Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999003

RESUMEN

Tiliroside is a natural polyphenolic compound with a wide range of biological activity, and defatted strawberry seeds are its rich source. The goal of this study was to optimize accelerated solvent extraction (ASE) conditions, including temperature, solvent composition, and the number of extraction cycles, using Box-Behnken design to maximize the yield of tiliroside. UPLC-DAD-MS was applied to investigate the polyphenolic composition of the extracts, and preparative liquid chromatography (pLC) was used for isolation. All obtained mathematical models generally showed an increase in the efficiency of isolating polyphenolic compounds with an increase in temperature, ethanol content, and the number of extraction cycles. The optimal established ASE conditions for tiliroside were as follows: a temperature of 65 °C, 63% ethanol in water, and four extraction cycles. This allowed for the obtainment of a tiliroside-rich fraction, and the recovery of isolated tiliroside from plant material reached 243.2 mg from 100 g. Our study showed that ASE ensures the isolation of a tiliroside-rich fraction with high effectiveness. Furthermore, defatted strawberry seeds proved to be a convenient source of tiliroside because the matrix of accompanying components is relatively poor, which facilitates separation.


Asunto(s)
Fragaria , Extractos Vegetales , Polifenoles , Semillas , Solventes , Fragaria/química , Polifenoles/química , Polifenoles/aislamiento & purificación , Semillas/química , Solventes/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/química , Flavonoides/aislamiento & purificación , Fraccionamiento Químico/métodos
2.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37685842

RESUMEN

Specific changes in mucin-type O-glycosylation are common for many cancers, including gastric ones. The most typical alterations include incomplete synthesis of glycan structures, enhanced expression of truncated O-glycans (Tn, T antigens and their sialylated forms), and overexpression of fucosylation. Such altered glycans influence many cellular activities promoting cancer development. Tiliroside is a glycosidic dietary flavonoid with pharmacological properties, including anti-cancer. In this study, we aim to assess the effect of the combined action of anti-MUC1 and tiliroside on some cancer-related factors in AGS gastric cancer cells. Cancer cells were treated with 40, 80, and 160 µM tiliroside, 5 µg/mL anti-MUC1, and flavonoid together with mAb. Real-Time PCR, ELISA, and Western blotting were applied to examine MUC1 expression, specific, tumor-associated antigens, enzymes taking part in their formation, Gal-3, Akt, and NF-κB. MUC1 expression was significantly reduced by mAb action. The combined action of anti-MUC1 and tiliroside was more effective in comparison with monotherapy in the case of C1GalT1, ST3GalT1, FUT4, Gal-3, NF-κB, Akt mRNAs, and Tn antigen, as well as sialyl T antigen expression. The results of our study indicate that applied combined therapy may be a promising anti-gastric cancer strategy.


Asunto(s)
FN-kappa B , Neoplasias Gástricas , Humanos , Anticuerpos Monoclonales/farmacología , Flavonoides , Fucosiltransferasas , Proteínas Proto-Oncogénicas c-akt , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/terapia , Mucina-1/inmunología
3.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958538

RESUMEN

Tiliroside, a natural flavonoid, has various biological activities and improves several inflammatory diseases in rodents. However, the effect of Tiliroside on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) and the underlying mechanisms are still unclear. This study aimed to evaluate the potential renoprotective effect of Tiliroside on LPS-induced AKI in mice. Male C57BL/6 mice were intraperitoneally injected with LPS (a single dose, 3 mg/kg) with or without Tiliroside (50 or 200 mg/kg/day for 8 days). Tiliroside administration protected against LPS-induced AKI, as reflected by ameliorated renal dysfunction and histological alterations. LPS-stimulated renal expression of inflammatory cytokines, fibrosis markers, and kidney injury markers in mice was significantly abolished by Tiliroside. This flavonoid also stimulated autophagy flux but inhibited oxidative stress and tubular cell apoptosis in kidneys from LPS-injected mice. Mechanistically, our study showed the regulation of Tiliroside on the intrarenal renin-angiotensin system in LPS-induced AKI mice. Tiliroside treatment suppressed intrarenal AGT, Renin, ACE, and Ang II, but upregulated intrarenal ACE2 and Ang1-7, without affecting plasma Ang II and Ang1-7 levels. Collectively, our data highlight the renoprotective action of Tiliroside on LPS-induced AKI by suppressing inflammation, oxidative stress, and tubular cell apoptosis and activating autophagy flux via the shift towards the intrarenal ACE2/Ang1-7 axis and away from the intrarenal ACE/Ang II axis.


Asunto(s)
Lesión Renal Aguda , Sistema Renina-Angiotensina , Ratones , Masculino , Animales , Lipopolisacáridos/farmacología , Peptidil-Dipeptidasa A/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Ratones Endogámicos C57BL , Riñón/metabolismo , Flavonoides/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Angiotensina II/metabolismo
4.
Molecules ; 28(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38005247

RESUMEN

The Nod-like receptor family PYRIN domain containing 3 (NLRP3) inflammasome is a multiprotein signaling complex that plays a pivotal role in innate immunity, and the dysregulated NLRP3 inflammasome activation is implicated in various diseases. Tiliroside is a natural flavonoid in multiple medicinal and dietary plants with known anti-inflammatory activities. However, its role in regulating NLRP3 inflammasome activation and NLRP3-related disease has not been evaluated. Herein, it was demonstrated that tiliroside is inhibitory in activating the NLRP3 inflammasome in macrophages. Mechanistically, tiliroside promotes AMP-activated protein kinase (AMPK) activation, thereby leading to ameliorated mitochondrial damage as evidenced by the reduction of mitochondrial reactive oxygen species (ROS) production and the improvement of mitochondrial membrane potential, which is accompanied by attenuated NLRP3 inflammasome activation in macrophages. Notably, tiliroside potently attenuated lipopolysaccharide (LPS)-induced acute lung injury in mice, which has been known to be NLRP3 inflammasome dependent. For the first time, this study identified that tiliroside is an NLRP3 inflammasome inhibitor and may represent a potential therapeutic agent for managing NLRP3-mediated inflammatory disease.


Asunto(s)
Lesión Pulmonar Aguda , Inflamasomas , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Macrófagos/metabolismo , Flavonoides/metabolismo , Lesión Pulmonar Aguda/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos/farmacología
5.
Cancer Cell Int ; 22(1): 368, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36424626

RESUMEN

Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by poor prognosis, early recurrence, and the lack of durable chemotherapy responses and specific targeted treatments. In this preclinical study, we examines Tiliroside (TS, C30H26O13), as one of the major compounds of Tribulus terrestris L. which has been used as an alternative therapy in clinic practice of breast cancer treatment, for its therapeutic use in TNBC. The association between CAXII expression level and survival probability of TNBC patients, and the difference of CAXII expression level between TNBC and normal samples were evaluated by using publicly accessible databases. To determine the anticancer efficacy of TS on TNBC cells, cell proliferation, wound healing, cell invasion, and 3D spheroid formation assays were performed and excellent anticancer activities of TS were displayed. Mouse models further demonstrated that TS significantly reduced the tumor burden and improved survival rate. The properties of TS as a novel CAXII inhibitor have also been evaluated by CAXII activity assay, pHi, pHe and lactate level assay. Further RT-PCR and Caspase-3 activity analyses also revealed the positive regulating effects of TS on E2F1,3/Caspase-3 axis in TNBC cells cultured in 2D or 3D systems. The findings indicate that TS suppresses TNBC progression as a potential novel CAXII inhibitor in preclinical experiments, which warrants further investigation on its therapeutic implications.

6.
Molecules ; 27(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36234716

RESUMEN

Fruits are the main food part of the European dewberry (Rubus caesius L.), known as a source of polyphenols and antioxidants, while very little attention is paid to leaves and stems, especially young first-year stems. The purpose of this work was to analyze for the first time water and ethanol extracts obtained from young, freshly developed, leaves and stems of the European dewberry to determine their antioxidant and biological activity, whereas most of the papers describe biological properties of leaves collected during summer or autumn. As the phytochemical profile changes during the growing season, the quantitative and qualitative content of flavonoid glycosides and flavonoid aglycones was analyzed using reversed phase liquid chromatography/electrospray ionization triple quadrupole mass spectrometry (LC-ESI-MS/MS) with multiple reaction monitoring (MRM). The ability to inhibit hyaluronidase as well as antioxidant activity (2,2 diphenyl-1-picrylhydrazyl: DPPH and ferric antioxidant power: FRAP) were estimated. Extracts were also analyzed against Gram-positive and Gram-negative bacteria. The results of the qualitative phytochemical analysis indicated the presence of flavonoid aglycones and flavonoid glycosides, with the highest amount of tiliroside, hyperoside, isoquercetin, astragalin, rutin and catechin in ethanol extracts. DPPH and FRAP tests proved the high antioxidant activity of the extracts from leaves or stems and the antihyaluronidase assay revealed for the first time that water and ethanol extracts obtained from the stems exhibited the ability to inhibit hyaluronidase activity resulting in an IC50 of 55.24 ± 3.21 and 68.7 ± 1.61 µg/mL, respectively. The antimicrobial activity has never been analyzed for European dewberry and was the highest for Clostridium bifermentans and Clostridium sporogenes-anaerobic sporulation rods as well as Enterococcus faecalis for both water and ethanol extracts.


Asunto(s)
Catequina , Rubus , Antibacterianos/análisis , Antibacterianos/farmacología , Antioxidantes/química , Catequina/análisis , Etanol/análisis , Flavonoides/química , Glicósidos/análisis , Bacterias Gramnegativas , Bacterias Grampositivas , Hialuronoglucosaminidasa , Fitoquímicos/análisis , Fitoquímicos/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Polifenoles/química , Rutina/análisis , Espectrometría de Masas en Tándem , Agua/análisis
7.
Molecules ; 27(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35209048

RESUMEN

The aim of the present study was to investigate the phenolic composition and the biological properties of different Aerva lanata (L). Juss. herb extracts obtained with the use of accelerated solvent extraction (ASE), i.e., a green, ecological method, for cosmetic purposes. All samples exhibited high DPPH• (9.17-119.85 mg TE/g) and ABTS•+ (9.90-107.58 mg TE/g) scavenging activity. The extracts exhibited considerable anti-lipoxygenase (EC50 between 1.14 mg/mL and 3.73 mg/mL) and anti-xanthine oxidase (EC50 between 1.28 mg/mL and 3.72 mg/mL) activities, moderate chelating activity (EC50 between 1.58 mg/mL and 5.30 mg/mL), and high antioxidant potential in the ORAC assay (0.36-3.84 mM TE/g). Changes in the polyphenol profile of the analysed samples depending on the solvent and temperature used for the extraction were determined with the liquid chromatography/electrospray mass spectrometry (LC-ESI-MS/MS) method. Twenty-one phenolic compounds, including flavonoids and phenolic acids, were detected and quantified. It was shown that tiliroside was one of the main phenolic metabolites in the A. lanata (L.) Juss. herb., which may suggest that this compound may be largely responsible for the observed anti-inflammatory activity of the extracts. In addition, the studied extracts exhibited promising skin-related (anti-tyrosinase, anti-elastase, anti-collagenase, and anti-hyaluronidase) activity. This study showed that Aerva lanata (L.) Juss. contains high amounts of phenolic compounds, including tiliroside, and has good skin-related activities. Therefore, the plant may be interesting as a novel source of bioactive agents for cosmetic industries.


Asunto(s)
Amaranthaceae/química , Antiinflamatorios/química , Cosméticos/química , Inhibidores Enzimáticos/química , Extractos Vegetales/química , Polifenoles/química
8.
Xenobiotica ; 51(6): 728-736, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33874851

RESUMEN

Although Edgeworthia gardneri (Wall.) Meisn and its main component tiliroside (TIL) show good bioactivity, its intestinal absorption data supporting its low bioavailability have not been reported.The evaluation results of three absorption models in vitro and in vivo indicated that the results of the Ussing chamber model were basically consistent with the results of in vivo experiments. It was thus applied to investigate the characteristics of TIL across various intestinal regions and the interaction between TIL and adenosine triphosphate (ATP)-binding cassette family proteins (ABC) including, P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP).The data of the bi-directional transport showed that the ileum had the higher apparent permeability coefficient (Papp) of TIL than duodenum and jejunum, suggesting the best absorption of TIL in the ileum.In the presence of the MRP2 inhibitor, the absorption of TIL from water extracts of E. gardneri (Wall.) Meisn (WAE) was improved, indicating that MRP2 other than P-gp and BCRP affected the absorption of TIL and might be responsible for its low bioavailability. This study laid the foundation for enhancing the bioavailability of TIL and highlighted the influences of efflux transporters on bioavailability.


Asunto(s)
Proteínas de Neoplasias , Thymelaeaceae , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Flavonoides , Absorción Intestinal , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Thymelaeaceae/metabolismo
9.
Molecules ; 26(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34885813

RESUMEN

Inflammation is the body's response to infection or tissue injury in order to restore and maintain homeostasis. Prostaglandin E2 (PGE-2) derived from arachidonic acid (AA), via up-regulation of cyclooxygenase-2 (COX-2), is a key mediator of inflammation and can also be induced by several other factors including stress, chromosomal aberration, or environmental factors. Targeting prostaglandin production by inhibiting COX-2 is hence relevant for the successful resolution of inflammation. Waltheria indica L. is a traditional medicinal plant whose extracts have demonstrated COX-2 inhibitory properties. However, the compounds responsible for the activity remained unknown. For the preparation of extracts with effective anti-inflammatory properties, characterization of these substances is vital. In this work, we aimed to address this issue by characterizing the substances responsible for the COX-2 inhibitory activity in the extracts and generating prediction models to quantify the COX-2 inhibitory activity without biological testing. For this purpose, an extract was separated into fractions by means of centrifugal partition chromatography (CPC). The inhibitory potential of the fractions and extracts against the COX-2 enzyme was determined using a fluorometric COX-2 inhibition assay. The characterizations of compounds in the fractions with the highest COX-2 inhibitory activity were conducted by high resolution mass spectrometry (HPLC-MS/MS). It was found that these fractions contain alpha-linolenic acid, linoleic acid and oleic acid, identified and reported for the first time in Waltheria indica leaf extracts. After analyzing their contents in different Waltheria indica extracts, it could be demonstrated that these fatty acids are responsible for up to 41% of the COX-2 inhibition observed with Waltheria indica extract. Additional quantification of secondary metabolites in the extract fractions revealed that substances from the group of steroidal saponins and triterpenoid saponins also contribute to the COX-2 inhibitory activity. Based on the content of compounds contributing to COX-2 inhibition, two mathematical models were successfully developed, both of which had a root mean square error (RMSE) = 1.6% COX-2 inhibitory activity, demonstrating a high correspondence between predicted versus observed values. The results of the predictive models further suggested that the compounds contribute to COX-2 inhibition in the order linoleic acid > alpha linolenic acid > steroidal saponins > triterpenoid saponins. The characterization of substances contributing to COX-2 inhibition in this study enables a more targeted development of extraction processes to obtain Waltheria indica extracts with superior anti-inflammatory properties.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/metabolismo , Malvaceae/química , Extractos Vegetales/farmacología , Fraccionamiento Celular , Centrifugación , Ácidos Grasos/análisis , Fitoquímicos/farmacología
10.
Chem Pharm Bull (Tokyo) ; 68(1): 91-95, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31902904

RESUMEN

Magnolia Flower is a crude drug used for the treatment of headaches, toothaches, and nasal congestion. Here, we focused on Magnolia kobus, one of the botanical origins of Magnolia Flower, and collected the flower parts at different growth stages to compare chemical compositions and investigate potential inhibitory activities against interleukin-2 (IL-2) production in murine splenic T cells. After determining the structures, we examined the inhibitory effects of the constituents of the bud, the medicinal part of the crude drug, against IL-2 production. We first extracted the flower parts of M. kobus from the bud to fallen bloom stages and analysed the chemical compositions to identify the constituents characteristic to the buds. We found that the inhibitory activity of the buds against IL-2 production was more potent than that of the blooms. We isolated two known compounds, tiliroside (1) and syringin (2), characteristic to the buds from the methanol (MeOH) extract of Magnolia Flower. Moreover, we examined the inhibitory activities of both compounds against IL-2 production and found that tiliroside (1) but not syringin (2), showed strong inhibitory activity against IL-2 production and inhibited its mRNA expression. Thus, our strategy to examine the relationship between chemical compositions and biological activities during plant maturation could not only contribute to the scientific evaluation of medicinal parts of crude drugs but also assist in identifying biologically active constituents that have not yet been reported.


Asunto(s)
Interleucina-2/metabolismo , Magnolia/química , Extractos Vegetales/química , Animales , Línea Celular , Flavonoides/química , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Flores/química , Flores/metabolismo , Glucósidos/química , Glucósidos/aislamiento & purificación , Glucósidos/farmacología , Interleucina-2/genética , Magnolia/metabolismo , Ratones , Fenilpropionatos/química , Fenilpropionatos/aislamiento & purificación , Fenilpropionatos/farmacología , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
11.
Molecules ; 25(13)2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630318

RESUMEN

Viral diseases transmitted by the female Aedes aegypti L. are considered a major public health problem. The aerial parts of Helicteres velutina K. Schum (Sterculiaceae) have demonstrated potential insecticidal and larvicidal activity against this vector. The objective of this research was to investigate the mechanisms of action involved in the larvicidal activity of this species. The cytotoxicity activity of H. velutina fractions and compounds of crude ethanolic extract of the aerial parts of this species was assessed by using fluorescence microscopy and propidium iodide staining. In addition, the production of nitric oxide (NO) and hemocyte recruitment were checked after different periods of exposure. The fluorescence microscopy revealed an increasing in larvae cell necrosis for the dichloromethane fraction, 7,4'-di-O-methyl-8-O-sulphate flavone and hexane fraction (15.4, 11.0, and 7.0%, respectively). The tiliroside did not show necrotic cells, which showed the same result as that seen in the negative control. The NO concentration in hemolymph after 24 h exposure was significantly greater for the dichloromethane fraction and the 7,4'-di-O-methyl-8-O-sulphate flavone (123.8 and 56.2 µM, respectively) when compared to the hexane fraction and tiliroside (10.8 and 8.3 µM, respectively). The presence of plasmocytes only in the dichloromethane fraction and 7,4'-di-O-methyl-8-O-sulphate flavone treatments suggest that these would be the hemocytes responsible for the highest NO production, acting as a defense agent. Our results showed that the larvicidal activity developed by H. velutina compounds is related to its hemocyte necrotizing activity and alteration in NO production.


Asunto(s)
Aedes/crecimiento & desarrollo , Insecticidas/farmacología , Larva/crecimiento & desarrollo , Malvaceae/química , Mosquitos Vectores/crecimiento & desarrollo , Extractos Vegetales/farmacología , Hojas de la Planta/química , Aedes/efectos de los fármacos , Animales , Femenino , Larva/efectos de los fármacos , Mosquitos Vectores/efectos de los fármacos
12.
J Cell Physiol ; 234(9): 16263-16274, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30815860

RESUMEN

Osteoporosis is a class of metabolic bone disease caused by complexed ramifications. Overactivation of osteoclasts due to a sudden decreased estrogen level plays a pivotal role for postmenopausal women suffering from osteoporosis. Therefore, inhibiting osteoclast formation and function has become a major direction for the treatment of osteoporosis. Tiliroside (Tle) is a salutary dietary glycosidic flavonoid extracted from Oriental Paperbush flower, which has been reported to have an anti-inflammation effect. However, whether Tle affects the osteoclastogenesis and bone resorption remains unknown. Herein, we demonstrate that Tle prevents bone loss in ovariectomy in mice and inhibits osteoclast differentiation and bone resorption stimulated by receptor activator of nuclear factor-κB ligand (RANKL) in vitro. Molecular mechanism studies reveal that Tle reduces RANKL-induced activation of mitogen-activated protein kinase and T-cell nuclear factor 1 pathways, and osteoclastogenesis-related marker gene expression, including cathepsin K (Ctsk), matrix metalloproteinase 9, tartrate-resistant acid phosphatase (Acp5), and Atp6v0d2. Our research indicates that Tle suppresses osteoclastogenesis and bone loss by downregulating the RANKL-mediated signaling protein activation and expression. In addition, Tle inhibits intracellular reactive oxygen species generation which is related to the formation of osteoclasts. Therefore, Tle might serve as a potential drug for osteolytic disease such as osteoporosis.

13.
Molecules ; 23(12)2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30486448

RESUMEN

Background: Adansonia digitata L. (Malvaceae), also known as baobab, is a tree attracting recent interest especially due to the high nutritional value of the fruit pulp. However, few studies are reported on the secondary metabolite content, showing high variability depending on the geographic region. METHODS: In this study, the chemical profiles of Malian commercial baobab fruits and leaves, focused on phenolic content, were investigated by HPLC coupled with a photodiode array (PDA)/UV and an electrospray ionization (ESI) mass spectrometer (MS) and gas chromatography (GC)/MS. In addition, the extracts of fruit pulps obtained from three different markets (Fruits 1, 2, and 3) were evaluated for their total phenolic content (TPC), antioxidant activity and α-glucosidase inhibition. RESULTS: Baobab fruit pulps were found to be rich in procyanidins and flavonol glycosides, with tiliroside as the major constituent. The baobab leaves showed a similar profile respect to the fruits, but with more detected phenolics. All fruit pulp extracts exerted antioxidant activity (highest for Fruit 3) and higher α-glucosidase inhibition than acarbose used as standard. CONCLUSIONS: This study confirmed the variability of baobab with different origins and indicated Malian species baobab as a promising source of health-promoting substances.


Asunto(s)
Adansonia/química , Depuradores de Radicales Libres/química , Frutas/química , Hipoglucemiantes/química , Hojas de la Planta/química , Humanos , Malí
14.
Compr Rev Food Sci Food Saf ; 17(5): 1395-1421, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33350157

RESUMEN

Among flavonoid derivatives, tiliroside is a flavonoid contained in several edible plants or specific plant parts (fruits, leaves, or roots). These parts are often widely used as both food and medicines, in the treatment of various ailments and, in some cases, as food supplements. Considering the easy access to many publications concerning tiliroside and the lack of a review that summarizes the current progress in studies on its safety, efficacy, and presence in the plant kingdom, we present here a review paper on tiliroside and its principal derivatives. The paper also highlights the basic knowledge regarding this molecule, its derivatives, and the analytical approaches used for extraction and quantification, as well as reports on the biological activities against different key enzymes linked to various human diseases. The reported information is also devoted to highlighting the concept "learn from nature to discover new products," particularly in the development of new drugs, food supplements, and nutraceuticals, starting from a natural lead compound such as tiliroside and improving its biological activities (and selectivities) against a specific target for therapeutic purposes.

15.
J Sep Sci ; 40(12): 2629-2637, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28453223

RESUMEN

Nano-sized molecularly imprinted polymers for tiliroside were successfully prepared by a precipitation polymerization method. Acrylamide, ethylene glycol dimethacrylate, azobisisobutyronitrile, and acetonitrile/dimethyl sulfoxide were used as functional monomer, cross-linker, initiator, and porogen, respectively. The structural features and morphological characterization of tiliroside-imprinted polymers were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. The adsorption experiments indicated that the tiliroside-imprinted polymers exhibited high selective recognition property to tiliroside. Scatchard analysis indicated that the homogeneous-binding sites were formed in the polymers. The selectivity test revealed that the adsorption capacity and selectivity of polymers to tiliroside was significantly higher than that of rutin, astragalin, and kaempferol. Finally, the tiliroside-imprinted polymers were employed as adsorbents in solid-phase extraction for the extraction of tiliroside from the ethyl acetate extract of the flowers of Edgeworthia gardneri (wall.) Meisn. The results demonstrated that the extraction recoveries of tiliroside ranged from 69.3 to 73.5% by using tiliroside-imprinted polymers coupled with solid-phase extraction method. These results indicated that the tiliroside-based molecularly imprinted solid-phase extraction method was proven to be an effective technique for the separation and enrichment of tiliroside from natural medicines.


Asunto(s)
Flavonoides/aislamiento & purificación , Flores/química , Impresión Molecular , Thymelaeaceae/química , Adsorción , Cromatografía Líquida de Alta Presión , Polímeros , Extracción en Fase Sólida
16.
Molecules ; 22(7)2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28704976

RESUMEN

The aim of this study was to explore the role of p-coumaroyl in the antioxidant and cytoprotective effects of flavonoid glycosides. The antioxidant effects of astragalin and tiliroside were compared using ferric ion reducing antioxidant power, DPPH• scavenging, ABTS•⁺ scavenging, •O2- scavenging, and Fe2+-chelating assays. The results of these assays revealed that astragalin and tiliroside both exhibited dose-dependent activities; however, tiliroside exhibited lower IC50 values than astragalin. In the Fe2+-chelating assay, tiliroside gave a larger shoulder-peak at 510 nm than astragalin, and was also found to be darker in color. Both of these compounds were subsequently evaluated in a Fenton-induced mesenchymal stem cell (MSC) damaged assay, where tiliroside performed more effectively as a cytoprotective agent than astragalin. Tiliroside bearing a 6''-O-p-coumaroyl moiety exhibits higher antioxidant and cytoprotective effects than astragalin. The 6''-O-p-coumaroyl moiety of tiliroside not only enhances the possibility of electron-transfer and hydrogen-atom-transfer-based multi-pathways, but also enhances the likelihood of Fe-chelating. The p-coumaroylation of the 6"-OH position could therefore be regarded as a potential approach for improving the antioxidant and cytoprotective effects of flavonoid glycosides in MSC implantation therapy.


Asunto(s)
Antioxidantes/química , Cumarinas/química , Flavonoides/química , Glicósidos/química , Quempferoles/química , Animales , Antioxidantes/farmacología , Cumarinas/farmacología , Citoprotección , Flavonoides/farmacología , Glicósidos/farmacología , Quempferoles/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Extractos Vegetales/química , Ratas Sprague-Dawley
17.
Biochim Biophys Acta ; 1840(12): 3311-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25152356

RESUMEN

BACKGROUND: Tiliroside is a dietary glycosidic flavonoid which has shown in vivo anti-inflammatory activity. This study is aimed at evaluating the effect of tiliroside on neuroinflammation in BV2 microglia, and to identify its molecular targets of anti-neuroinflammatory action. METHODS: BV2 cells were stimulated with LPS+IFNγ in the presence or absence of tiliroside. TNFα, IL-6, nitrite and PGE2 production was determined with ELISA, Griess assay and enzyme immunoassay, respectively. iNOS, COX-2, phospho-p65, phospho-IκBα, phospho-IKKα, phospho-p38, phospho-MK2, phosopho-MKK3/6 and TRAF-6 were determined by western blot analysis. NF-κB activity was also investigated using a reporter gene assay in HEK293 cells. LPS-induced microglia ROS production was tested using the DCFDA method, while HO-1 and Nrf2 activation was determined with western blot. RESULTS: Tiliroside significantly suppressed TNFα, IL-6, nitrite and PGE2 production, as well as iNOS and COX-2 protein expression from LPS+IFNγ-activated BV2 microglia. Further mechanistic studies showed that tiliroside inhibited neuroinflammation by targeting important steps in the NF-κB and p38 signalling in LPS+IFNγ-activated BV2 cells. This compound also inhibited LPS-induced TRAF-6 protein expression in BV2 cells. Antioxidant activity of tiliroside in BV2 cells was demonstrated through attenuation of LPS+IFNγ-induced ROS production and activation of HO-1/Nrf2 antioxidant system. CONCLUSIONS: Tiliroside inhibits neuroinflammation in BV2 microglia through a mechanism involving TRAF-6-mediated activation of NF-κB and p38 MAPK signalling pathways. These activities are possibly due, in part, to the antioxidant property of this compound. GENERAL SIGNIFICANCE: Tiliroside is a potential novel natural compound for inhibiting neuroinflammation in neurodegenerative disorders.

18.
J Nat Med ; 78(1): 180-190, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37973705

RESUMEN

An acylated flavonol glycoside, trans-tiliroside (1), is found in certain parts of different herbs, including the seeds of Rosa canina (Rosaceae). Previous studies on compound 1 have focused on triglyceride (TG) metabolism, including its anti-obesity and intracellular TG reduction effects. In the present study, the effects of compound 1 on cholesterol (CHO) metabolism were investigated using human hepatocellular carcinoma-derived HepG2 cells and mice. Compound 1 decreased CHO secretion in HepG2 cells, which was enhanced by mevalonate in a concentration-dependent manner and decreased the secretion of apoprotein B (apoB)-100, a marker of very low-density lipoprotein (VLDL). Compound 1 also inhibited the activity of microsomal triglyceride transfer proteins, which mediate VLDL formation from cholesterol and triglycerides in the liver. In vivo, compound 1 inhibited the accumulation of Triton WR-1339-induced TG in the blood of fasted mice and maintained low levels of apoB-100. These results suggest that compound 1 inhibits the secretion of CHO as VLDL from the liver and has the potential for use for the prevention of dyslipidemia.


Asunto(s)
Lipoproteínas VLDL , Neoplasias Hepáticas , Ratones , Humanos , Animales , Lipoproteínas VLDL/metabolismo , Lipoproteínas VLDL/farmacología , Apolipoproteínas B/metabolismo , Células Hep G2 , Hígado/metabolismo , Triglicéridos , Colesterol , Lipoproteínas LDL/metabolismo
19.
Phytomedicine ; 127: 155392, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38412575

RESUMEN

BACKGROUND: Tiliroside (TIL) is a flavonoid compound that exists in a variety of edible plants. These dietary plants are widely used as food and medicine to treat various diseases. However, the effect of TIL on pancreatic cancer (PC) and its underlying mechanisms are unclear. PURPOSE: This study aims to reveal the anti-PC effect of TIL and clarify its mechanism. METHODS: The inhibitory effects of TIL on PC growth were studied both in vitro and in vivo. Flow cytometry, transmission electron microscopy, immunofluorescence, biochemical analyses, RT-qPCR, genetic ablation, and western blotting were employed to evaluate ferroptosis, autophagy, and iron regulation. Additionally, RNA sequencing (RNA-seq), biomolecular layer interferometry (BLI), and molecular simulation analysis were combined to identify TIL molecular targets. The clinicopathological significance of Calpain-2 (CAPN2) was determined through immunohistochemistry (IHC) on a PC tissue microarray. RESULTS: Herein, we showed that TIL was an effective anti-PC drug. CAPN2 was involved in the TIL - induced elevation of the labile iron pool (LIP) in PC cells. TIL directly bound to and inhibited CAPN2 activity, resulting in AKT deactivation and decreased expression of glucose transporters (GLUT1 and GLUT3) in PC cells. Consequently, TIL impaired ATP and NADPH generation, inducing autophagy and ROS production. The accumulation of TIL-induced ROS combined with LIP iron causes the Fenton reaction, leading to lipid peroxidation. Meanwhile, TIL-induced reduction of free iron ions promoted autophagic degradation of ferritin to regulate cellular iron homeostasis, which further exacerbated the death of PC cells by ferroptosis. As an extension of these in vitro findings, our murine xenograft study showed that TIL inhibited the growth of PANC-1 cells. Additionally, we showed that CAPN2 expression levels were related to clinical prognoses in PC patients. CONCLUSION: We identify TIL as a potent bioactive inhibitor of CAPN2 and an anti-PC candidate of natural origin. These findings also highlight CAPN2 as a potential target for PC treatment.


Asunto(s)
Ferroptosis , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Calpaína/genética , Calpaína/farmacología , Especies Reactivas de Oxígeno/metabolismo , Flavonoides/farmacología , Neoplasias Pancreáticas/patología , Hierro/metabolismo , Homeostasis
20.
Phytomedicine ; 126: 155407, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340577

RESUMEN

BACKGROUND: Ferroptosis, an iron-dependent process that regulates cell death. Emerging evidences suggest that ferroptosis induces acute kidney injury (AKI) progression, and inhibiting ferroptosis provides an effect strategy for AKI treatment. The disruption of the NRF2-KEAP1 protein to protein interaction (PPI) induces NRF2 activation, which provides a promising strategy that can identify new ferroptosis inhibitors. A previous study revealed that tiliroside, a glycosidic flavonoid extracted from Edgeworthia chrysantha Lindl (buds), has anti-neuroinflammatory and neuroprotective effects via NRF2 activation. However, the mechanism through which tiliroside activates NRF2 is unknown, and it remains unclear whether it has protective effects against AKI. PURPOSE: To investigate whether tiliroside has protective effects against AKI in mice and the associated mechanisms. METHODS: Possible tiliroside substrates were analyzed using molecular docking. Cisplatin- and ischemia-reperfusion injury (IRI)-induced AKI mouse models and HK2 cells model were constructed to evaluate the protective effects of tiliroside. CRISPR/Cas9 mediated NRF2 knockout HK2 cells were used to verify whether NRF2 mediates tiliroside protective effects. RESULTS: In vivo, our results showed that tiliroside treatment preserved kidney functions in AKI mice models, as showed by lower levels of serum creatinine (SCr), blood urea nitrogen (BUN), and renal injury markers, including neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule 1 (KIM1), compared with the mice in control groups. In vitro, tiliroside treatment greatly ameliorated cisplatin-induced ferroptosis through NRF2 activation in cultured HK2 cells, as evidenced by the protective effects of tiliroside being greatly blunted after the knockout of NRF2 in HK2 cells. Mechanistic studies indicated that tiliroside promoted NRF2/GPX4 pathway activation and ferroptosis inhibition, perhaps via the disruption of the NRF2-KEAP1 PPI. CONCLUSION: Together, our results demonstrate that tiliroside may serve as a NRF2-KEAP1 PPI inhibitor and prevents ferroptosis-induced AKI, indicating its potential for clinical AKI treatment.


Asunto(s)
Lesión Renal Aguda , Ferroptosis , Animales , Ratones , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Cisplatino , Simulación del Acoplamiento Molecular , Lesión Renal Aguda/tratamiento farmacológico , Flavonoides/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA