated in tick cell culture and then partially characterised by microscopy and amplification of fragments of the 18S rRNA and 24Sα rDNA genes. Analysis of the resultant sequences suggests that the trypanosome designated as Trypanosoma sp. Bratislava1 may be a new species closely related to several species or strains of trypanosomes isolated from, or detected in, ticks in South America and Asia, and to Trypanosoma caninum isolated from dogs in Brazil. This study highlights the potential involvement of ixodid ticks in the epidemiology of trypanosomes, as well as the use of tick cell lines for isolation of such tick-borne protozoa. Further studies are required to investigate the epidemiology, transmission and life cycle of this putative novel species.


Asunto(s)
Ixodes/parasitología , Trypanosoma/clasificación , Animales , Femenino , Masculino , Filogenia , ARN Protozoario/análisis , ARN Ribosómico 18S/análisis , Eslovaquia , Trypanosoma/citología , Trypanosoma/genética , Trypanosoma/aislamiento & purificación
14.
Ticks Tick Borne Dis ; 11(4): 101420, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32278686

RESUMEN

Ticks, being vectors for a variety of pathogens such as tick-borne encephalitis virus (TBEV), have developed defense mechanisms and pathways against infections, allowing them to control the virus at a level that does not hinder their fitness and development. At the present moment, only a few studies focused on interactions between ticks and TBEV on a molecular level have been published. Here, a possible application of MALDI-TOF MS as a research tool for the investigation of tick-virus interactions was shown. Mass spectrometry (MS) profiles of TBEV-infected and non-infected IRE/CTVM19 tick cell line were compared using principal component analysis. MS spectra were clustered based on the cultivation time of cells, but not their infection status. Nevertheless, the analysis of loading plots revealed different factors (peaks) being involved in the clustering of infected and non-infected cells. Out of them, nine were assigned with proteins: five and four for non-infected and infected cells, respectively. Peak with m/z 8565 was found to be of interest because it was suppressed upon TBEV infection and assigned to proteasome subunit alpha type (B7QE67).


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Ixodes/virología , Animales , Línea Celular/virología
15.
Front Physiol ; 11: 152, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32158404

RESUMEN

Ticks and the diseases they transmit are of huge veterinary, medical and economic importance worldwide. Control of ticks attacking livestock and companion animals is achieved primarily by application of chemical or plant-based acaricides. However, ticks can rapidly develop resistance to any new product brought onto the market, necessitating an ongoing search for novel active compounds and alternative approaches to tick control. Many aspects of tick and tick-borne pathogen research have been facilitated by the application of continuous cell lines derived from some of the most economically important tick species. These include cell lines derived from acaricide-susceptible and resistant ticks, cell sub-lines with in vitro-generated acaricide resistance, and genetically modified tick cells. Although not a replacement for the whole organism, tick cell lines enable studies at the cellular and molecular level and provide a more accessible, more ethical and less expensive in vitro alternative to in vivo tick feeding experiments. Here we review the role played by tick cell lines in studies on acaricide resistance, mode-of-action of acaricides, identification of potential novel control targets through better understanding of tick metabolism, and anti-tick vaccine development, that may lead to new approaches to control ticks and tick-borne diseases.

16.
Ticks Tick Borne Dis ; 11(6): 101511, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32993931

RESUMEN

Candidatus Rickettsia vini was originally detected in Ixodes arboricola ticks from Spain, and subsequently reported from several other Western Palearctic countries including Belgium. Recently, the bacterium was isolated in mammalian (Vero) cell culture from macerated male I. arboricola from Czech Republic, but there have been no reports of propagation in tick cells. Here we report isolation in a tick cell line of three strains of Ca. R. vini from I. arboricola collected from nests of great tits (Parus major) in Belgium. Internal organs of one male and two engorged female ticks were dissected aseptically, added to cultures of the Rhipicephalus microplus cell line BME/CTVM23 and incubated at 28 °C. Rickettsia-like bacteria were first seen in Giemsa-stained cytocentrifuge smears between 2 and 15 weeks later. Two of the isolates grew rapidly, destroying the tick cells within 2-4 weeks of onward passage in BME/CTVM23 cells, while the third isolate grew much more slowly, only requiring subculture at 4-5-month intervals. PCR amplification of bacterial 16S rRNA and Rickettsia gltA, sca4, ompB, ompA and 17-kDa genes revealed that all three isolates were Ca. R. vini, with 100 % identity to each other and to published Ca. R. vini sequences from other geographical locations. Transmission electron microscopy revealed typical single Rickettsia bacteria in the cytoplasm of BME/CTVM23 cells. The Ca. R. vini strain isolated from the male I. arboricola tick, designated Boshoek1, was tested for ability to grow in a panel of Ixodes ricinus, Ixodes scapularis and R. microplus cell lines and in Vero cells. The Boshoek1 strain grew rapidly, causing severe cytopathic effect, in the R. microplus line BME26, the I. ricinus line IRE11 and Vero cells, more slowly in the I. ricinus line IRE/CTVM19, possibly established a low-level infection in the I. ricinus line IRE/CTVM20, and failed to infect cells of any of four I. scapularis lines over a 12-week observation period. This study confirmed the applicability of the simple tick organ-cell line co-cultivation technique for isolation of tick-borne Rickettsia spp. using BME/CTVM23 cells.


Asunto(s)
Ixodes/microbiología , Rickettsia/aislamiento & purificación , Animales , Bélgica , Línea Celular , Femenino , Genes Bacterianos , Masculino , Filogenia , Rickettsia/clasificación
17.
Viruses ; 12(8)2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824843

RESUMEN

A highly virulent strain (Hypr) of tick-borne encephalitis virus (TBEV) was serially subcultured in the mammalian porcine kidney stable (PS) and Ixodes ricinus tick (IRE/CTVM19) cell lines, producing three viral variants. These variants exhibited distinct plaque sizes and virulence in a mouse model. Comparing the full-genome sequences of all variants, several nucleotide changes were identified in different genomic regions. Furthermore, different sequential variants were revealed to co-exist within one sample as quasispecies. Interestingly, the above-mentioned nucleotide changes found within the whole genome sequences of the new variants were present alongside the nucleotide sequence of the parental strain, which was represented as a minority quasispecies. These observations further imply that TBEV exists as a heterogeneous population that contains virus variants pre-adapted to reproduction in different environments, probably enabling virus survival in ticks and mammals.


Asunto(s)
Adaptación Fisiológica/genética , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Ixodes/virología , Cuasiespecies , Animales , Línea Celular , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Encefalitis Transmitida por Garrapatas/virología , Femenino , Variación Genética , Genoma Viral , Ixodes/citología , Riñón/citología , Riñón/virología , Ratones , Mutación , Porcinos , Virulencia
18.
Microorganisms ; 8(7)2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630209

RESUMEN

Wolbachia are intracellular endosymbionts of several invertebrate taxa, including insects and nematodes. Although Wolbachia DNA has been detected in ticks, its presence is generally associated with parasitism by insects. To determine whether or not Wolbachia can infect and grow in tick cells, cell lines from three tick species, Ixodes scapularis, Ixodes ricinus and Rhipicephalus microplus, were inoculated with Wolbachia strains wStri and wAlbB isolated from mosquito cell lines. Homogenates prepared from fleas collected from cats in Malaysia were inoculated into an I. scapularis cell line. Bacterial growth and identity were monitored by microscopy and PCR amplification and sequencing of fragments of Wolbachia genes. The wStri strain infected Ixodes spp. cells and was maintained through 29 passages. The wAlbB strain successfully infected Ixodes spp. and R. microplus cells and was maintained through 2-5 passages. A novel strain of Wolbachia belonging to the supergroup F, designated wCfeF, was isolated in I. scapularis cells from a pool of Ctenocephalides sp. cat fleas and maintained in vitro through two passages over nine months. This is the first confirmed isolation of a Wolbachia strain from a flea and the first isolation of any Wolbachia strain outside the "pandemic" A and B supergroups. The study demonstrates that tick cells can host multiple Wolbachia strains, and can be added to panels of insect cell lines to improve success rates in isolation of field strains of Wolbachia.

19.
Onderstepoort J Vet Res ; 87(1): e1-e14, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32633992

RESUMEN

Three isolates of Ehrlichia ruminantium (Kümm 2, Omatjenne and Riverside), the causative agent of heartwater in domestic ruminants, were isolated in Ixodes scapularis (IDE8) tick cell cultures using the leukocyte fraction of infected sheep blood. All stocks were successfully propagated in IDE8 cells, whereas initiation attempts using endothelial cell cultures were unsuccessful. Therefore, the new technique should be included in any attempt to isolate field strains of E. ruminantium to enhance the probability of getting E. ruminantium isolates which might not be initiated in endothelial cells. Draft genome sequences of all three isolates were generated and compared with published genomes. The data confirmed previous phylogenetic studies that these three isolates are genetically very close to each other, but distinct from previously characterised E. ruminantium isolates. Genome comparisons indicated that the gene content and genomic synteny were highly conserved, with the exception of the membrane protein families. These findings expand our understanding of the genetic diversity of E. ruminantium and confirm the distinct phenotypic and genetic characteristics shared by these three isolates.


Asunto(s)
Ehrlichia ruminantium/genética , Ehrlichia ruminantium/aislamiento & purificación , Ixodes/microbiología , Leucocitos/microbiología , Secuenciación Completa del Genoma/veterinaria , Animales , Células Cultivadas , Ehrlichia ruminantium/crecimiento & desarrollo , Oveja Doméstica/sangre , Oveja Doméstica/parasitología
20.
Transbound Emerg Dis ; 67 Suppl 2: 94-99, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31231926

RESUMEN

Folate pathways components were demonstrated to be present in RNA-sequencing data obtained from uninfected and pathogen-infected Rhipicephalus ticks. Here, PCR and qPCR allowed the identification of folate-related genes in Rhipicephalus spp. ticks and in the tick cell line IDE8. Genes coding for GTP cyclohydrolase I (gch-I), thymidylate synthase (ts) and 6-pyrovoyltetrahydropterin (ptps) were identified. Differential gene expression was evaluated by qPCR between uninfected and infected samples of four biological systems, showing significant upregulation and largest fold-change for the gch-I gene in the majority of the biological systems, supporting the selection for functional analysis by RNAi silencing. Efficient knockdown of the gch-I gene in uninfected and Ehrlichia canis-infected IDE8 cells showed no detectable impact on the capacity of the bacteria to invade or replicate in the tick cells. Overall, this work demonstrated an increase in the expression of some folate-related genes, though not always statistically significantly, in the presence of infection, suggesting gene expression modulation of these pathways, either as a tick response to an invader or manipulation of the tick cell machinery by the pathogens to their advantage. This discovery points to folate pathways as interesting targets for further studies.


Asunto(s)
Ácido Fólico/genética , Regulación de la Expresión Génica/fisiología , Proteínas Protozoarias/genética , Rhipicephalus/genética , Animales , Ehrlichia canis/genética , Femenino , GTP Ciclohidrolasa/genética , Infecciones/veterinaria , Liasas de Fósforo-Oxígeno/genética , Interferencia de ARN , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Timidilato Sintasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA