Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 779
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 176(4): 869-881.e13, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30735636

RESUMEN

Circular RNAs (circRNAs) are an intriguing class of RNA due to their covalently closed structure, high stability, and implicated roles in gene regulation. Here, we used an exome capture RNA sequencing protocol to detect and characterize circRNAs across >2,000 cancer samples. When compared against Ribo-Zero and RNase R, capture sequencing significantly enhanced the enrichment of circRNAs and preserved accurate circular-to-linear ratios. Using capture sequencing, we built the most comprehensive catalog of circRNA species to date: MiOncoCirc, the first database to be composed primarily of circRNAs directly detected in tumor tissues. Using MiOncoCirc, we identified candidate circRNAs to serve as biomarkers for prostate cancer and were able to detect circRNAs in urine. We further detected a novel class of circular transcripts, termed read-through circRNAs, that involved exons originating from different genes. MiOncoCirc will serve as a valuable resource for the development of circRNAs as diagnostic or therapeutic targets across cancer types.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Neoplasias/genética , ARN/genética , Biomarcadores de Tumor/genética , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/genética , ARN/metabolismo , ARN Circular , Análisis de Secuencia de ARN/métodos , Secuenciación del Exoma/métodos
2.
Mol Cell ; 82(13): 2458-2471.e9, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35550257

RESUMEN

Many cancers are characterized by gene fusions encoding oncogenic chimeric transcription factors (TFs) such as EWS::FLI1 in Ewing sarcoma (EwS). Here, we find that EWS::FLI1 induces the robust expression of a specific set of novel spliced and polyadenylated transcripts within otherwise transcriptionally silent regions of the genome. These neogenes (NGs) are virtually undetectable in large collections of normal tissues or non-EwS tumors and can be silenced by CRISPR interference at regulatory EWS::FLI1-bound microsatellites. Ribosome profiling and proteomics further show that some NGs are translated into highly EwS-specific peptides. More generally, we show that hundreds of NGs can be detected in diverse cancers characterized by chimeric TFs. Altogether, this study identifies the transcription, processing, and translation of novel, specific, highly expressed multi-exonic transcripts from otherwise silent regions of the genome as a new activity of aberrant TFs in cancer.


Asunto(s)
Carcinogénesis , Regulación Neoplásica de la Expresión Génica , Proteínas de Fusión Oncogénica , Proteína Proto-Oncogénica c-fli-1 , Factores de Transcripción , Carcinogénesis/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Silenciador del Gen , Genoma/genética , Genómica , Humanos , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Oncogenes/genética , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología , Factores de Transcripción/genética , Transcripción Genética/genética
3.
Mol Cell ; 82(20): 3856-3871.e6, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36220102

RESUMEN

To determine which transcripts should reach the cytoplasm for translation, eukaryotic cells have established mechanisms to regulate selective mRNA export through the nuclear pore complex (NPC). The nuclear basket, a substructure of the NPC protruding into the nucleoplasm, is thought to function as a stable platform where mRNA-protein complexes (mRNPs) are rearranged and undergo quality control prior to export, ensuring that only mature mRNAs reach the cytoplasm. Here, we use proteomic, genetic, live-cell, and single-molecule resolution microscopy approaches in budding yeast to demonstrate that basket formation is dependent on RNA polymerase II transcription and subsequent mRNP processing. We further show that while all NPCs can bind Mlp1, baskets assemble only on a subset of nucleoplasmic NPCs, and these basket-containing NPCs associate a distinct protein and RNA interactome. Taken together, our data point toward NPC heterogeneity and an RNA-dependent mechanism for functionalization of NPCs in budding yeast through nuclear basket assembly.


Asunto(s)
Poro Nuclear , Saccharomycetales , Poro Nuclear/genética , Poro Nuclear/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteómica , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/genética , Núcleo Celular/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo
4.
Mol Cell ; 81(3): 502-513.e4, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33400923

RESUMEN

Stress-induced readthrough transcription results in the synthesis of downstream-of-gene (DoG)-containing transcripts. The mechanisms underlying DoG formation during cellular stress remain unknown. Nascent transcription profiles during DoG induction in human cell lines using TT-TimeLapse sequencing revealed widespread transcriptional repression upon hyperosmotic stress. Yet, DoGs are produced regardless of the transcriptional level of their upstream genes. ChIP sequencing confirmed that stress-induced redistribution of RNA polymerase (Pol) II correlates with the transcriptional output of genes. Stress-induced alterations in the Pol II interactome are observed by mass spectrometry. While certain cleavage and polyadenylation factors remain Pol II associated, Integrator complex subunits dissociate from Pol II under stress leading to a genome-wide loss of Integrator on DNA. Depleting the catalytic subunit of Integrator using siRNAs induces hundreds of readthrough transcripts, whose parental genes partially overlap those of stress-induced DoGs. Our results provide insights into the mechanisms underlying DoG production and how Integrator activity influences DoG transcription.


Asunto(s)
Endorribonucleasas/metabolismo , Presión Osmótica , ARN Polimerasa II/metabolismo , ARN/biosíntesis , Estrés Salino , Transcripción Genética , Activación Transcripcional , Regulación hacia Abajo , Endorribonucleasas/genética , Células HEK293 , Humanos , ARN/genética , ARN Polimerasa II/genética , Factores de Tiempo
5.
EMBO Rep ; 25(2): 770-795, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182816

RESUMEN

DExD/H-box helicases are crucial regulators of RNA metabolism and antiviral innate immune responses; however, their role in bacteria-induced inflammation remains unclear. Here, we report that DDX5 interacts with METTL3 and METTL14 to form an m6A writing complex, which adds N6-methyladenosine to transcripts of toll-like receptor (TLR) 2 and TLR4, promoting their decay via YTHDF2-mediated RNA degradation, resulting in reduced expression of TLR2/4. Upon bacterial infection, DDX5 is recruited to Hrd1 at the endoplasmic reticulum in an MyD88-dependent manner and is degraded by the ubiquitin-proteasome pathway. This process disrupts the DDX5 m6A writing complex and halts m6A modification as well as degradation of TLR2/4 mRNAs, thereby promoting the expression of TLR2 and TLR4 and downstream NF-κB activation. The role of DDX5 in regulating inflammation is also validated in vivo, as DDX5- and METTL3-KO mice exhibit enhanced expression of inflammatory cytokines. Our findings show that DDX5 acts as a molecular switch to regulate inflammation during bacterial infection and shed light on mechanisms of quiescent inflammation during homeostasis.


Asunto(s)
Adenina , Infecciones Bacterianas , Receptor Toll-Like 2 , Animales , Ratones , Adenina/análogos & derivados , Inflamación/genética , Metiltransferasas/genética , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética
6.
Mol Biol Evol ; 41(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38679468

RESUMEN

Maternal genes have a pivotal role in regulating metazoan early development. As such their functions have been extensively studied since the dawn of developmental biology. The temporal and spatial dynamics of their transcripts have been thoroughly described in model organisms and their functions have been undergoing heavy investigations. Yet, less is known about the evolutionary changes shaping their presence within diverse oocytes. Due to their unique maternal inheritance pattern, a high degree is predicted to be present when it comes to their expression. Insofar only limited and conflicting results have emerged around it. Here, we set out to elucidate which evolutionary changes could be detected in the maternal gene expression patterns using phylogenetic comparative methods on RNAseq data from 43 species. Using normalized gene expression values and fold change information throughout early development we set out to find the best-fitting evolutionary model. Through modeling, we find evidence supporting both the high degree of divergence and constraint on gene expression values, together with their temporal dynamics. Furthermore, we find that maternal gene expression alone can be used to explain the reproductive modes of different species. Together, these results suggest a highly dynamic evolutionary landscape of maternal gene expression. We also propose a possible functional dichotomy of maternal genes which is influenced by the reproductive strategy undertaken by examined species.


Asunto(s)
Reproducción , Animales , Reproducción/genética , Evolución Biológica , Femenino , Filogenia , Herencia Materna , Evolución Molecular
7.
Trends Genet ; 38(8): 789-792, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35466008

RESUMEN

Recent landmark discoveries have underpinned the physiological importance of intron retention (IR) across multiple domains of life and revealed an unexpected breath of functions in a large variety of biological processes. Despite significant progress in the field, some challenges remain. Once solved, opportunities will arise for discovering more functions of IR.


Asunto(s)
Empalme Alternativo , Fenómenos Biológicos , Intrones/genética
8.
Am J Hum Genet ; 109(12): 2253-2269, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36413998

RESUMEN

Heterozygous pathogenic variants in DNM1 cause developmental and epileptic encephalopathy (DEE) as a result of a dominant-negative mechanism impeding vesicular fission. Thus far, pathogenic variants in DNM1 have been studied with a canonical transcript that includes the alternatively spliced exon 10b. However, after performing RNA sequencing in 39 pediatric brain samples, we find the primary transcript expressed in the brain includes the downstream exon 10a instead. Using this information, we evaluated genotype-phenotype correlations of variants affecting exon 10a and identified a cohort of eleven previously unreported individuals. Eight individuals harbor a recurrent de novo splice site variant, c.1197-8G>A (GenBank: NM_001288739.1), which affects exon 10a and leads to DEE consistent with the classical DNM1 phenotype. We find this splice site variant leads to disease through an unexpected dominant-negative mechanism. Functional testing reveals an in-frame upstream splice acceptor causing insertion of two amino acids predicted to impair oligomerization-dependent activity. This is supported by neuropathological samples showing accumulation of enlarged synaptic vesicles adherent to the plasma membrane consistent with impaired vesicular fission. Two additional individuals with missense variants affecting exon 10a, p.Arg399Trp and p.Gly401Asp, had a similar DEE phenotype. In contrast, one individual with a missense variant affecting exon 10b, p.Pro405Leu, which is less expressed in the brain, had a correspondingly less severe presentation. Thus, we implicate variants affecting exon 10a as causing the severe DEE typically associated with DNM1-related disorders. We highlight the importance of considering relevant isoforms for disease-causing variants as well as the possibility of splice site variants acting through a dominant-negative mechanism.


Asunto(s)
Encefalopatías , Dinaminas , Síndromes Epilépticos , Humanos , Encefalopatías/genética , Causalidad , Dinaminas/genética , Exones/genética , Heterocigoto , Mutación/genética , Síndromes Epilépticos/genética
9.
J Virol ; 98(4): e0185823, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38445887

RESUMEN

Most individuals are latently infected with herpes simplex virus type 1 (HSV-1), and it is well-established that HSV-1 establishes latency in sensory neurons of peripheral ganglia. However, it was recently proposed that latent HSV-1 is also present in immune cells recovered from the ganglia of experimentally infected mice. Here, we reanalyzed the single-cell RNA sequencing (scRNA-Seq) data that formed the basis for that conclusion. Unexpectedly, off-target priming in 3' scRNA-Seq experiments enabled the detection of non-polyadenylated HSV-1 latency-associated transcript (LAT) intronic RNAs. However, LAT reads were near-exclusively detected in mixed populations of cells undergoing cell death. Specific loss of HSV-1 LAT and neuronal transcripts during quality control filtering indicated widespread destruction of neurons, supporting the presence of contaminating cell-free RNA in other cells following tissue processing. In conclusion, the reported detection of latent HSV-1 in non-neuronal cells is best explained using compromised scRNA-Seq datasets.IMPORTANCEMost people are infected with herpes simplex virus type 1 (HSV-1) during their life. Once infected, the virus generally remains in a latent (silent) state, hiding within the neurons of peripheral ganglia. Periodic reactivation (reawakening) of the virus may cause fresh diseases such as cold sores. A recent study using single-cell RNA sequencing (scRNA-Seq) proposed that HSV-1 can also establish latency in the immune cells of mice, challenging existing dogma. We reanalyzed the data from that study and identified several flaws in the methodologies and analyses performed that invalidate the published conclusions. Specifically, we showed that the methodologies used resulted in widespread destruction of neurons which resulted in the presence of contaminants that confound the data analysis. We thus conclude that there remains little to no evidence for HSV-1 latency in immune cells.


Asunto(s)
Artefactos , Ganglios Sensoriales , Herpesvirus Humano 1 , Células Receptoras Sensoriales , Análisis de Secuencia de ARN , Análisis de Expresión Génica de una Sola Célula , Latencia del Virus , Animales , Ratones , Muerte Celular , Conjuntos de Datos como Asunto , Ganglios Sensoriales/inmunología , Ganglios Sensoriales/patología , Ganglios Sensoriales/virología , Herpes Simple/inmunología , Herpes Simple/patología , Herpes Simple/virología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/aislamiento & purificación , MicroARNs/análisis , MicroARNs/genética , Reproducibilidad de los Resultados , ARN Viral/análisis , ARN Viral/genética , Células Receptoras Sensoriales/patología , Células Receptoras Sensoriales/virología
10.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36585787

RESUMEN

Chromosomal translocations in cancer genomes, key players in many types of cancers, generate chimeric proteins that drive oncogenesis. Genomes with chromosomal rearrangements can also produce fusion circular RNAs (f-circRNAs) by backsplicing of chimeric transcripts, as first shown in leukemias with PML::RARα and KMT2A::MLLT3 translocations and later in solid cancers. F-circRNAs contribute to the oncogenic processes and reinforce the oncogenic activity of chimeric proteins. In leukemia with KMT2A::AFF1 (MLL::AF4) fusions, we previously reported specific alterations of circRNA expression, but nothing was known about f-circRNAs. Due to the presence of two chimeric sequences, fusion and backsplice junctions, the identification of f-circRNAs with available tools is challenging, possibly resulting in the underestimation of this RNA species, especially when the breakpoint is not known. We developed CircFusion, a new software tool to detect linear fusion transcripts and f-circRNAs from RNA-seq data, both in samples for which the breakpoints are known and when the information about the joined exons is missing. CircFusion can detect linear and circular chimeric transcripts deriving from the main and reciprocal translocations also in the presence of multiple breakpoints, which are common in malignant cells. Benchmarking tests on simulated and real datasets of cancer samples with previously experimentally determined f-circRNAs showed that CircFusion provides reliable predictions and outperforms available methods for f-circRNA detection. We discovered and validated novel f-circRNAs in acute leukemia harboring KMT2A::AFF1 rearrangements, leading the way to future functional studies aimed to unveil their role in this malignancy.


Asunto(s)
Leucemia Mieloide Aguda , ARN Circular , Humanos , Proteínas de Unión al ADN , Leucemia Mieloide Aguda/genética , Proteínas Recombinantes de Fusión , ARN , ARN Circular/genética , Programas Informáticos , Factores de Elongación Transcripcional , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo
11.
Chromosome Res ; 32(2): 6, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504027

RESUMEN

Structural variants (SVs) pose a challenge to detect and interpret, but their study provides novel biological insights and molecular diagnosis underlying rare diseases. The aim of this study was to resolve a 9p24 rearrangement segregating in a family through five generations with a congenital heart defect (congenital pulmonary and aortic valvular stenosis and pulmonary artery stenosis), by applying a combined genomic analysis. The analysis involved multiple techniques, including karyotype, chromosomal microarray analysis (CMA), FISH, genome sequencing (GS), RNA-seq, and optical genome mapping (OGM). A complex 9p24 SV was hinted at by CMA results, showing three interspersed duplicated segments. Combined GS and OGM analyses revealed that the 9p24 duplications constitute a complex SV, on which a set of breakpoints matches the boundaries of the CMA duplicated sequences. The proposed structure for this complex rearrangement implies three duplications associated with an inversion of ~ 2 Mb region on chromosome 9 and a SINE element insertion at the more distal breakpoint. Interestingly, this genomic structure of rearrangement forms a chimeric transcript of the KANK1/DMRT1 loci, which was confirmed by both RNA-seq and Sanger sequencing on blood samples from 9p24 rearrangement carriers. Altogether with breakpoint amplification and FISH analysis, this combined approach allowed a deep characterization of this complex rearrangement. Although the genotype-phenotype correlation remains elusive from the molecular mechanism point of view, this study identified a large genomic rearrangement at 9p24 segregating with a familial congenital heart defect, revealing a genetic biomarker that was successfully applied for embryo selection, changing the reproductive perspective of affected individuals.


Asunto(s)
Cromosomas , Variaciones en el Número de Copia de ADN , Humanos , Inversión Cromosómica , Secuencia de Bases , Células Germinativas , Proteínas del Citoesqueleto/genética , Proteínas Adaptadoras Transductoras de Señales/genética
12.
Cell Mol Life Sci ; 81(1): 214, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733529

RESUMEN

The non-coding RNAs comprise a large part of human genome lack of capacity in encoding functional proteins. Among various members of non-coding RNAs, the circular RNAs (circRNAs) have been of importance in the pathogenesis of human diseases, especially cancer. The circRNAs have a unique closed loop structure and due to their stability, they are potential diagnostic and prognostic factors in cancer. The increasing evidences have highlighted the role of circRNAs in the modulation of proliferation and metastasis of cancer cells. On the other hand, metastasis has been responsible for up to 90% of cancer-related deaths in patients, requiring more investigation regarding the underlying mechanisms modulating this mechanism. EMT enhances metastasis and invasion of tumor cells, and can trigger resistance to therapy. The cells demonstrate dynamic changes during EMT including transformation from epithelial phenotype into mesenchymal phenotype and increase in N-cadherin and vimentin levels. The process of EMT is reversible and its reprogramming can disrupt the progression of tumor cells. The aim of current review is to understanding the interaction of circRNAs and EMT in human cancers and such interaction is beyond the regulation of cancer metastasis and can affect the response of tumor cells to chemotherapy and radiotherapy. The onco-suppressor circRNAs inhibit EMT, while the tumor-promoting circRNAs mediate EMT for acceleration of carcinogenesis. Moreover, the EMT-inducing transcription factors can be controlled by circRNAs in different human tumors.


Asunto(s)
Carcinogénesis , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Metástasis de la Neoplasia , Neoplasias , ARN Circular , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Transición Epitelial-Mesenquimal/genética , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Resistencia a Antineoplásicos/genética , Plasticidad de la Célula/genética , Animales , Regulación Neoplásica de la Expresión Génica
13.
Proc Natl Acad Sci U S A ; 119(48): e2210584119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36413502

RESUMEN

Antiretroviral therapy (ART) can attain prolonged undetectable HIV-1 in plasma and cerebrospinal fluid (CSF), but brain injury remains prevalent in people living with HIV-1 infection (PLHIV). We investigated cell-associated (CA)-HIV-1 RNA transcripts in cells in CSF and blood, using the highly sensitive Double-R assay, together with proton Magnetic Resonance Spectroscopy (1H MRS) of major brain metabolites, in sixteen PLHIV. 14/16 CSF cell samples had quantifiable CA-HIV-1 RNA, at levels significantly higher than in their PBMCs (median 9,266 vs 185 copies /106 CD4+ T-cells; p<0.0001). In individual PLHIV, higher levels of HIV-1 transcripts in CSF cells were associated with greater brain injury in the frontal white matter (Std ß=-0.73; p=0.007) and posterior cingulate (Std ß=-0.61; p=0.03). 18-colour flow cytometry revealed that the CSF cells were 91% memory T-cells, equally CD4+ and CD8+ T-cells, but fewer B cells (0.4 %), and monocytes (3.1%). CXCR3+CD49d+integrin ß7-, CCR5+CD4+ T-cells were highly enriched in CSF, compared with PBMC (p <0.001). However, CA-HIV-1 RNA could not be detected in 10/16 preparations of highly purified monocytes from PBMC, and was extremely low in the other six. Our data show that elevated HIV-1 transcripts in CSF cells were associated with brain injury, despite suppressive ART. The cellular source is most likely memory CD4+ T cells from blood, rather than trafficking monocytes. Future research should focus on inhibitors of this transcription to reduce local production of potentially neurotoxic and inflammatory viral products.


Asunto(s)
Lesiones Encefálicas , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , VIH-1/genética , Linfocitos T CD4-Positivos , Leucocitos Mononucleares , Infecciones por VIH/tratamiento farmacológico
14.
J Allergy Clin Immunol ; 153(6): 1721-1728, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38272374

RESUMEN

BACKGROUND: Reaction thresholds in peanut allergy are highly variable. Elucidating causal relationships between molecular and cellular processes associated with variable thresholds could point to therapeutic pathways for raising thresholds. OBJECTIVE: The aim of this study was to characterize molecular and cellular systemic processes associated with reaction threshold in peanut allergy and causal relationships between them. METHODS: A total of 105 children aged 4 to 14 years with suspected peanut allergy underwent double-blind, placebo-controlled food challenge to peanut. The cumulative peanut protein quantity eliciting allergic symptoms was considered the reaction threshold for each child. Peripheral blood samples collected at 0, 2, and 4 hours after challenge start were used for RNA sequencing, whole blood staining, and cytometry. Statistical and network analyses were performed to identify associations and causal mediation between the molecular and cellular profiles and peanut reaction threshold. RESULTS: Within the cohort (N = 105), 81 children (77%) experienced allergic reactions after ingesting varying quantities of peanut, ranging from 43 to 9043 mg of cumulative peanut protein. Peripheral blood expression of transcripts (eg, IGF1R [false discovery rate (FDR) = 5.4e-5] and PADI4 [FDR = 5.4e-5]) and neutrophil abundance (FDR = 9.5e-4) were associated with peanut threshold. Coexpression network analyses revealed that the threshold-associated transcripts were enriched in modules for FcγR-mediated phagocytosis (FDR = 3.2e-3) and Toll-like receptor (FDR = 1.4e-3) signaling. Bayesian network, key driver, and causal mediation analyses identified key drivers (AP5B1, KLHL21, VASP, TPD52L2, and IGF2R) within these modules that are involved in bidirectional causal mediation relationships with neutrophil abundance. CONCLUSION: Key driver transcripts in FcγR-mediated phagocytosis and Toll-like receptor signaling interact bidirectionally with neutrophils in peripheral blood and are associated with reaction threshold in peanut allergy.


Asunto(s)
Hipersensibilidad al Cacahuete , Humanos , Hipersensibilidad al Cacahuete/inmunología , Niño , Preescolar , Masculino , Femenino , Adolescente , Transcriptoma , Arachis/inmunología , Alérgenos/inmunología , Método Doble Ciego , Citometría de Flujo
15.
J Infect Dis ; 230(3): e732-e736, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38365889

RESUMEN

Progressive multifocal leukoencephalopathy (PML) is a rare neurological condition associated with reactivation of dormant JC polyomavirus (JCPyV). In this study, we characterized gene expression and JCPyV rearrangements in PML brain tissue. Infection of white matter astrocytes and oligodendrocytes as well as occasional brain cortex neurons was shown. PML brain harbored exclusively rearranged JCPyV variants. Viral transcripts covered the whole genome on both strands. Strong differential expression of human genes associated with neuroinflammation, blood-brain barrier permeability, and neurodegenerative diseases was shown. Pathway analysis revealed wide immune activation in PML brain. The study provides novel insights into the pathogenesis of PML.


Asunto(s)
Encéfalo , Virus JC , Leucoencefalopatía Multifocal Progresiva , Leucoencefalopatía Multifocal Progresiva/virología , Humanos , Virus JC/genética , Encéfalo/virología , Encéfalo/patología , Masculino , Astrocitos/virología , Astrocitos/metabolismo , Persona de Mediana Edad , Femenino , Anciano , Oligodendroglía/virología , Oligodendroglía/metabolismo
16.
J Physiol ; 602(7): 1427-1442, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38468384

RESUMEN

Fibroblast growth factor-2 (FGF2) is involved in the regulation of affective behaviour and shows antidepressant effects through the Akt and extracellular signal regulated kinase (ERK) 1/2 pathways. Nudix hydrolase 6 (NUDT6) protein is encoded from FGF2 gene's antisense strand and its role in the regulation of affective behaviour is unknown. Here, we overexpressed NUDT6 in the hippocampus and investigated its behavioural effects and the underlying molecular mechanisms affecting the behaviour. We showed that increasing hippocampal NUDT6 results in depression-like behaviour in rats without changing FGF2 levels or activating its downstream effectors, Akt and ERK1/2. Instead, NUDT6 acted by inducing inflammatory signalling, specifically by increasing S100 calcium binding protein A9 (S100A9) levels, activating nuclear factor-kappa B-p65 (NF-κB-p65), and elevating microglia numbers along with a reduction in neurogenesis. Our results suggest that NUDT6 could play a role in major depression by inducing a proinflammatory state. This is the first report of an antisense protein acting through a different mechanism of action than regulation of its sense protein. The opposite effects of NUDT6 and FGF2 on depression-like behaviour may serve as a mechanism to fine-tune affective behaviour. Our findings open up new venues for studying the differential regulation and functional interactions of sense and antisense proteins in neural function and behaviour, as well as in neuropsychiatric disorders. KEY POINTS: Hippocampal overexpression of nudix hydrolase 6 (NUDT6), the antisense protein of fibroblast growth factor-2 (FGF2), increases depression-like behaviour in rats. Hippocampal NUDT6 overexpression triggers a neuroinflammatory cascade by increasing S100 calcium binding proteinA9 (S100A9) expression and nuclear NF-κB-p65 translocation in neurons, in addition to microglial recruitment and activation. Hippocampal NUDT6 overexpression suppresses neurogenesis. NUDT6 exerts its actions without altering the levels or downstream signalling pathways of FGF2.


Asunto(s)
Depresión , Factor 2 de Crecimiento de Fibroblastos , FN-kappa B , Animales , Ratas , Factor 2 de Crecimiento de Fibroblastos/genética , Inflamación/genética , Neurogénesis/genética , FN-kappa B/metabolismo , FN-kappa B/farmacología , Proteínas Proto-Oncogénicas c-akt , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Depresión/genética , Depresión/metabolismo
17.
Plant J ; 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37665331

RESUMEN

Centromeres are the chromosomal domains, where the kinetochore protein complex is formed, mediating proper segregation of chromosomes during cell division. Although the function of centromeres has remained conserved during evolution, centromeric DNA is highly variable, even in closely related species. In addition, the composition of the kinetochore complexes varies among organisms. Therefore, it is assumed that the centromeric position is determined epigenetically, and the centromeric histone H3 (CENH3) serves as an epigenetic marker. The loading of CENH3 onto centromeres depends on centromere-licensing factors, chaperones, and transcription of centromeric repeats. Several proteins that regulate CENH3 loading and kinetochore assembly interact with the centromeric transcripts and DNA in a sequence-independent manner. However, the functional aspects of these interactions are not fully understood. This review discusses the variability of centromeric sequences in different organisms and the regulation of their transcription through the RNA Pol II and RNAi machinery. The data suggest that the interaction of proteins involved in CENH3 loading and kinetochore assembly with centromeric DNA and transcripts plays a role in centromere, and possibly neocentromere, formation in a sequence-independent manner.

18.
Plant J ; 113(3): 460-477, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36495314

RESUMEN

Natural antisense long non-coding RNAs (lncNATs) are involved in the regulation of gene expression in plants, modulating different relevant developmental processes and responses to various stimuli. We have identified and characterized two lncNATs (NAT1UGT73C6 and NAT2UGT73C6 , collectively NATsUGT73C6 ) from Arabidopsis thaliana that are transcribed from a gene fully overlapping UGT73C6, a member of the UGT73C subfamily of genes encoding UDP-glycosyltransferases (UGTs). Expression of both NATsUGT73C6 is developmentally controlled and occurs independently of the transcription of UGT73C6 in cis. Downregulation of NATsUGT73C6 levels through artificial microRNAs results in a reduction of the rosette area, while constitutive overexpression of NAT1UGT73C6 or NAT2UGT73C6 leads to the opposite phenotype, an increase in rosette size. This activity of NATsUGT73C6 relies on its RNA sequence and, although modulation of UGT73C6 in cis cannot be excluded, the observed phenotypes are not a consequence of the regulation of UGT73C6 in trans. The NATsUGT73C6 levels were shown to affect cell proliferation and thus individual leaf size. Consistent with this concept, our data suggest that the NATsUGT73C6 influence the expression levels of key transcription factors involved in regulating leaf growth by modulating cell proliferation. These findings thus reveal an additional regulatory layer on the process of leaf growth. In this work, we characterized at the molecular level two long non-coding RNAs (NATsUGT73C6 ) that are transcribed in the opposite direction to UGT73C6, a gene encoding a glucosyltransferase involved in brassinosteroid homeostasis in A. thaliana. Our results indicate that NATsUGT73C6 expression influences leaf growth by acting in trans and by modulating the levels of transcription factors that are involved in the regulation of cell proliferation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Glucosiltransferasas , ARN Largo no Codificante , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas , Fenotipo , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN Largo no Codificante/genética , Factores de Transcripción/metabolismo , Glucosiltransferasas/genética
19.
Plant Mol Biol ; 114(3): 47, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632206

RESUMEN

Natural Antisense Transcripts (NATs) are a kind of complex regulatory RNAs that play crucial roles in gene expression and regulation. However, the NATs in Cannabis Sativa L., a widely economic and medicinal plant rich in cannabinoids remain unknown. In this study, we comprehensively predicted C. sativa NATs genome-wide using strand-specific RNA sequencing (ssRNA-Seq) data, and validated the expression profiles by strand-specific quantitative reverse transcription PCR (ssRT-qPCR). Consequently, a total of 307 NATs were predicted in C. sativa, including 104 cis- and 203 trans- NATs. Functional enrichment analysis demonstrated the potential involvement of the C. sativa NATs in DNA polymerase activity, RNA-DNA hybrid ribonuclease activity, and nucleic acid binding. Finally, 18 cis- and 376 trans- NAT-ST pairs were predicted to produce 621 cis- and 5,679 trans- small interfering RNA (nat-siRNAs), respectively. These nat-siRNAs were potentially involved in the biosynthesis of cannabinoids and cellulose. All these results will shed light on the regulation of NATs and nat-siRNAs in C. sativa.


Asunto(s)
Cannabinoides , Cannabis , ARN sin Sentido/análisis , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , Cannabis/genética , ARN Interferente Pequeño/análisis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Genoma de Planta
20.
Mol Carcinog ; 63(8): 1429-1435, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38860593

RESUMEN

Mixed phenotype acute leukemia (MPAL) is a type of acute leukemia in which encompasses mixed features of myeloid, T-lymphoid, and/or B-lymphoid differentiation. Philadelphia chromosome-positive (Ph+) MPAL is a rare subgroup with a poor prognosis and accounts for <1% of adult acute leukemia. Until now, there is still no consensus on how to best treat Ph+ MPAL. Here, we report a 62-year-old male with Ph+ (atypical e13a2 BCR-ABL1 fusion protein) MPAL. This patient presented with recurrent and intense bone pain due to bone marrow necrosis (BMN). Besides, he did not achieve a complete remission for the first two chemotherapies, until he received flumatinib combined with hyper-CVAD (B) (a dose-intensive regimen include methotrexate and cytarabine). To our knowledge, this is the first report to describe the coexistence of BMN and atypical e13a2 BCR-ABL1 transcripts in patients with MPAL. This finding will bring new understandings in the diagnosis and treatment of Ph+ MPAL.


Asunto(s)
Médula Ósea , Proteínas de Fusión bcr-abl , Necrosis , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Fusión bcr-abl/genética , Médula Ósea/patología , Leucemia Bifenotípica Aguda/genética , Leucemia Bifenotípica Aguda/patología , Leucemia Bifenotípica Aguda/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA