Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(14): e2112336119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35349336

RESUMEN

SignificanceOur full-scale comparison of Africa and South America's lowland tropical tree floras shows that both Africa and South America's moist and dry tree floras are organized similarly: plant families that are rich in tree species on one continent are also rich in tree species on the other continent, and these patterns hold across moist and dry environments. Moreover, we confirm that there is an important difference in tree species richness between the two continents, which is linked to a few families that are exceptionally diverse in South American moist forests, although dry formations also contribute to this difference. Plant families only present on one of the two continents do not contribute substantially to differences in tree species richness.


Asunto(s)
Árboles , Clima Tropical , Biodiversidad , Bosques , Plantas , América del Sur
2.
J Exp Bot ; 75(10): 2951-2964, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38426564

RESUMEN

Vessel traits contribute to plant water transport from roots to leaves and thereby influence how plants respond to soil water availability, but the sources of variation in fine root anatomical traits remain poorly understood. Here, we explore the variations of fine root vessel traits along topological orders within and across tropical tree species. Anatomical traits were measured along five root topological orders in 80 individual trees of 20 species from a tropical forest in southwestern China. We found large variations for most root anatomical traits across topological orders, and strong co-variations between vessel traits. Within species, theoretical specific xylem hydraulic conductivity (Kth) increased with topological order due to increased mean vessel diameter, size heterogeneity, and decreased vessel density. Across species, Kth was associated with vessel fraction in low-order roots and correlated with mean vessel diameter and vessel density in high-order roots, suggesting a shift in relative anatomical contributors to Kth from the second- to fifth-order roots. We found no clear relationship between Kth and stele: root diameter ratios. Our study shows strong variations in root vessel traits across topological orders and species, and highlights shifts in the anatomical underpinnings by varying vessel-related anatomical structures for an optimized water supply.


Asunto(s)
Raíces de Plantas , Árboles , Xilema , Raíces de Plantas/anatomía & histología , Raíces de Plantas/fisiología , Árboles/fisiología , Árboles/anatomía & histología , Xilema/fisiología , Xilema/anatomía & histología , Agua/metabolismo , Agua/fisiología , Clima Tropical , China
3.
Am J Bot ; : e16400, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39238126

RESUMEN

PREMISE: Understanding the responses of functional traits in tree species to climate variability is essential for predicting the future of tropical montane cloud forest (TMCF) tree species, especially in Andean montane environments where fog pockets act as moisture traps. METHODS: We studied the distribution of Magnolia gentryi, measured its spatial arrangement, identified local hotspots, and evaluated the extent to which climate-related factors are associated with its distribution. We then analyzed the variation in 13 functional traits of M. gentryi and the relationship with climate. RESULTS: Andean TMCF climatic factors constrain M. gentryi spatial distribution with significant patches or gaps that are associated with high precipitation and mean minimum temperature. The functional traits of M. gentryi are limited by the Andean TMCF climatic factors, resulting in reduced within-species variation in traits associated with water deficit. CONCLUSIONS: The association between functional traits and climate oscillation is crucial for understanding the growth conditions of relict-endemic species and is essential for conservation efforts. Forest trait diversity and species composition change because of fluctuations in hydraulic safety-efficiency gradients.

4.
Oecologia ; 204(3): 603-612, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38393366

RESUMEN

Tree diversity promotes predator abundance and diversity, but evidence linking these effects to increased predation pressure on herbivores remains limited. In addition, tree diversity effects on predators can vary temporally as a function of environmental variation, or due to contrasting responses by different predator types. In a multi-year study, we assessed temporal variation in tree diversity effects on bird community abundance, diversity, and predation rates as a whole and by functional group based on feeding guild (omnivores vs. insectivores) and migratory status (migrant vs. resident). To this end, we conducted bird point counts in tree monocultures and polycultures and assessed attacks on clay caterpillars four times over a 2-year period in a tree diversity experiment in Yucatan, Mexico. Tree diversity effects on the bird community varied across surveys, with positive effects on bird abundance and diversity in most but not all surveys. Tree diversity had stronger and more consistent effects on omnivorous and resident birds than on insectivorous and migratory species. Tree diversity effects on attack rates also varied temporally but patterns did not align with variation in bird abundance or diversity. Thus, while we found support for predicted increases in bird abundance, diversity, and predation pressure with tree diversity, these responses exhibited substantial variation over time and the former two were uncoupled from patterns of predation pressure, as well as contingent on bird functional traits. These results underscore the need for long-term studies measuring responses by different predator functional groups to better understand tree diversity effects on top-down control.


Asunto(s)
Herbivoria , Árboles , Animales , Árboles/fisiología , Insectos/fisiología , Aves/fisiología , Conducta Predatoria/fisiología , Ecosistema
5.
Mycorrhiza ; 34(4): 271-282, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850289

RESUMEN

Tropical forests represent one of the most diverse and productive ecosystems on Earth. High productivity is sustained by efficient and rapid cycling of nutrients, which is in large part made possible by symbiotic associations between plants and mycorrhizal fungi. In these associations, an individual plant typically associates simultaneously with multiple fungi and the fungi associate with multiple plants, creating complex networks among fungi and plants. However, there are few studies that have investigated mycorrhizal fungal composition and diversity in tropical forest trees, particularly in Africa, or that assessed the structure of the network of associations among fungi and trees. In this study, we collected root and soil samples from Ise Forest Reserve (Southwest Nigeria) and used a metabarcoding approach to identify the dominant arbuscular mycorrhizal (AM) fungal taxa in the soil and associating with ten co-occurring tree species to assess variation in AM communities. Network analysis was used to elucidate the architecture of the network of associations between fungi and tree species. A total of 194 Operational Taxonomic Units (OTUs) belonging to six AM fungal families were identified, with 68% of all OTUs belonging to Glomeraceae. While AM fungal diversity did not differ among tree species, AM fungal community composition did. Network analyses showed that the network of associations was not significantly nested and showed a relatively low level of specialization (H2 = 0.43) and modularity (M = 0.44). We conclude that, although there were some differences in AM fungal community composition, the studied tree species associate with a large number of AM fungi. Similarly, most AM fungi had great host breadth and were detected in most tree species, thereby potentially working as interaction network hubs.


Asunto(s)
Biodiversidad , Bosques , Micorrizas , Árboles , Micorrizas/fisiología , Micorrizas/clasificación , Árboles/microbiología , Clima Tropical , Microbiología del Suelo , Nigeria
6.
Ecol Lett ; 26(11): 1829-1839, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37807917

RESUMEN

Tropical rainforest woody plants have been thought to have uniformly low resistance to hydraulic failure and to function near the edge of their hydraulic safety margin (HSM), making these ecosystems vulnerable to drought; however, this may not be the case. Using data collected at 30 tropical forest sites for three key traits associated with drought tolerance, we show that site-level hydraulic diversity of leaf turgor loss point, resistance to embolism (P50 ), and HSMs is high across tropical forests and largely independent of water availability. Species with high HSMs (>1 MPa) and low P50 values (< -2 MPa) are common across the wet and dry tropics. This high site-level hydraulic diversity, largely decoupled from water stress, could influence which species are favoured and become dominant under a drying climate. High hydraulic diversity could also make these ecosystems more resilient to variable rainfall regimes.


Asunto(s)
Ecosistema , Árboles , Clima Tropical , Bosques , Madera , Sequías , Hojas de la Planta , Xilema
7.
New Phytol ; 238(5): 1849-1864, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36808625

RESUMEN

Forest fungal communities are shaped by the interactions between host tree root systems and the associated soil conditions. We investigated how the soil environment, root morphological traits, and root chemistry influence root-inhabiting fungal communities in three tropical forest sites of varying successional status in Xishuangbanna, China. For 150 trees of 66 species, we measured root morphology and tissue chemistry. Tree species identity was confirmed by sequencing rbcL, and root-associated fungal (RAF) communities were determined using high-throughput ITS2 sequencing. Using distance-based redundancy analysis and hierarchical variation partitioning, we quantified the relative importance of two soil variables (site average total phosphorus and available phosphorus), four root traits (dry matter content, tissue density, specific tip abundance, and forks), and three root tissue elemental concentrations (nitrogen, calcium, and manganese) on RAF community dissimilarity. The root and soil environment collectively explained 23% of RAF compositional variation. Soil phosphorus explained 76% of that variation. Twenty fungal taxa differentiated RAF communities among the three sites. Soil phosphorus most strongly affects RAF assemblages in this tropical forest. Variation in root calcium and manganese concentrations and root morphology among tree hosts, principally an architectural trade-off between dense, highly branched vs less-dense, herringbone-type root systems, are important secondary determinants.


Asunto(s)
Micobioma , Suelo , Calcio , Bosques , Manganeso , Fósforo , Suelo/química , Microbiología del Suelo , Árboles/microbiología
8.
Oecologia ; 203(1-2): 125-137, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37777642

RESUMEN

Phylogenetic diversity of plant communities can influence the interaction between plants, herbivores, and their natural enemies. Plant communities with phylogenetically distant species tend to present a wide variety of functional traits and ecological niches, which in turn can influence competitive interactions among plants as well as food and habitat quality for herbivores and their natural enemies. To assess some different mechanisms by which phylogenetic diversity of plant communities can influence herbivores and their natural enemies, we established 12 experimental plots of tropical trees with two treatments: high and low phylogenetic diversity. We measured plant growth and anti-herbivore defenses, herbivore foliar damage, and predator activity in seven species that were present in both treatments. We found significant differences in the expression of plant traits as a function of species identity and their life history, but also depending on the phylogenetic context in which they grew. Pioneer species had higher growth and produced more phenolics in plots with high phylogenetic diversity versus plants in plots with low phylogenetic diversity. Accordingly, herbivore damage in these species was greater in plots with low phylogenetic diversity. Finally, predator activity on caterpillar clay models placed on plants was greater within the low phylogenetic diversity treatment, but only for non-myrmecophytic species. These results suggest that plant phylogenetic diversity can influence the expression of growth and defensive traits and further modify the interaction between plants, herbivores, and their natural enemies. However, such effects depend on plant life history and the presence of mutualistic interaction with ants.


Asunto(s)
Ecosistema , Plantas , Filogenia , Herbivoria , Desarrollo de la Planta
9.
New Phytol ; 235(3): 1005-1017, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35608089

RESUMEN

Rapid changes in climate and disturbance regimes, including droughts and hurricanes, are likely to influence tropical forests, but our understanding of the compound effects of disturbances on forest ecosystems is extremely limited. Filling this knowledge gap is necessary to elucidate the future of these ecosystems under a changing climate. We examined the relationship between hurricane response (damage, mortality, and resilience) and four hydraulic traits of 13 dominant woody species in a wet tropical forest subject to periodic hurricanes. Species with high resistance to embolisms (low P50 values) and higher safety margins ( SMP50 ) were more resistant to immediate hurricane mortality and breakage, whereas species with higher hurricane resilience (rapid post-hurricane growth) had high capacitance and P50 values and low SMP50 . During 26 yr of post-hurricane recovery, we found a decrease in community-weighted mean values for traits associated with greater drought resistance (leaf turgor loss point, P50 , SMP50 ) and an increase in capacitance, which has been linked with lower drought resistance. Hurricane damage favors slow-growing, drought-tolerant species, whereas post-hurricane high resource conditions favor acquisitive, fast-growing but drought-vulnerable species, increasing forest productivity at the expense of drought tolerance and leading to higher overall forest vulnerability to drought.


Asunto(s)
Tormentas Ciclónicas , Sequías , Ecosistema , Bosques , Hojas de la Planta/fisiología , Árboles/fisiología , Clima Tropical , Agua/fisiología
10.
New Phytol ; 229(3): 1453-1466, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32964439

RESUMEN

Drought-induced xylem embolism is considered to be one of the main factors driving mortality in woody plants worldwide. Although several structure-functional mechanisms have been tested to understand the anatomical determinants of embolism resistance, there is a need to study this topic by integrating anatomical data for many species. We combined optical, laser, and transmission electron microscopy to investigate vessel diameter, vessel grouping, and pit membrane ultrastructure for 26 tropical rainforest tree species across three major clades (magnoliids, rosiids, and asteriids). We then related these anatomical observations to previously published data on drought-induced embolism resistance, with phylogenetic analyses. Vessel diameter, vessel grouping, and pit membrane ultrastructure were all predictive of xylem embolism resistance, but with weak predictive power. While pit membrane thickness was a predictive trait when vestured pits were taken into account, the pit membrane diameter-to-thickness ratio suggests a strong importance of the deflection resistance of the pit membrane. However, phylogenetic analyses weakly support adaptive coevolution. Our results emphasize the functional significance of pit membranes for air-seeding in tropical rainforest trees, highlighting also the need to study their mechanical properties due to the link between embolism resistance and pit membrane diameter-to-thickness ratio. Finding support for adaptive coevolution also remains challenging.


Asunto(s)
Embolia , Madera , Sequías , Filogenia , Agua , Xilema
11.
Mol Phylogenet Evol ; 160: 107123, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33610647

RESUMEN

Some tropical plant families, such as the Sapotaceae, have a complex taxonomy, which can be resolved using Next Generation Sequencing (NGS). For most groups however, methodological protocols are still missing. Here we identified 531 monocopy genes and 227 Short Tandem Repeats (STR) markers and tested them on Sapotaceae using target capture and NGS. The probes were designed using two genome skimming samples from Capurodendron delphinense and Bemangidia lowryi, both from the Tseboneae tribe, as well as the published Manilkara zapota transcriptome from the Sapotoideae tribe. We combined our probes with 261 additional ones previously published and designed for the entire angiosperm group. On a total of 792 low-copy genes, 638 showed no signs of paralogy and were used to build a phylogeny of the family with 231 individuals from all main lineages. A highly supported topology was obtained at high taxonomic ranks but also at the species level. This phylogeny revealed the existence of more than 20 putative new species. Single nucleotide polymorphisms (SNPs) extracted from the 638 genes were able to distinguish lineages within a species complex and to highlight geographical structuration. STR were recovered efficiently for the species used as reference (C. delphinense) but the recovery rate decreased dramatically with the phylogenetic distance to the focal species. Altogether, the new loci will help reaching a sound taxonomic understanding of the family Sapotaceae for which many circumscriptions and relationships are still debated, at the species, genus and tribe levels.


Asunto(s)
Núcleo Celular/genética , Marcadores Genéticos , Filogenia , Sapotaceae/genética , Secuenciación de Nucleótidos de Alto Rendimiento
12.
Am J Bot ; 108(9): 1793-1807, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34519027

RESUMEN

PREMISE: The mechanisms generating the geographical distributions of genetic diversity are a central theme in evolutionary biology. The amount of genetic diversity and its distribution are controlled by several factors, including dispersal abilities, physical barriers, and environmental and climatic changes. We investigated the patterns of genetic diversity and differentiation among populations of the widespread species Brosimum alicastrum in Mexico. METHODS: Using nuclear DNA microsatellite data, we tested whether the genetic structure of B. alicastrum was associated with the roles of the Trans-Mexican Volcanic Belt and the Isthmus of Tehuantepec as geographical barriers to gene flow and to infer the role of past events in the genetic diversity patterns. We further used a maximum-likelihood population-effects mixed model (MLPE) to identify the main factor affecting population differentiation in B. alicastrum. RESULTS: Our results suggested that Mexican B. alicastrum is well differentiated into three main lineages. Patterns of the genetic structure at a finer scale did not fully correspond to the current geographical barriers to gene flow. According to the MLPE mixed model, isolation by distance is the best model for explaining the genetic differentiation of B. alicastrum in Mexico. CONCLUSIONS: We propose that the differentiation patterns might reflect (1) an ancient differentiation that occurred in Central and South America, (2) the effects of past climatic changes, and (3) the functions of some physical barriers to gene flow. This study provides insights into the possible mechanisms underlying the geographic genetic variation of B. alicastrum along a moisture gradient in tropical lowland forests.


Asunto(s)
Variación Genética , Moraceae , Flujo Génico , México , Repeticiones de Microsatélite/genética
13.
J Appl Microbiol ; 131(6): 2739-2747, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33973309

RESUMEN

AIM: This study was performed to investigate the effects of Lactobacillus plantarum (LP) on the in vitro gas production (GP) kinetics and ruminal fermentation parameter of three species of tropical forage Ziziphus mauritiana, Acacia victoriae and Moringa oleifera. METHODS AND RESULTS: Treatments were (i) Z. mauritiana (Z) without LP (-ZLP), (ii) Z. mauritiana (Z) with LP (+ZLP), (iii) A. victoriae (A) without LP (-ALP), (4) A. victoriae (A) with LP (+ALP), (5) M. oleifera (M) without LP (-MLP) and (6) M. oleifera (M) with LP (+MLP). The LP was used at 0·5 Mcfarland (1·5 × 108 colony-forming unit per millilitre (CFU per ml)). Kinetic of GP (GP from the fermentable fraction [b], GP rate [c] and lag phase [L]) and GP were affected (P < 0·05) by plant species and LP. The highest value of b, c and GP were observed in +MLP treatment compared with other treatments. The lowest value of L was observed for the +ZLP treatment compared with other treatments. The GP and fermentation parameter included organic matter digestibility (OMD), metabolizable energy (ME) content, microbial CP (MCP) and truly degraded substrate (TDS) were affected by plant species and LP supplementation. The highest OMD, ME, TDS and MCP values were observed in +MLP treatment. At different incubation times, the highest amount of ammonia-N was observed in treatment +MLP compared with other treatments. Under the influence of experimental treatments (effect of plant species and LP), the highest concentrations of total volatile fatty acids, acetate and acetate to propionate ratio were observed in treatments +MLP, +ALP and +ALP, respectively. Concentrations of propionate, iso-butyrate, n-valerate and iso-valerate were affected by plant species, and the highest levels were observed in -ZLP, +MLP, -MLP and +MLP tretments, respectively. CONCLUSIONS: The use of LP as a microbial additive had a positive effect on the in vitro digestibility and ruminal fermentation of tannins-rich tropical plants. Results suggest that dietary LP inclusion could be an option to improve ruminant energy utilization efficiency of tannins-rich tropical plants. SIGNIFICANCE AND IMPACT OF THE STUDY: Regardless the effect of the forage species, the use of LP as a microbial additive improved GP and kinetics and also increased OMD, TDS, MCP and enhanced the total in vitro ruminal VFAs production.


Asunto(s)
Lactobacillus plantarum , Rumen , Alimentación Animal/análisis , Animales , Dieta , Digestión , Fermentación , Hojas de la Planta , Rumen/metabolismo , Árboles
14.
Environ Res ; 201: 111475, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34166663

RESUMEN

Ozone (O3) is an oxidative air pollutant that affects plant growth. Moringa oleifera is a tree species distributed in the tropical and subtropical regions. This species presents high morphological plasticity, which increases its ability to tolerate stressful conditions, but with no O3 risk assessment calculated so far. The present study assessed the O3 risk to different M. oleifera ecotypes using exposure-based index (AOT40) or flux-based index (PODy - where y is a threshold of O3 uptake). PODy considers the O3 uptake through the stomata and the consequence of environmental climate conditions on stomatal conductance (gsto); thus, it is efficient in assessing O3 risk. Five M. oleifera ecotypes were subjected to ambient (Amb.); middle (Mid. X1.5), and High (x2.0) O3 concentrations for 77 days in a free-air controlled exposure facility (FACE). Leaf biomass (LB) was evaluated, and the biomass loss was projected assuming a clean atmosphere (10 ppb as 24 h O3 average). The gsto parameterization was calculated using the Jarvis-type multiplicative algorithm considering several climate factors, i.e., light intensity, air temperature, air vapor pressure deficit, and AOT40. Ozone exposure harmed the LB of all ecotypes. The high gsto (~559 mmol H2O m-2 s-1) can be considered the reason for the species' O3 sensitivity. M. oleifera is adapted to hot climate conditions, and gsto was restricted with air temperature (Tmin) below ~ 9 °C. As expected, the PODy index performed better than the AOT40 for estimating the O3 effect on biomass losses. We recommend a y threshold of 4 nmol m-2 s-1 to incorporate O3 effects on M. oleifera LB. To not exceed a 4% reduction of LB for any M. oleifera genotype, we recommend the critical levels of 1.1 mmol m-2 POD4.


Asunto(s)
Contaminantes Atmosféricos , Moringa oleifera , Ozono , Contaminantes Atmosféricos/análisis , Ecotipo , Ozono/análisis , Ozono/toxicidad , Hojas de la Planta , Árboles
15.
J Plant Res ; 134(6): 1225-1242, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34505187

RESUMEN

Despite its major role in global isoprene emission, information on the environmental control of isoprene emission from tropical trees has remained scarce. Thus, in this study, we examined the relationship between parameters of G-93 isoprene emission formula (CT1, CT2, and α), growth temperature and light intensity, photosynthesis (ɸ, Pmax), isoprene synthase (IspS) level, and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway metabolites using sunlit and shaded leaves of four tropical trees. The results showed that the temperature dependence of isoprene emission from shaded leaves did not differ significantly from sunlit leaves. In contrast, there was a lower saturation irradiance in shaded leaves than in sunlit leaves, the same as temperate plants. The photosynthesis rate of shaded leaves showed lower saturation irradiance, similar to the light dependence of isoprene emission. In most cases, the concentration of MEP pathway metabolites was of lower tendency in shaded leaves versus in sunlit leaves, whereas no significant difference was noted in IspS level between sunlit and shaded leaves. Correlation analysis between these parameters found that CT1 of the G-93 parameter was positively correlated with the concentration of DXP and DMADP, whereas CT2 correlated with the concentration of MEP and the average air temperature for the past 48 h. Similarly, α closely associated with the initial slope (ɸ) of photosynthesis rate, and the basal emission factor is also linked to the photon flux of past days. These results suggest that growth conditions may control the temperature dependence of isoprene emission from tropical trees via the changes in the profiles of MEP pathway metabolites, causing alteration in the parameters of the isoprene emission formula.


Asunto(s)
Populus , Árboles , Butadienos , Hemiterpenos , Pentanos , Fotosíntesis , Hojas de la Planta
16.
Proc Natl Acad Sci U S A ; 115(49): 12459-12464, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30446609

RESUMEN

Tree death drives population dynamics, nutrient cycling, and evolution within plant communities. Mortality variation across species is thought to be influenced by different factors relative to variation within species. The unified model provided here separates mortality rates into growth-dependent and growth-independent hazards. This model creates the opportunity to simultaneously estimate these hazards both across and within species. Moreover, it provides the ability to examine how species traits affect growth-dependent and growth-independent hazards. We derive this unified mortality model using cross-validated Bayesian methods coupled with mortality data collected over three census intervals for 203 tropical rainforest tree species at Barro Colorado Island (BCI), Panama. We found that growth-independent mortality tended to be higher in species with lower wood density, higher light requirements, and smaller maximum diameter at breast height (dbh). Mortality due to marginal carbon budget as measured by near-zero growth rate tended to be higher in species with lower wood density and higher light demand. The total mortality variation attributable to differences among species was large relative to variation explained by these traits, emphasizing that much remains to be understood. This additive hazards model strengthens our capacity to parse and understand individual-level mortality in highly diverse tropical forests and hence to predict its consequences.


Asunto(s)
Bosque Lluvioso , Árboles/crecimiento & desarrollo , Islas , Longevidad , Panamá , Especificidad de la Especie
17.
New Phytol ; 228(2): 512-524, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32496575

RESUMEN

Hydraulic segmentation at the stem-leaf transition predicts higher hydraulic resistance in leaves than in stems. Vulnerability segmentation, however, predicts lower embolism resistance in leaves. Both mechanisms should theoretically favour runaway embolism in leaves to preserve expensive organs such as stems, and should be tested for any potential coordination. We investigated the theoretical leaf-specific conductivity based on an anatomical approach to quantify the degree of hydraulic segmentation across 21 tropical rainforest tree species. Xylem resistance to embolism in stems (flow-centrifugation technique) and leaves (optical visualization method) was quantified to assess vulnerability segmentation. We found a pervasive hydraulic segmentation across species, but with a strong variability in the degree of segmentation. Despite a clear continuum in the degree of vulnerability segmentation, eight species showed a positive vulnerability segmentation (leaves less resistant to embolism than stems), whereas the remaining species studied exhibited a negative or no vulnerability segmentation. The degree of vulnerability segmentation was positively related to the degree of hydraulic segmentation, such that segmented species promote both mechanisms to hydraulically decouple leaf xylem from stem xylem. To what extent hydraulic and vulnerability segmentation determine drought resistance requires further integration of the leaf-stem transition at the whole-plant level, including both xylem and outer xylem tissue.


Asunto(s)
Árboles , Xilema , Sequías , Hojas de la Planta , Tallos de la Planta , Bosque Lluvioso , Agua
18.
J Exp Bot ; 71(9): 2641-2649, 2020 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-32052058

RESUMEN

Recent works revealed that bark is able to produce mechanical stress to control the orientation of young tilted stems. Here we report how the potential performance of this function changes with stem size in six Amazonian species with contrasted bark anatomy. The potential performance of the mechanism depends both on the magnitude of bark stress and the relative thickness of the bark. We measured bark longitudinal residual strain and density, and the allometric relationship between bark thickness and stem radius over a gradient of tree sizes. Constant tensile stress was found in species that rely on bark for the control of stem orientation in young stages. Other species had increasing compressive stress, associated with increasing density attributed to the development of sclereids. Compressive stress was also associated with low relative bark thickness. The relative thickness of bark decreased with size in all species, suggesting that a reorientation mechanism based on bark progressively performs less well as the tree grows. However, greater relative thickness was observed in species with more tensile stress, thereby evidencing that this reduction in performance is mitigated in species that rely on bark for reorientation.


Asunto(s)
Corteza de la Planta , Árboles , Equilibrio Postural
19.
Proc Natl Acad Sci U S A ; 114(10): 2645-2650, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28213498

RESUMEN

We investigate patterns of historical assembly of tree communities across Amazonia using a newly developed phylogeny for the species-rich neotropical tree genus Inga We compare our results with those for three other ecologically important, diverse, and abundant Amazonian tree lineages, Swartzia, Protieae, and Guatteria Our analyses using phylogenetic diversity metrics demonstrate a clear lack of geographic phylogenetic structure, and show that local communities of Inga and regional communities of all four lineages are assembled by dispersal across Amazonia. The importance of dispersal in the biogeography of Inga and other tree genera in Amazonian and Guianan rain forests suggests that speciation is not driven by vicariance, and that allopatric isolation following dispersal may be involved in the speciation process. A clear implication of these results is that over evolutionary timescales, the metacommunity for any local or regional tree community in the Amazon is the entire Amazon basin.


Asunto(s)
Biodiversidad , Filogenia , Bosque Lluvioso , Árboles/genética , Geografía , Especificidad de la Especie , Árboles/clasificación
20.
Int J Biometeorol ; 64(9): 1629-1634, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32415620

RESUMEN

Populus deltoides is a fast-growing woody species possessing plethora of industrial applications. This species evolutionarily developed unisexual male and female catkin inflorescence on separate trees. Flowering usually occurs during early spring before the development of foliage, where buds appear near axils or at the extending shoots. In 2019, surveys were undertaken to study the flowering pattern of P. deltoides in the states of Punjab, Haryana, Uttar Pradesh and Uttarakhand in northern India. Interestingly, an anomalous flowering behaviour (appearance of off-season male catkins during autumn, i.e. October) was observed in a plantation trial at Kapurthala, Punjab. The male catkins were 2.7-3.1 ± 0.07 cm long and 0.3-0.5 ± 0.03 cm wide, which is significant for flowering and liberation of pollen grains. Preliminary results suggested that climatic factors, such as episodes of high or low temperature and the precipitation variation forcing the tree species to behave differently. Unearthing the climate-driven off-season flowering in other tree species alluded the stimulation of phytohormones, such as gibberellic and salicylic acid concentrations influencing the flowering time, therefore, needs further investigation in case of P. deltoides. Overall, this work provides early clues of changing climatic scenario altering the flowering pattern of a tropical forestry tree species.


Asunto(s)
Populus , Cambio Climático , Flores , India , Estaciones del Año , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA