Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 39: 557-581, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33651964

RESUMEN

There is a growing interest in understanding tissue organization, homeostasis, and inflammation. However, despite an abundance of data, the organizing principles of tissue biology remain poorly defined. Here, we present a perspective on tissue organization based on the relationships between cell types and the functions that they perform. We provide a formal definition of tissue homeostasis as a collection of circuits that regulate specific variables within the tissue environment, and we describe how the functional organization of tissues allows for the maintenance of both tissue and systemic homeostasis. This leads to a natural definition of inflammation as a response to deviations from homeostasis that cannot be reversed by homeostatic mechanisms alone. We describe how inflammatory signals act on the same cellular functions involved in normal tissue organization and homeostasis in order to coordinate emergency responses to perturbations and ultimately return the system to a homeostatic state. Finally, we consider the hierarchy of homeostatic and inflammatory circuits and the implications for the development of inflammatory diseases.


Asunto(s)
Inflamación , Animales , Homeostasis , Humanos
2.
Annu Rev Cell Dev Biol ; 38: 395-418, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35850152

RESUMEN

Although tissue homeostasis-the steady state-implies stability, our organs are in a state of continual, large-scale cellular flux. This flux underpins an organ's ability to homeostatically renew, to non-homeostatically resize upon altered functional demand, and to return to homeostasis after resizing or injury-in other words, to be dynamic. Here, I examine the basic unit of organ-scale cell dynamics: the cellular life cycle of birth, differentiation, and death. Focusing on epithelial organs, I discuss how spatial patterns and temporal kinetics of life cycle stages depend upon lineage organization and tissue architecture. I review how signaling between stages coordinates life cycle dynamics to enforce homeostasis, and I highlight how particular stages are transiently unbalanced to drive organ resizing or repair. Finally, I offer that considering organs as a collective of not cells but rather cell life cycles provides a powerful vantage for deciphering homeostatic and non-homeostatic tissue states.


Asunto(s)
Transducción de Señal , Diferenciación Celular , Homeostasis
3.
Cell ; 177(3): 541-555.e17, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30955887

RESUMEN

Neutrophils are attracted to and generate dense swarms at sites of cell damage in diverse tissues, often extending the local disruption of organ architecture produced by the initial insult. Whether the inflammatory damage resulting from such neutrophil accumulation is an inescapable consequence of parenchymal cell death has not been explored. Using a combination of dynamic intravital imaging and confocal multiplex microscopy, we report here that tissue-resident macrophages rapidly sense the death of individual cells and extend membrane processes that sequester the damage, a process that prevents initiation of the feedforward chemoattractant signaling cascade that results in neutrophil swarms. Through this "cloaking" mechanism, the resident macrophages prevent neutrophil-mediated inflammatory damage, maintaining tissue homeostasis in the face of local cell injury that occurs on a regular basis in many organs because of mechanical and other stresses. VIDEO ABSTRACT.


Asunto(s)
Macrófagos/inmunología , Neutrófilos/inmunología , Alarminas/metabolismo , Animales , Endocitosis , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Fibras Musculares Esqueléticas/patología , Activación Neutrófila , Neutrófilos/metabolismo , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo
4.
Cell ; 172(4): 744-757.e17, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29398113

RESUMEN

Cell communication within tissues is mediated by multiple paracrine signals including growth factors, which control cell survival and proliferation. Cells and the growth factors they produce and receive constitute a circuit with specific properties that ensure homeostasis. Here, we used computational and experimental approaches to characterize the features of cell circuits based on growth factor exchange between macrophages and fibroblasts, two cell types found in most mammalian tissues. We found that the macrophage-fibroblast cell circuit is stable and robust to perturbations. Analytical screening of all possible two-cell circuit topologies revealed the circuit features sufficient for stability, including environmental constraint and negative-feedback regulation. Moreover, we found that cell-cell contact is essential for the stability of the macrophage-fibroblast circuit. These findings illustrate principles of cell circuit design and provide a quantitative perspective on cell interactions.


Asunto(s)
Comunicación Celular/fisiología , Proliferación Celular/fisiología , Fibroblastos/metabolismo , Macrófagos/metabolismo , Animales , Supervivencia Celular/fisiología , Femenino , Fibroblastos/citología , Macrófagos/citología , Masculino , Ratones , Ratones Transgénicos
5.
Immunity ; 56(6): 1168-1186, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37315533

RESUMEN

Recent studies have demonstrated that tissue homeostasis and metabolic function are dependent on distinct tissue-resident immune cells that form functional cell circuits with structural cells. Within these cell circuits, immune cells integrate cues from dietary contents and commensal microbes in addition to endocrine and neuronal signals present in the tissue microenvironment to regulate structural cell metabolism. These tissue-resident immune circuits can become dysregulated during inflammation and dietary overnutrition, contributing to metabolic diseases. Here, we review the evidence describing key cellular networks within and between the liver, gastrointestinal tract, and adipose tissue that control systemic metabolism and how these cell circuits become dysregulated during certain metabolic diseases. We also identify open questions in the field that have the potential to enhance our understanding of metabolic health and disease.


Asunto(s)
Tejido Adiposo , Tracto Gastrointestinal , Humanos , Inflamación , Hígado
6.
Immunity ; 56(5): 944-958.e6, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37040761

RESUMEN

Interferon-γ (IFN-γ) is a key cytokine in response to viral or intracellular bacterial infection in mammals. While a number of enhancers are described to promote IFN-γ responses, to the best of our knowledge, no silencers for the Ifng gene have been identified. By examining H3K4me1 histone modification in naive CD4+ T cells within Ifng locus, we identified a silencer (CNS-28) that restrains Ifng expression. Mechanistically, CNS-28 maintains Ifng silence by diminishing enhancer-promoter interactions within Ifng locus in a GATA3-dependent but T-bet-independent manner. Functionally, CNS-28 restrains Ifng transcription in NK cells, CD4+ cells, and CD8+ T cells during both innate and adaptive immune responses. Moreover, CNS-28 deficiency resulted in repressed type 2 responses due to elevated IFN-γ expression, shifting Th1 and Th2 paradigm. Thus, CNS-28 activity ensures immune cell quiescence by cooperating with other regulatory cis elements within the Ifng gene locus to minimize autoimmunity.


Asunto(s)
Linfocitos T CD8-positivos , Interferón gamma , Animales , Interferón gamma/genética , Interferón gamma/metabolismo , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Secuencias Reguladoras de Ácidos Nucleicos , Homeostasis , Células TH1 , Mamíferos
7.
Cell ; 169(1): 132-147.e16, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28340339

RESUMEN

The accumulation of irreparable cellular damage restricts healthspan after acute stress or natural aging. Senescent cells are thought to impair tissue function, and their genetic clearance can delay features of aging. Identifying how senescent cells avoid apoptosis allows for the prospective design of anti-senescence compounds to address whether homeostasis can also be restored. Here, we identify FOXO4 as a pivot in senescent cell viability. We designed a FOXO4 peptide that perturbs the FOXO4 interaction with p53. In senescent cells, this selectively causes p53 nuclear exclusion and cell-intrinsic apoptosis. Under conditions where it was well tolerated in vivo, this FOXO4 peptide neutralized doxorubicin-induced chemotoxicity. Moreover, it restored fitness, fur density, and renal function in both fast aging XpdTTD/TTD and naturally aged mice. Thus, therapeutic targeting of senescent cells is feasible under conditions where loss of health has already occurred, and in doing so tissue homeostasis can effectively be restored.


Asunto(s)
Envejecimiento/patología , Antibióticos Antineoplásicos/efectos adversos , Péptidos de Penetración Celular/farmacología , Doxorrubicina/efectos adversos , Envejecimiento/efectos de los fármacos , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacología , Apoptosis , Proteínas de Ciclo Celular , Línea Celular , Supervivencia Celular , Senescencia Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Femenino , Fibroblastos/citología , Factores de Transcripción Forkhead/química , Factores de Transcripción Forkhead/metabolismo , Humanos , Cuerpos de Inclusión/efectos de los fármacos , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Riñón/efectos de los fármacos , Riñón/fisiología , Hígado/efectos de los fármacos , Hígado/fisiología , Masculino , Ratones , Síndromes de Tricotiodistrofia/tratamiento farmacológico , Proteína p53 Supresora de Tumor/metabolismo
8.
Immunity ; 55(7): 1250-1267.e12, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35709757

RESUMEN

The intestine harbors a large population of resident eosinophils, yet the function of intestinal eosinophils has not been explored. Flow cytometry and whole-mount imaging identified eosinophils residing in the lamina propria along the length of the intestine prior to postnatal microbial colonization. Microscopy, transcriptomic analysis, and mass spectrometry of intestinal tissue revealed villus blunting, altered extracellular matrix, decreased epithelial cell turnover, increased gastrointestinal motility, and decreased lipid absorption in eosinophil-deficient mice. Mechanistically, intestinal epithelial cells released IL-33 in a microbiota-dependent manner, which led to eosinophil activation. The colonization of germ-free mice demonstrated that eosinophil activation in response to microbes regulated villous size alterations, macrophage maturation, epithelial barrier integrity, and intestinal transit. Collectively, our findings demonstrate a critical role for eosinophils in facilitating the mutualistic interactions between the host and microbiota and provide a rationale for the functional significance of their early life recruitment in the small intestine.


Asunto(s)
Enfermedades Transmisibles , Microbiota , Animales , Eosinófilos , Homeostasis , Mucosa Intestinal , Intestino Delgado , Ratones
9.
Annu Rev Genet ; 56: 145-164, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-35977408

RESUMEN

Various stem cells in the body are tasked with maintaining tissue homeostasis throughout the life of an organism and thus must be resilient to intrinsic and extrinsic challenges such as infection and injury. Crucial to these challenges is genome maintenance because a high mutational load and persistent DNA lesions impact the production of essential gene products at proper levels and compromise optimal stem cell renewal and differentiation. Genome maintenance requires a robust and well-regulated DNA damage response suited to maintaining specific niches and tissues. In this review, we explore the similarities and differences between diverse stem cell types derived from (or preceding) all germ layers, including extraembryonic tissues. These cells utilize different strategies, including implementation of robust repair mechanisms, modulation of cell cycle checkpoints best suited to eliminating compromised cells, minimization of cell divisions, and differentiation in response to excessive damage.


Asunto(s)
Mamíferos , Células Madre , Animales , Diferenciación Celular/genética , Estratos Germinativos , Mutación
10.
Trends Immunol ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39307581

RESUMEN

Nociceptors have emerged as master regulators of immune responses in both homeostatic and pathologic settings; however, their seemingly contradictory effects on the functions of different immune cell subsets have been a source of confusion. Nevertheless, work by many groups in recent years has begun to identify patterns of the modalities and consequences of nociceptor-immune system communication. Here, we review recent findings of how nociceptors affect immunity and propose an integrated concept whereby nociceptors are neither inherently pro- nor anti-inflammatory. Rather, we propose that nociceptors have the role of a rheostat that, in a context-dependent manner, favors tissue homeostasis and fine-tunes immunity by preventing excessive histotoxic inflammation, promoting tissue repair, and potentiating anticipatory and adaptive immune responses.

11.
Immunity ; 48(6): 1081-1090, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29924974

RESUMEN

Innate lymphoid cells (ILCs) are positioned in tissues perinatally, constitutively express receptors responsive to their organ microenvironments, and perform an arsenal of effector functions that overlap those of adaptive CD4+ T cells. Based on knowledge regarding subsets of invariant-like lymphocytes (e.g., natural killer T [NKT] cells, γδ T cells, mucosal-associated invariant T [MAIT] cells, etc.) and fetally derived macrophages, we hypothesize that immune cells established during the perinatal period-including, but not limited to, ILCs-serve intimate roles in tissue that go beyond classical understanding of the immune system in microbial host defense. In this Perspective, we propose mechanisms by which the establishment of ILCs and the tissue lymphoid niche during early development may have consequences much later in life. Although definitive answers require better tools, efforts to achieve deeper understanding of ILC biology across the mammalian lifespan have the potential to lift the veil on the unknown breadth of immune cell functions.


Asunto(s)
Inmunidad Innata/inmunología , Linfocitos/inmunología , Tejido Linfoide/embriología , Tejido Linfoide/crecimiento & desarrollo , Animales , Diferenciación Celular/inmunología , Humanos
12.
Genes Dev ; 33(21-22): 1457-1459, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676733

RESUMEN

The Hippo pathway is an evolutionarily conserved kinase cascade that is fundamental for tissue development, homeostasis, and regeneration. In the developing mammalian heart, Hippo signaling regulates cardiomyocyte numbers and organ size. While cardiomyocytes in the adult heart are largely postmitotic, Hippo deficiency can increase proliferation of these cells and affect cardiac regenerative capacity. Recent studies have also shown that resident cardiac fibroblasts play a critical role in disease responsiveness and healing, and in this issue of Genes and Development, Xiao and colleagues (pp. 1491-1505) demonstrate that Hippo signaling also integrates the activity of fibroblasts in the heart. They show that Hippo signaling normally maintains the cardiac fibroblast in a resting state and, conversely, its inactivation during disease-related stress results in a spontaneous transition toward a myofibroblast state that underlies fibrosis and ventricular remodeling. This phenotypic switch is associated with increased cytokine signaling that promotes nonautonomous resident fibroblast and myeloid cell activation.


Asunto(s)
Negociación , Proteínas Serina-Treonina Quinasas , Animales , Proliferación Celular , Fibroblastos , Fibrosis , Miocitos Cardíacos
13.
Genes Dev ; 33(21-22): 1491-1505, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31558567

RESUMEN

Cardiac fibroblasts (CFs) respond to injury by transitioning through multiple cell states, including resting CFs, activated CFs, and myofibroblasts. We report here that Hippo signaling cell-autonomously regulates CF fate transitions and proliferation, and non-cell-autonomously regulates both myeloid and CF activation in the heart. Conditional deletion of Hippo pathway kinases, Lats1 and Lats2, in uninjured CFs initiated a self-perpetuating fibrotic response in the adult heart that was exacerbated by myocardial infarction (MI). Single cell transcriptomics showed that uninjured Lats1/2 mutant CFs spontaneously transitioned to a myofibroblast cell state. Through gene regulatory network reconstruction, we found that Hippo-deficient myofibroblasts deployed a network of transcriptional regulators of endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) consistent with elevated secretory activity. We observed an expansion of myeloid cell heterogeneity in uninjured Lats1/2 CKO hearts with similarity to cells recovered from control hearts post-MI. Integrated genome-wide analysis of Yap chromatin occupancy revealed that Yap directly activates myofibroblast cell identity genes, the proto-oncogene Myc, and an array of genes encoding pro-inflammatory factors through enhancer-promoter looping. Our data indicate that Lats1/2 maintain the resting CF cell state through restricting the Yap-induced injury response.


Asunto(s)
Fibroblastos/citología , Fibrosis/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Fibroblastos/patología , Fibrosis/fisiopatología , Eliminación de Gen , Ratones Endogámicos C57BL , Infarto del Miocardio/fisiopatología , Proteínas Señalizadoras YAP
14.
Bioessays ; 46(7): e2300238, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38736323

RESUMEN

Genetic mosaicism has long been linked to aging, and several hypotheses have been proposed to explain the potential connections between mosaicism and susceptibility to cancer. It has been proposed that mosaicism may disrupt tissue homeostasis by affecting intercellular communications and releasing microenvironmental constraints within tissues. The underlying mechanisms driving these tissue-level influences remain unidentified, however. Here, we present an evolutionary perspective on the interplay between mosaicism and cancer, suggesting that the tissue-level impacts of genetic mosaicism can be attributed to Indirect Genetic Effects (IGEs). IGEs can increase the level of cellular stochasticity and phenotypic instability among adjacent cells, thereby elevating the risk of cancer development within the tissue. Moreover, as cells experience phenotypic changes in response to challenging microenvironmental conditions, these changes can initiate a cascade of nongenetic alterations, referred to as Indirect non-Genetic Effects (InGEs), which in turn catalyze IGEs among surrounding cells. We argue that incorporating both InGEs and IGEs into our understanding of the process of oncogenic transformation could trigger a major paradigm shift in cancer research with far-reaching implications for practical applications.


Asunto(s)
Carcinogénesis , Mosaicismo , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patología , Carcinogénesis/genética , Animales , Transformación Celular Neoplásica/genética
15.
Development ; 149(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35299238

RESUMEN

The maintenance of epithelial architecture necessitates tight regulation of cell size and shape. However, mechanisms underlying epithelial cell size regulation remain poorly understood. We show that the interaction of Myosin Vb with Rab11 prevents the accumulation of apically derived endosomes to maintain cell-size, whereas that with Rab10 regulates vesicular transport from the trans-Golgi. These interactions are required for the fine-tuning of the epithelial cell morphology during zebrafish development. Furthermore, the compensatory cell growth upon cell-proliferation inhibition involves a preferential expansion of the apical domain, leading to flatter epithelial cells, an efficient strategy to cover the surface with fewer cells. This apical domain growth requires post-trans-Golgi transport mediated by the Rab10-interacting Myosin Vb isoform, downstream of the mTOR-Fatty Acid Synthase (FASN) axis. Changes in trans-Golgi morphology indicate that the Golgi synchronizes mTOR-FASN-regulated biosynthetic input and Myosin Vb-Rab10 dependent output. Our study unravels the mechanism of polarized growth in epithelial cells and delineates functions of Myosin Vb isoforms in cell size regulation during development.


Asunto(s)
Miosina Tipo V , Animales , Células Epiteliales/metabolismo , Miosina Tipo V/metabolismo , Isoformas de Proteínas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Pez Cebra/metabolismo , Proteínas de Unión al GTP rab/metabolismo
16.
FASEB J ; 38(10): e23670, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38747803

RESUMEN

HPSE2, the gene-encoding heparanase 2 (Hpa2), is mutated in urofacial syndrome (UFS), a rare autosomal recessive congenital disease attributed to peripheral neuropathy. Hpa2 lacks intrinsic heparan sulfate (HS)-degrading activity, the hallmark of heparanase (Hpa1), yet it exhibits a high affinity toward HS, thereby inhibiting Hpa1 enzymatic activity. Hpa2 regulates selected genes that promote normal differentiation, tissue homeostasis, and endoplasmic reticulum (ER) stress, resulting in antitumor, antiangiogenic, and anti-inflammatory effects. Importantly, stress conditions induce the expression of Hpa2, thus establishing a feedback loop, where Hpa2 enhances ER stress which, in turn, induces Hpa2 expression. In most cases, cancer patients who retain high levels of Hpa2 survive longer than patients bearing Hpa2-low tumors. Experimentally, overexpression of Hpa2 attenuates the growth of tumor xenografts, whereas Hpa2 gene silencing results in aggressive tumors. Studies applying conditional Hpa2 knockout (cHpa2-KO) mice revealed an essential involvement of Hpa2 contributed by the host in protecting against cancer and inflammation. This was best reflected by the distorted morphology of the Hpa2-null pancreas, including massive infiltration of immune cells, acinar to adipocyte trans-differentiation, and acinar to ductal metaplasia. Moreover, orthotopic inoculation of pancreatic ductal adenocarcinoma (PDAC) cells into the pancreas of Hpa2-null vs. wild-type mice yielded tumors that were by far more aggressive. Likewise, intravenous inoculation of cancer cells into cHpa2-KO mice resulted in a dramatically increased lung colonization reflecting the involvement of Hpa2 in restricting the formation of a premetastatic niche. Elucidating Hpa2 structure-activity-relationships is expected to support the development of Hpa2-based therapies against cancer and inflammation.


Asunto(s)
Glucuronidasa , Inflamación , Neoplasias , Humanos , Animales , Inflamación/metabolismo , Inflamación/patología , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Glucuronidasa/metabolismo , Glucuronidasa/genética , Ratones , Estrés del Retículo Endoplásmico
17.
Semin Cell Dev Biol ; 130: 79-89, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34563461

RESUMEN

Stratified epithelia are made up of several layers of cells, which act as a protective barrier for the organ they cover. To ensure their shielding effect, epithelia are naturally able to cope with constant environmental insults. This ability is enabled by their morphology and architecture, as well as the continuous turnover of stem and progenitor cells that constitute their building blocks. Stem cell fate decisions and dynamics are fundamental key biological processes that allow epithelia to exert their functions. By focusing on the skin epidermis, this review discusses how tissue architecture is generated during development, maintained through adult life, and re-established during regeneration.


Asunto(s)
Células Epidérmicas , Epidermis , Homeostasis , Piel , Células Madre
18.
Development ; 148(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34279592

RESUMEN

Despite striking parallels between the fields of developmental biology and adult tissue homeostasis, these are disconnected in contemporary research. Although development describes tissue generation and homeostasis describes tissue maintenance, it is the balance between stem cell proliferation and differentiation that coordinates both processes. Upstream signalling regulates this balance to achieve the required outcome at the population level. Both development and homeostasis require tight regulation of stem cells at the single-cell level and establishment of patterns at the tissue-wide level. Here, we emphasize that the general principles of embryonic development and tissue homeostasis are similar, and argue that interactions between these disciplines will be beneficial for both research fields.


Asunto(s)
Desarrollo Embrionario , Homeostasis , Animales , Diferenciación Celular/fisiología , Proliferación Celular , Drosophila , Humanos , Modelos Biológicos , Transducción de Señal , Células Madre
19.
Mol Syst Biol ; 19(4): e11393, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36929723

RESUMEN

The lifespans of proteins range from minutes to years within mammalian tissues. Protein lifespan is relevant to organismal aging, as long-lived proteins accrue damage over time. It is unclear how protein lifetime is shaped by tissue context, where both cell turnover and proteolytic degradation contribute to protein turnover. We develop turnover and replication analysis by 15 N isotope labeling (TRAIL) to quantify protein and cell lifetimes with high precision and demonstrate that cell turnover, sequence-encoded features, and environmental factors modulate protein lifespan across tissues. Cell and protein turnover flux are comparable in proliferative tissues, while protein turnover outpaces cell turnover in slowly proliferative tissues. Physicochemical features such as hydrophobicity, charge, and disorder influence protein turnover in slowly proliferative tissues, but protein turnover is much less sequence-selective in highly proliferative tissues. Protein lifetimes vary nonrandomly across tissues after correcting for cell turnover. Multiprotein complexes such as the ribosome have consistent lifetimes across tissues, while mitochondria, peroxisomes, and lipid droplets have variable lifetimes. TRAIL can be used to explore how environment, aging, and disease affect tissue homeostasis.


Asunto(s)
Mitocondrias , Proteínas , Animales , Marcaje Isotópico , Proteínas/metabolismo , Mitocondrias/metabolismo , Envejecimiento , Proteómica , Mamíferos
20.
Cell Mol Life Sci ; 80(10): 305, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752383

RESUMEN

Self-renewing, damage-repair and differentiation of mammalian stratified squamous epithelia are subject to tissue homeostasis, but the regulation mechanisms remain elusive. Here, we investigate the esophageal squamous epithelial tissue homeostasis in vitro and in vivo. We establish a rat esophageal organoid (rEO) in vitro system and show that the landscapes of rEO formation, development and maturation trajectories can mimic those of rat esophageal epithelia in vivo. Single-cell RNA sequencing (scRNA-seq), snapshot immunostaining and functional analyses of stratified "matured" rEOs define that the epithelial pluripotent stem cell determinants, p63 and Sox2, play crucial but distinctive roles for regulating mammalian esophageal tissue homeostasis. We identify two cell populations, p63+Sox2+ and p63-Sox2+, of which the p63+Sox2+ population presented at the basal layer is the cells of origin required for esophageal epithelial stemness maintenance and proliferation, whereas the p63-Sox2+ population presented at the suprabasal layers is the cells of origin having a dual role for esophageal epithelial differentiation (differentiation-prone fate) and rapid tissue damage-repair responses (proliferation-prone fate). Given the fact that p63 and Sox2 are developmental lineage oncogenes and commonly overexpressed in ESCC tissues, p63-Sox2+ population could not be detected in organoids formed by esophageal squamous cell carcinoma (ESCC) cell lines. Taken together, these findings reveal that the tissue homeostasis is maintained distinctively by p63 and/or Sox2-dependent cell lineage populations required for the tissue renewing, damage-repair and protection of carcinogenesis in mammalian esophagi.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Ratas , Animales , Neoplasias Esofágicas/genética , Mamíferos , Homeostasis , Carcinogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA