Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(15): e2212489120, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011212

RESUMEN

Mechanical instabilities, especially in the form of bistable and multistable mechanisms, have recently garnered a lot of interest as a mode of improving the capabilities and increasing the functionalities of soft robots, structures, and soft mechanical systems in general. Although bistable mechanisms have shown high tunability through the variation of their material and design variables, they lack the option of modifying their attributes dynamically during operation. Here, we propose a facile approach to overcome this limitation by dispersing magnetically active microparticles throughout the structure of bistable elements and using an external magnetic field to tune their responses. We experimentally demonstrate and numerically verify the predictable and deterministic control of the response of different types of bistable elements under varying magnetic fields. Additionally, we show how this approach can be used to induce bistability in intrinsically monostable structures simply by placing them in a controlled magnetic field. Furthermore, we show the application of this strategy in precisely controlling the features (e.g., velocity and direction) of transition waves propagating in a multistable lattice created by cascading a chain of individual bistable elements. Moreover, we can implement active elements like a transistor (gate controlled by magnetic fields) or magnetically reconfigurable functional elements like binary logic gates for processing mechanical signals. This strategy serves to provide programming and tuning capabilities required to allow more extensive utilization of mechanical instabilities in soft systems with potential functions such as soft robotic locomotion, sensing and triggering elements, mechanical computation, and reconfigurable devices.

2.
Philos Trans A Math Phys Eng Sci ; 378(2162): 20190115, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31760903

RESUMEN

To show that steadily propagating nonlinear waves in active matter can be driven internally, we develop a prototypical model of a topological kink moving with a constant supersonic speed. We use a model of a bi-stable mass-spring (Fermi-Pasta-Ulam) chain capable of generating active stress. In contrast to subsonic kinks in passive bi-stable chains that are necessarily dissipative, the obtained supersonic solutions are purely anti-dissipative. Our numerical experiments point towards the stability of the obtained kink-type solutions and the possibility of propagating kink-anti-kink bundles reminiscent of solitons. We show that even the simplest quasi-continuum approximation of the discrete model captures the most important features of the predicted active phenomena. This article is part of the theme issue 'Modelling of dynamic phenomena and localization in structured media (part 2)'.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA