Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Ther ; 32(4): 1110-1124, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38341612

RESUMEN

Whether and how tumor intrinsic signature determines macrophage-elicited metastasis remain elusive. Here, we show, in detailed studies of data regarding 7,477 patients of 20 types of human cancers, that only 13.8% ± 2.6%/27.9% ± 3.03% of patients with high macrophage infiltration index exhibit early recurrence/vascular invasion. In parallel, although macrophages enhance the motility of various hepatoma cells, their enhancement intensity is significantly heterogeneous. We identify that the expression of malignant Dicer, a ribonuclease that cleaves miRNA precursors into mature miRNAs, determines macrophage-elicited metastasis. Mechanistically, the downregulation of Dicer in cancer cells leads to defects in miRNome targeting NF-κB signaling, which in turn enhances the ability of cancer cells to respond to macrophage-related inflammatory signals and ultimately promotes metastasis. Importantly, transporting miR-26b-5p, the most potential miRNA targeting NF-κB signaling in hepatocellular carcinoma, can effectively reverse macrophage-elicited metastasis of hepatoma in vivo. Our results provide insights into the crosstalk between Dicer-elicited miRNome and cancer immune microenvironments and suggest that strategies to remodel malignant cell miRNome may overcome pro-tumorigenic activities of inflammatory cells.


Asunto(s)
Carcinoma Hepatocelular , MicroARNs , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Carcinoma Hepatocelular/patología , Transducción de Señal/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Macrófagos/metabolismo , Línea Celular Tumoral , Microambiente Tumoral/genética
2.
Mol Cancer ; 23(1): 168, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164758

RESUMEN

BACKGROUND: Information transmission between primary tumor cells and immunocytes or stromal cells in distal organs is a critical factor in the formation of pre-metastatic niche (PMN). Understanding this mechanism is essential for developing effective therapeutic strategy against tumor metastasis. Our study aims to prove the hypothesis that circ-0034880-enriched tumor-derived extracellular vesicles (TEVs) mediate the formation of PMN and colorectal cancer liver metastasis (CRLM), and targeting circ-0034880-enriched TEVs might be an effective therapeutic strategy against PMN formation and CRLM. METHODS: We utilized qPCR and FISH to measure circRNAs expression levels in human CRC plasma, primary CRC tissues, and liver metastatic tissues. Additionally, we employed immunofluorescence, RNA sequencing, and in vivo experiments to assess the effect mechanism of circ-0034880-enriched TEVs on PMN formation and CRC metastasis. DARTS, CETSA and computational docking modeling were applied to explore the pharmacological effects of Ginsenoside Rb1 in impeding PMN formation. RESULTS: We found that circ-0034880 was highly enriched in plasma extracellular vesicles (EVs) derived from CRC patients and closely associated with CRLM. Functionally, circ-0034880-enriched TEVs entered the liver tissues and were absorbed by macrophages in the liver through bloodstream. Mechanically, TEVs-released circ-0034880 enhanced the activation of SPP1highCD206+ pro-tumor macrophages, reshaping the metastasis-supportive host stromal microenvironment and promoting overt metastasis. Importantly, our mechanistic findings led us to discover that the natural product Ginsenoside Rb1 impeded the activation of SPP1highCD206+ pro-tumor macrophages by reducing circ-0034880 biogenesis, thereby suppressing PMN formation and inhibiting CRLM. CONCLUSIONS: Circ-0034880-enriched TEVs facilitate strong interaction between primary tumor cells and SPP1highCD206+ pro-tumor macrophages, promoting PMN formation and CRLM. These findings suggest the potential of using Ginsenoside Rb1 as an alternative therapeutic agent to reshape PMN formation and prevent CRLM.


Asunto(s)
Neoplasias Colorrectales , Vesículas Extracelulares , Neoplasias Hepáticas , Osteopontina , ARN Circular , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Vesículas Extracelulares/metabolismo , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Ratones , Animales , ARN Circular/genética , Osteopontina/metabolismo , Osteopontina/genética , Línea Celular Tumoral , Microambiente Tumoral , Masculino , Femenino , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
3.
Adv Exp Med Biol ; 1234: 87-105, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32040857

RESUMEN

Tumor lymphatics play a key role in cancer progression as they are solely responsible for transporting malignant cells to regional lymph nodes (LNs), a process that precedes and promotes systemic lethal spread. It is broadly accepted that tumor lymphatic sprouting is induced mainly by soluble factors derived from tumor-associated macrophages (TAMs) and malignant cells. However, emerging evidence strongly suggests that a subset of TAMs, myeloid-lymphatic endothelial cell progenitors (M-LECP), also contribute to the expansion of lymphatics through both secretion of paracrine factors and a self-autonomous mode. M-LECP are derived from bone marrow (BM) precursors of the monocyte-macrophage lineage and characterized by unique co-expression of markers identifying lymphatic endothelial cells (LEC), stem cells, M2-type macrophages, and myeloid-derived immunosuppressive cells. This review describes current evidence for the origin of M-LECP in the bone marrow, their recruitment tumors and intratumoral trafficking, similarities to other TAM subsets, and mechanisms promoting tumor lymphatics. We also describe M-LECP integration into preexisting lymphatic vessels and discuss potential mechanisms and significance of this event. We conclude that improved mechanistic understanding of M-LECP functions within the tumor environment may lead to new therapeutic approaches to suppress tumor lymphangiogenesis and metastasis to lymph nodes.


Asunto(s)
Células Endoteliales , Vasos Linfáticos , Microambiente Tumoral , Humanos , Linfangiogénesis , Metástasis Linfática
4.
Cell Commun Signal ; 16(1): 76, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30409198

RESUMEN

Tunnelling nanotubes (TNTs), also known as membrane nanochannels, are actin-based structures that facilitate cytoplasmic connections for rapid intercellular transfer of signals, organelles and membrane components. These dynamic TNTs can form de novo in animal cells and establish complex intercellular networks between distant cells up to 150 µm apart. Within the last decade, TNTs have been discovered in different cell types including tumor cells, macrophages, monocytes, endothelial cells and T cells. It has also been further elucidated that these nanotubes play a vital role in diseased conditions such as cancer, where TNT formation occurs at a higher pace and is used for rapid intercellular modulation of chemo-resistance. Viruses such as HIV, HSV and prions also hijack the existing TNT connections between host cells for rapid transmission and evasion of the host immune responses. The following review aims to describe the heterogeneity of TNTs, their role in different tissues and disease conditions in order to enhance our understanding on how these nanotubes can be used as a target for therapies.


Asunto(s)
Citoplasma/patología , Enfermedad , Animales , Transporte Biológico , Comunicación Celular , Citoplasma/virología , Células Endoteliales/patología , Humanos , Neoplasias/patología
5.
Adv Exp Med Biol ; 930: 205-39, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27558823

RESUMEN

Macrophages are a group of heterogeneous cells of the innate immune system that are crucial to the initiation, progression, and resolution of inflammation. Moreover, they control tissue homeostasis in healthy tissue and command a broad sensory arsenal to detect disturbances in tissue integrity. Macrophages possess a remarkable functional plasticity to respond to irregularities and to initiate programs that allow overcoming them in order to return back to normal. Thus, macrophages kill malignant or transformed cells, rearrange extracellular matrix, take up and recycle cellular as well as molecular debris, initiate cellular growth cascades, and favor directed migration of cells. As an example, apoptotic death of bystander cells is sensed by macrophages, initiating functional responses that support all hallmarks of cancer. In this chapter, we describe how tumor cell apoptosis hijacks tumor-associated macrophages to promote tumor growth. We propose that tumor therapy should not only kill malignant cells but also target the interaction of the host with apoptotic cancer cells, as this might be efficient to limit the protumor action of apoptotic cells and boost the antitumor potential of macrophages. Leaving the apoptotic cell/macrophage interaction untouched might also limit the benefit of conventional tumor cell apoptosis-focused therapy since surviving tumor cells might receive overwhelming support by the wound healing response that apoptotic tumor cells will trigger in local macrophages, thereby enhancing tumor recurrence.


Asunto(s)
Apoptosis/fisiología , Macrófagos/fisiología , Terapia Molecular Dirigida , Neoplasias/fisiopatología , Alarminas/fisiología , Animales , Linaje de la Célula , Transformación Celular Neoplásica/inmunología , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunidad Innata , Inflamación , Macrófagos/clasificación , Macrófagos/efectos de los fármacos , Macrófagos/efectos de la radiación , MicroARNs/genética , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas de Neoplasias/fisiología , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Neovascularización Patológica/fisiopatología , ARN Neoplásico/genética , Insuficiencia del Tratamiento
6.
FASEB J ; 28(5): 2260-71, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24469992

RESUMEN

The FERM domain containing protein Kindlin-3 has been recognized as a major regulator of integrin function in hematopoietic cells, but its role in neoplasia is totally unknown. We have examined the relationship between Kindlin-3 and breast cancer in mouse models and human tissues. Human breast tumors showed a ∼7-fold elevation in Kindlin-3 mRNA compared with nonneoplastic tissue by quantitative polymerase chain reaction. Kindlin-3 overexpression in a breast cancer cell line increased primary tumor growth and lung metastasis by 2.5- and 3-fold, respectively, when implanted into mice compared with cells expressing vector alone. Mechanistically, the Kindlin-3-overexpressing cells displayed a 2.2-fold increase in vascular endothelial growth factor (VEGF) secretion and enhanced ß1 integrin activation. Increased VEGF secretion resulted from enhanced production of Twist, a transcription factor that promotes tumor angiogenesis. Knockdown of Twist diminished VEGF production, and knockdown of ß1 integrins diminished Twist and VEGF production by Kindlin-3-overexpressing cells, while nontargeting small interfering RNA had no effect on expression of these gene products. Thus, Kindlin-3 influences breast cancer progression by influencing the crosstalk between ß1 integrins and Twist to increase VEGF production. This signaling cascade enhances breast cancer cell invasion and tumor angiogenesis and metastasis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularización Patológica , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Humanos , Integrina beta1/metabolismo , Ratones , Ratones SCID , Metástasis de la Neoplasia , Estructura Terciaria de Proteína , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Front Physiol ; 11: 543962, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329014

RESUMEN

Tumor cells without mitochondrial (mt) DNA (ρ0 cells) are auxotrophic for uridine, and their growth is supported by pyruvate. While ATP synthesis in ρ0 cells relies on glycolysis, they fail to form tumors unless they acquire mitochondria from stromal cells. Mitochondrial acquisition restores respiration that is essential for de novo pyrimidine biosynthesis and for mitochondrial ATP production. The physiological processes that underpin intercellular mitochondrial transfer to tumor cells lacking mtDNA and the metabolic remodeling and restored tumorigenic properties of cells that acquire mitochondria are not well understood. Here, we investigated the changes in mitochondrial and nuclear gene expression that accompany mtDNA deletion and acquisition in metastatic murine 4T1 breast cancer cells. Loss of mitochondrial gene expression in 4T1ρ0 cells was restored in cells recovered from subcutaneous tumors that grew from 4T1ρ0 cells following acquisition of mtDNA from host cells. In contrast, the expression of most nuclear genes that encode respiratory complex subunits and mitochondrial ribosomal subunits was not greatly affected by loss of mtDNA, indicating ineffective mitochondria-to-nucleus communication systems for these nuclear genes. Further, analysis of nuclear genes whose expression was compromised in 4T1ρ0 cells showed that immune- and stress-related genes were the most highly differentially expressed, representing over 70% of those with greater than 16-fold higher expression in 4T1 compared with 4T1ρ0 cells. The monocyte recruiting chemokine, Ccl2, and Psmb8, a subunit of the immunoproteasome that generates MHCI-binding peptides, were the most highly differentially expressed. Early monocyte/macrophage recruitment into the tumor mass was compromised in 4T1ρ0 cells but recovered before mtDNA could be detected. Taken together, our results show that mitochondrial acquisition by tumor cells without mtDNA results in bioenergetic remodeling and re-expression of genes involved in immune function and stress adaptation.

8.
Oncotarget ; 9(18): 14251-14267, 2018 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-29581841

RESUMEN

Fibulin 5 (FBLN5) is an extracellular matrix glycoprotein that suppresses matrix metalloprotease 9 (MMP-9), angiogenesis and epithelial cell motility. Here, we investigated the regulation and function of FBLN5 in epithelial ovarian cancer (EOC). FBLN5 mRNA was down-regulated 5-fold in EOC relative to benign ovary. Not surprisingly, MMP9 mRNA and enzyme activity were increased significantly, and inversely correlated with FBLN5 gene expression. FBLN5 degradation products of 52.8 and 41.3 kDa were increased substantially in EOC. We identified two candidate proteases (serine elastase and MMP-7, but not MMP-9) that cleave FBLN5. MMP-7, but not neutrophil elastase, gene expression was increased dramatically in EOC. Recombinant FBLN5 significantly inhibited adhesion of EOC cells to both laminin and collagen I. Finally, using immunohistochemistry, we found immunoreactive FBLN5 within tumor macrophages throughout human EOC tumors. This work indicates that FBLN5 is degraded in EOC most likely by proteases enriched in macrophages of the tumor microenvironment. Proteolysis of FBLN5 serves as a mechanism to promote cell adhesion and local metastasis of ovarian cancer cells. Promotion of a stable ECM with intact FBLN5 in the tumor matrix may serve as a novel therapeutic adjunct to prevent spread of ovarian cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA