RESUMEN
It is generally accepted that aragonite crystals of biogenic origin are characterized by significantly higher twin densities compared to samples formed during geological processes. Based on our single crystal X-ray diffraction (SCXRD) and transmission electron microscopy (TEM) study of aragonite crystals from various localities, we show that in geological aragonites, the twin densities are comparable to those of the samples from crossed lamellar zones of molluscs shells. The high twin density is consistent with performed calculations, according to which the Gibbs free energy of twin-free aragonite is close to that of periodically twinned aragonite structure. In some cases, high twin densities result in the appearance of diffuse scattering in SCXRD patterns. The obtained TEM and optical micrographs show that besides the twin boundaries (TBs) of growth origin, there are also TBs and especially stacking faults that were likely formed as the result of local strain compensation. SCXRD patterns of the samples from Tazouta, in addition to diffuse scattering lines, show Debye arcs in the [Formula: see text] plane. These Debye arcs are present only on one side of the Bragg reflections and have an azimuthal extent of nearly 30°, making the whole symmetry of the diffraction pattern distinctly chiral, which has not yet been reported for aragonite. By analogy with biogenic calcite crystals, we associate these arcs with the presence of misoriented subgrains formed as a result of crystal twisting during growth.
RESUMEN
The pseudomagnetic field effect may offer unique opportunities for the emergence of intriguing phenomena. To date, investigations into pseudomagnetic field effects on phonons have been limited to sound waves in metamaterials. The revelation of this exotic effect on the atomic vibration of natural materials remains elusive. Our simulations of twisted graphene nanoribbons reveal well-defined Landau spectra and sublattice polarization of phonon states, mimicking the behavior of Dirac Fermions in magnetic fields. Both valley-specified helical edge currents and snake orbits are obtained. Analysis of dynamics indicates that phonon Landau states have extended lifetimes, which are crucial for the realization of Landau-level lasing. Our findings demonstrate the occurrence of the phonon pseudomagnetic field effect in natural materials, which has important implications for the mechanical tuning of phonon quantum states at the atomic scale.
RESUMEN
Cell-division-plane orientation is critical for plant and animal development and growth. TANGLED1 (TAN1) and AUXIN-INDUCED IN ROOT CULTURES 9 (AIR9) are division-site-localized microtubule-binding proteins required for division-plane positioning. The single mutants tan1 and air9 of Arabidopsis thaliana have minor or no noticeable phenotypes, but the tan1 air9 double mutant has synthetic phenotypes including stunted growth, misoriented divisions and aberrant cell-file rotation in the root differentiation zone. These data suggest that TAN1 plays a role in non-dividing cells. To determine whether TAN1 is required in elongating and differentiating cells in the tan1 air9 double mutant, we limited its expression to actively dividing cells using the G2/M-specific promoter of the syntaxin KNOLLE (pKN:TAN1-YFP). Unexpectedly, in addition to rescuing division-plane defects, expression of pKN:TAN1-YFP rescued root growth and cell file rotation defects in the root-differentiation zone in tan1 air9 double mutants. This suggests that defects that occur in the meristematic zone later affect the organization of elongating and differentiating cells.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , División Celular , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Meristema , Proteínas de Microtúbulos/metabolismo , Raíces de Plantas/metabolismo , Proteínas Qa-SNARE/metabolismoRESUMEN
The topological properties of DNA have long been a focal point in biophysics. In the 1970s, White proposed that the topology of closed DNA double helix follows White's formula: Lk=Wr+Tw. However, there has been controversy in the calculation of DNA twisting number, partly due to discrepancies in the definition of torsion in differential geometry. In this paper, we delved into a detailed study of torsion, revealing that the calculation of DNA twisting number should use the curve's geodesic torsion. Furthermore, we found that the discrepancy in DNA twisting numbers calculated using different torsion is N. This study elucidated the impact of torsion on the calculation of DNA twisting numbers, aiming to resolve controversies in the calculation of DNA topology and provided accurate computational methods and theoretical foundations for related research.
Asunto(s)
ADN , Conformación de Ácido Nucleico , ADN/genética , Matemática , BiofisicaRESUMEN
The use of non-equilibrium growth modes with non-steady dynamics is extensively explored in bulk materials such as amorphous and polycrystalline materials. Yet, research into the non-steady-state (NSS) growth of two-dimensional (2D) materials is still in its infancy. In this study, multilayered tin selenide (SnSe2 ) nanoplates are grown by chemical vapor deposition under NSS conditions (modulating carrier gas flow and temperature). Given the facile diffusion and inherent instability of SnSe2 , it proves to be an apt candidate for nucleation and growth in NSS scenarios. This leads to the emergence of SnSe2 nanoplates with distinct features (self-growth twisting, symmetry transformation, interlayer decoupling, homojunction, and large-area 2D domain), exhibiting pronounced second harmonic generation. The authors' findings shed light on the growth dynamics of 2D materials, broadening their potential applications in various fields.
RESUMEN
Diplodia sapinea causes Diplodia tip blight (DTB) and is recognised as an opportunistic necrotrophic pathogen affecting conifers. While DTB is associated with abiotic stress, the impact of biotic stress in the host on D. sapinea's lifestyle shift is unknown. Observed co-occurrences of D. sapinea and Melampsora pinitorqua, causing pine twisting rust on Scots pine (Pinus sylvestris), instigated an investigation into their interaction with and influence on the defence mechanisms of the host. We hypothesised that M. pinitorqua infections predispose the trees to D. sapinea by stressing the host and altering the shoot metabolites. Pines in a plantation were sampled over time to study pathogen biomass and host metabolites. Symptoms of both pathogens were consistent over years, and the preceding season's symptoms affected the metabolic profiles pre-infection and M. pinitorqua's proliferation. Symptoms of M. pinitorqua altered shoot metabolites more than fungal biomass, with co-symptomatic trees exhibiting elevated M. pinitorqua biomass. Specific phenolic compounds had a strong positive association with the shoot symptom × D. sapinea interaction. D. sapinea's biomass presymptoms was independent of previous disease symptoms and infection by M. pinitorqua. Some trees showed disease tolerance, with delayed rust infections and minimal DTB symptoms. Further investigations on this trait are needed.
RESUMEN
PURPOSE: LVAD outflow graft stenosis continues to remain prevalent with a high complication rate. We sought to pool the existing evidence on indications, utilization patterns, and outcomes of transcatheter interventions for outflow graft stenosis in the HeartMate 3 LVAD. METHODS: An electronic search was performed to identify all studies in the English literature reporting on HeartMate 3 LVAD outflow graft stenting. Patient-level data were extracted for analysis. RESULTS: Thirteen published reports and one unpublished case comprising a total of 28 patients were included. Median patient age was 68.5 years [Interquartile range: 58, 71] and 25.9% (7/27) were female. Dyspnea [60.7% (17/28)] was the most common presenting symptom. Low flow alarms were present in 60% (15/25) of patients. Findings included external compression [35.7% (10/28)], graft twist [21.4% (6/28)], graft twist and external compression [14.3% (4.28)], intraluminal thrombus [10.7% (3/28)], graft twist and intraluminal thrombus [3.6% (1/28)], and pseudoaneurysm of outflow graft [3.6% (1/28)]. Median time from LVAD implantation to stenting was 2.1 years [1.4, 3]. Immediate flow normalization after stenting was observed in 85.7% (24/28). The 30-day mortality was 12% (3/25). Overall mortality was 12% (3/25) at a median follow-up of 3.9 months [1, 17]. CONCLUSION: Outflow graft stenting in the HeartMate 3 LVAD appears to be a reasonable treatment option for outflow graft stenosis, with low overall rates of complications and mortality. Further refinement of indications and approaches may improve outcomes.
Asunto(s)
Corazón Auxiliar , Stents , Humanos , Corazón Auxiliar/efectos adversos , Stents/efectos adversos , Resultado del Tratamiento , Insuficiencia Cardíaca/cirugía , Femenino , Persona de Mediana Edad , Anciano , MasculinoRESUMEN
The paper investigates a modified adaptive super-twisting sliding mode control (ASTSMC) for robotic manipulators with input saturation. To avoid singular perturbation while increasing the convergence rate, a modified sliding mode surface (SMS) is developed in this method. Using the proposed SMS, an ASTSMC is developed for robot manipulators, which not only achieves strong robustness but also ensures finite-time convergence. The boundary of lumped uncertainties cannot be easily obtained. A modified adaptive law is developed such that the boundaries of time-varying disturbance and its derivative are not required. Considering input saturation in practical cases, an ASTSMC with saturation compensation is proposed to reduce the effect of input saturation on tracking performances of robot manipulators. The finite-time convergence of the proposed scheme is analyzed. Through comparative simulations against two other sliding mode control schemes, the proposed method has been validated to possess strong adaptability, effectively adjusting control gains; simultaneously, it demonstrates robustness against disturbances and uncertainties.
RESUMEN
Hexaazamacrocyclic Schiff bases have been extensively combined with lanthanoid (Ln) ions to obtain complexes with a highly axial geometry. However, the use of flexible hexaazatetraamine macrocycles containing two pyridines and acyclic spacers is rather uncommon. Accordingly, we obtained [DyL(OAc)2]OAc·7H2O·EtOH and [DyLMe2(Cl)2]Cl·2H2O, where L and LMe2 are the 18-membered macrocycles 3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane and 3,10-dimethyl-3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane, respectively, which contain ethylene and methylethylene spacers between their N3 moieties. [DyL(OAc)2]OAc·7H2O·EtOH represents the first crystallographically characterized lanthanoid complex of L, while [DyLMe2(Cl)2]Cl·2H2O contributes to increasing the scarce number of LnIII compounds containing LMe2. Furthermore, the crystal structure of L·12H2O was solved, and it was compared with those of other related macrocycles previously published. Likewise, the crystal structures of the DyIII complexes were compared with those of the lanthanoid and d-metal complexes of other 18-membered N6 donor macrocycles. This comparison showed some effect of the spacers employed, as well as the influence of the size of the ancillary ligands and the metal ion. Additionally, the distinct folding behaviors of these macrocycles influenced their coordination geometries. Moreover, the luminescent properties of [DyL(OAc)2]OAc·7H2O·EtOH and [DyLMe2(Cl)2]Cl·2H2O were also investigated, showing that both complexes are fluorescent, with the emission being sensitized by the ligands.
Asunto(s)
Complejos de Coordinación , Compuestos Macrocíclicos , Compuestos Macrocíclicos/química , Ligandos , Complejos de Coordinación/química , Elementos de la Serie de los Lantanoides/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura MolecularRESUMEN
This review is based investigations on the Western Isles, Scotland, by Martin Martin, a notable Scottish Highlander, academic and medical doctor, of the 17th-18th century. His extensive observations of the geography and peoples of these Isles were recorded in his books, "On the Description of the Western Islands of Scotland Circa 1695" and "A Late Voyage to St Kilda". In these books and subsequent papers there were some noteworthy observations on the occurrence (and as he says non-occurrence) of "epidemical" diseases and conditions afflicting the peoples of The Isle of Skye and the Western Isles of Scotland in this period, and these are discussed in this review. Martin also gives details of a wide variety of remedies that were observed or reported by inhabitants around that time. Some of these remedies are interesting for their relevance to the period but others are of doubtful merit. These are reviewed here more for their significance in the understanding of the diseases and conditions of humans and even in some cases animals at that time. Introductions by Charles Withers and R.W. Munro, 11 and re-assessments of the contributions of Martin and colleagues of that time have given insight into the health and condition of peoples of the Western Isles of Scotland(the Occidental) (Martin 1695; Martin 1716).
Asunto(s)
Estructura Secundaria de Proteína , Masculino , Animales , Humanos , EscociaRESUMEN
Room temperature phosphorescence (RTP) materials have garnered significant attention owing to its distinctive optical characteristics and broad range of potential applications. However, the challenge remains in producing RTP materials with more simplicity, versatility, and practicality on a large scale, particularly in achieving chiral signals within a single system. Herein, we show that a straightforward and effective combination of wet spinning and twisting technique enables continuously fabricating RTP fibers with twisting-induced helical chirality. By leveraging the hydrogen bonding interactions between polyvinyl alcohol (PVA) and quinoline derivatives, along with the rigid microenvironment provided by PVA chains, typically, Q-NH2@PVA fiber demonstrates outstanding phosphorescent characteristics with RTP lifetime of 1.08â s and phosphorescence quantum yield of 24.6 %, and the improved tensile strength being 1.7 times than pure PVA fiber (172±5.82 vs 100±5.65â MPa). Impressively, the transformation from RTP to circularly polarized room temperature phosphorescence (CP-RTP) is readily achieved by imparting left- or right-hand helical structure through simply twisting, enabling large-scale production of chiral Q-NH2@PVA fiber with dissymmetry factor of 10-2. Besides, an array of displays and encryption patterns are crafted by weaving or seaming to exemplify the promising applications of these PVA-based fibers with outstanding adaptivity in cutting-edge anti-counterfeiting technology.
RESUMEN
Hypervalent iodine (III and V) compounds exhibit positional isomerization through pseudorotation or twisting; the latter have been invoked for the stability as well as the reactivity of λ3 - and λ5 -iodanes. By judicious exploitation of sterics, the twisting process in iodanes can be facilitated to promote reactivity. For example, ortho-substitution in λ3 - and λ5 -iodanes accelerates α-tosyloxylation of ketones and oxidation of alcohols. The enhancement of reactivity arises from sterically-induced non-planarity and the resultant weakening of the 3c-4e bonds involving the hypervalent iodine atom. The ortho-substitution constitutes an important strategy to maneuver reactivity, control selectivity, and develop new catalysts, including chiral, for diverse reactions. This review entails coverage of the literature developments in regard to the effect of substituents and twisting/pseudorotation on the stability as well as the reactivity of hypervalent λ3 - and λ5 -iodanes, and the application of the latter for synthetic transformations.
RESUMEN
Three groups of chalcone derivatives and their analogues involving halogen atoms (X=F, Cl, Br) have been synthesized. Firstly, the nearly planar acyclic chalcone derivatives were inclined to undergo photo-induced stereospecific [2+2] cycloaddition, which triggered the crystals to exhibit macroscopic motions of bending or cracking. In particular, the single-crystal-to-single-crystal transformation happened upon UV irradiation of the crystals, which was helpful for the understanding photomechanical effects. Cyclic 3,4-dihydronaphthalene-based chalcone analogues possess a more twisted conformation, and they tend to undergo trans-cis isomerization. No photomechanical effect was observed for the crystals of the cyclic chalcone analogues due to the lower isomerization rate. The twist degree of chroman-based molecules was in between of the first two, [2+2] cycloaddition and trans-cis isomerization simultaneously took place in crystals. Photo-induced bending and twisting were observed for the crystals of chroman-based chalcone analogues. Therefore, the differences in molecular dihedral angles in α,ß-unsaturated ketones were responsible for their photochemical characters and in turn to tune the photomechanical effects. In this work, a bridge between the molecular structures and solid-state photochemical reactions triggered photomechanical crystals is built.
RESUMEN
Stimuli responsive liquid crystalline polymers are a unique class of so-called "smart" materials demonstrating various types of mesomorphic structures easily controlled by external fields, including light. In the present work we synthesized and studied a comb-shaped hydrazone-containing copolyacrylate exhibited cholesteric liquid crystalline properties with the pitch length of the helix being tuned under irradiation with light. In the cholesteric phase selective light reflection in the near IR spectral range (1650â nm) was measured and a large blue shift of the reflection peak from 1650â nm to 500â nm was found under blue light (428 or 457â nm) irradiation. This shift is related to the Z-E isomerization of photochromic hydrazone-containing groups and it is photochemically reversible. The improved and faster photo-optical response was found after copolymer doping with 10â wt % of low-molar-mass liquid crystal. It is noteworthy that both, the E and Z isomers of hydrazone photochromic group are thermally stable that enable to achieve a pure photoinduced switch without any dark relaxation at any temperatures. The large photoinduced shift of the selective light reflection, together with thermal bistability, makes such systems promising for applications in photonics.
RESUMEN
The twisting phenomenon of the flow diverter stents rarely occurs, but it recently became relatively well-recognized. There have been few reports on single-layer flow diverters only. The Flow Redirection Endoluminal Device (FRED) (MicroVention, Tustin, California) has a unique design characterized by a braided dual-layer self-expanding stent. There have been no reports on the twisting phenomenon of FRED. This study reports two cases of acute in-stent blood flow disturbances after the deployment of FRED in a patient with intracranial aneurysms associated with "ghost twisting." In this phenomenon, the inner layer does not expand with the coning deformation, even though the outer layer is fully open. This was confirmed through high-resolution cone-beam computed tomography, but not conventional angiography. The two cases were successfully treated using balloon angioplasty and showed favorable outcomes. The structural issue of "ghost twisting" was a possible underlying factor for the ischemic complications associated with FRED deployment.
RESUMEN
Cyanobacteriochromes are photoreceptors in cyanobacteria that exhibit a wide spectral coverage and unique photophysical properties from the photoinduced isomerization of a linear tetrapyrrole chromophore. Here, we integrate femtosecond-resolved fluorescence and transient-absorption methods and unambiguously showed the significant solvation dynamics occurring at the active site from a few to hundreds of picoseconds. These motions of local water molecules and polar side chains are continuously convoluted with the isomerization reaction, leading to a nonequilibrium processes with continuous active-site motions. By mutations of critical residues at the active site, the modified local structures become looser, resulting in faster solvation relaxations and isomerization reaction. The observation of solvation dynamics is significant and critical to the correct interpretation of often-observed multiphasic dynamic behaviors, and thus the previously invoked ground-state heterogeneity may not be relevant to the excited-state isomerization reaction.
Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Fotorreceptores Microbianos/química , Proteínas Bacterianas/genética , Dominio Catalítico , Cianobacterias/química , Cianobacterias/genética , Isomerismo , Cinética , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismoRESUMEN
The experimental and theoretical study of influence of the conformational state and association on the chirality of the stereochemically nonrigid biologically active bis-camphorolidenpropylenediamine (CPDA) and its ability to induce the helical mesophase of alkoxycyanobiphenyls liquid-crystalline binary mixture was carried out. On the basis of quantum-chemical simulation of the CPDA structure, four relatively stable conformers were detected. A comparison of the calculated and experimental electronic circular dichroism (ECD) and 1H, 13C, 15N NMR spectra, as well as specific optical rotation and dipole moments, allowed to establish the most probable trans-gauche conformational state (tg) of dicamphorodiimine and CPDA dimer with a predominantly mutually parallel arrangement of molecular dipoles. The induction of helical phases in LC mixtures based on cyanobiphenyls and bis-camphorolidenpropylenediamine was studied by polarization microscopy. The clearance temperatures and the helix pitch of the mesophases were measured. The helical twisting power (HTP) was calculated. The decrease in HTP with increasing dopant concentration was shown to be connected with the CPDA association process in the LC phase. The effect of camphor-containing chiral dopants of various structures on nematic LCs was compared. The values of the permittivity and birefringence components of the CPDA solutions in CB-2 were measured experimentally. A strong effect of this dopant on the anisotropic physical properties of the induced chiral nematic was established. A significant decrease in the dielectric anisotropy was associated with the 3D compensation of the LC dipoles during the formation of the helix.
RESUMEN
Photodynamic therapy (PDT) is a promising method for the treatment of cancer, because of its advantages including a low toxicity, non-drug-resistant character, and targeting capability. From a photochemical aspect, a critical property of triplet photosensitizers (PSs) used for PDT reagents is the intersystem crossing (ISC) efficiency. Conventional PDT reagents are limited to porphyrin compounds. However, these compounds are difficult to prepare, purify, and derivatize. Thus, new molecular structure paradigms are desired to develop novel, efficient, and versatile PDT reagents, especially those contain no heavy atoms, such as Pt or I, etc. Unfortunately, the ISC ability of heavy atom-free organic compounds is usually elusive, and it is difficult to predict the ISC capability of these compounds and design novel heavy atom-free PDT reagents. Herein, from a photophysical perspective, we summarize the recent developments of heavy atom-free triplet PSs, including methods based on radical-enhanced ISC (REISC, facilitated by electron spin-spin interaction), twisted π-conjugation system-induced ISC, the use of fullerene C60 as an electron spin converter in antenna-C60 dyads, energetically matched S1/Tn states-enhanced ISC, etc. The application of these compounds in PDT is also briefly introduced. Most of the presented examples are the works of our research group.
Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/química , Estructura Molecular , Compuestos OrgánicosRESUMEN
Thermal fluctuations in two-dimensional (2D) isotropy systems at non-zero finite temperatures can destroy the long-range (LR) magnetic order due to the mechanisms addressed in the Mermin-Wanger theory. However, the magnetic anisotropy related to spin-orbit coupling (SOC) may stabilize magnetic order in 2D systems. Very recently, 2D FexGeTe2 (3 ≤ x ≤ 7) with a high Curie temperature (TC) has not only undergone significant developments in terms of synthetic methods and the control of ferromagnetism (FM), but is also being actively explored for applications in various devices. In this review, we introduce six experimental methods, ten ferromagnetic modulation strategies, and four spintronic devices for 2D FexGeTe2 materials. In summary, we outline the challenges and potential research directions in this field.
RESUMEN
In microfluidics, centrifugal forces are important for centrifugal microfluidic chips and curved microchannels. Here, an unrecognized use of the centrifugal effect in microfluidics is introduced. The assembly of helical soft matter fibers in a rotating microcapillary is investigated. During assembly, the fibers undergo phase separation, generating particle stabilized bicontinuous interfacially jammed emulsions gels. This process is accompanied by a transition of the fiber density over time. As a result, the direction of the centrifugal force in the rotating microcapillary changes. The authors analyze this effect systematically with high-speed video microscopy and complementary computer simulations. The resulting understanding enables the control of the helical fiber assembly into microropes. These microropes can be converted into pH responsive hydrogels that swell and shrink with potential applications in tissue engineering, soft robotics, controlled release, and sensing. More generally, the knowledge gained from this work shows that centrifugal forces potentially enable directed self-assembly or separation of colloids, biological cells, and emulsions in microfluidics.