Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Artif Organs ; 48(3): 274-284, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37246826

RESUMEN

BACKGROUND: Ventilator-induced diaphragm dysfunction occurs rapidly following the onset of mechanical ventilation and has significant clinical consequences. Phrenic nerve stimulation has shown promise in maintaining diaphragm function by inducing diaphragm contractions. Non-invasive stimulation is an attractive option as it minimizes the procedural risks associated with invasive approaches. However, this method is limited by sensitivity to electrode position and inter-individual variability in stimulation thresholds. This makes clinical application challenging due to potentially time-consuming calibration processes to achieve reliable stimulation. METHODS: We applied non-invasive electrical stimulation to the phrenic nerve in the neck in healthy volunteers. A closed-loop system recorded the respiratory flow produced by stimulation and automatically adjusted the electrode position and stimulation amplitude based on the respiratory response. By iterating over electrodes, the optimal electrode was selected. A binary search method over stimulation amplitudes was then employed to determine an individualized stimulation threshold. Pulse trains above this threshold were delivered to produce diaphragm contraction. RESULTS: Nine healthy volunteers were recruited. Mean threshold stimulation amplitude was 36.17 ± 14.34 mA (range 19.38-59.06 mA). The threshold amplitude for reliable nerve capture was moderately correlated with BMI (Pearson's r = 0.66, p = 0.049). Repeating threshold measurements within subjects demonstrated low intra-subject variability of 2.15 ± 1.61 mA between maximum and minimum thresholds on repeated trials. Bilateral stimulation with individually optimized parameters generated reliable diaphragm contraction, resulting in significant inhaled volumes following stimulation. CONCLUSION: We demonstrate the feasibility of a system for automatic optimization of electrode position and stimulation parameters using a closed-loop system. This opens the possibility of easily deployable individualized stimulation in the intensive care setting to reduce ventilator-induced diaphragm dysfunction.


Asunto(s)
Diafragma , Nervio Frénico , Humanos , Nervio Frénico/fisiología , Respiración Artificial/efectos adversos , Electrodos Implantados , Estimulación Eléctrica
2.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38928077

RESUMEN

Mechanical ventilation (MV), used in patients with acute lung injury (ALI), induces diaphragmatic myofiber atrophy and contractile inactivity, termed ventilator-induced diaphragm dysfunction. Phosphoinositide 3-kinase-γ (PI3K-γ) is crucial in modulating fibrogenesis during the reparative phase of ALI; however, the mechanisms regulating the interactions among MV, myofiber fibrosis, and PI3K-γ remain unclear. We hypothesized that MV with or without bleomycin treatment would increase diaphragm muscle fibrosis through the PI3K-γ pathway. Five days after receiving a single bolus of 0.075 units of bleomycin intratracheally, C57BL/6 mice were exposed to 6 or 10 mL/kg of MV for 8 h after receiving 5 mg/kg of AS605240 intraperitoneally. In wild-type mice, bleomycin exposure followed by MV 10 mL/kg prompted significant increases in disruptions of diaphragmatic myofibrillar organization, transforming growth factor-ß1, oxidative loads, Masson's trichrome staining, extracellular collagen levels, positive staining of α-smooth muscle actin, PI3K-γ expression, and myonuclear apoptosis (p < 0.05). Decreased diaphragm contractility and peroxisome proliferator-activated receptor-γ coactivator-1α levels were also observed (p < 0.05). MV-augmented bleomycin-induced diaphragm fibrosis and myonuclear apoptosis were attenuated in PI3K-γ-deficient mice and through AS605240-induced inhibition of PI3K-γ activity (p < 0.05). MV-augmented diaphragm fibrosis after bleomycin-induced ALI is partially mediated by PI3K-γ. Therapy targeting PI3K-γ may ameliorate MV-associated diaphragm fibrosis.


Asunto(s)
Lesión Pulmonar Aguda , Bleomicina , Diafragma , Modelos Animales de Enfermedad , Fibrosis , Ratones Endogámicos C57BL , Animales , Bleomicina/efectos adversos , Diafragma/metabolismo , Diafragma/patología , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/metabolismo , Masculino , Respiración Artificial/efectos adversos , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Factor de Crecimiento Transformador beta1/metabolismo , Apoptosis/efectos de los fármacos , Quinoxalinas , Tiazolidinedionas
3.
Artif Organs ; 46(10): 1988-1997, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35377472

RESUMEN

BACKGROUND: Diaphragm muscle atrophy during mechanical ventilation begins within 24 h and progresses rapidly with significant clinical consequences. Electrical stimulation of the phrenic nerves using invasive electrodes has shown promise in maintaining diaphragm condition by inducing intermittent diaphragm muscle contraction. However, the widespread application of these methods may be limited by their risks as well as the technical and environmental requirements of placement and care. Non-invasive stimulation would offer a valuable alternative method to maintain diaphragm health while overcoming these limitations. METHODS: We applied non-invasive electrical stimulation to the phrenic nerve in the neck in healthy volunteers. Respiratory pressure and flow, diaphragm electromyography and mechanomyography, and ultrasound visualization were used to assess the diaphragmatic response to stimulation. The electrode positions and stimulation parameters were systematically varied in order to investigate the influence of these parameters on the ability to induce diaphragm contraction with non-invasive stimulation. RESULTS: We demonstrate that non-invasive capture of the phrenic nerve is feasible using surface electrodes without the application of pressure, and characterize the stimulation parameters required to achieve therapeutic diaphragm contractions in healthy volunteers. We show that an optimal electrode position for phrenic nerve capture can be identified and that this position does not vary as head orientation is changed. The stimulation parameters required to produce a diaphragm response at this site are characterized and we show that burst stimulation above the activation threshold reliably produces diaphragm contractions sufficient to drive an inspired volume of over 600 ml, indicating the ability to produce significant diaphragmatic work using non-invasive stimulation. CONCLUSION: This opens the possibility of non-invasive systems, requiring minimal specialist skills to set up, for maintaining diaphragm function in the intensive care setting.


Asunto(s)
Diafragma , Nervio Frénico , Cuidados Críticos , Estimulación Eléctrica , Humanos , Nervio Frénico/fisiología , Respiración Artificial/efectos adversos , Ventiladores Mecánicos/efectos adversos
4.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35163007

RESUMEN

Mechanical ventilation (MV) is essential for patients with sepsis-related respiratory failure but can cause ventilator-induced diaphragm dysfunction (VIDD), which involves diaphragmatic myofiber atrophy and contractile inactivity. Mitochondrial DNA, oxidative stress, mitochondrial dynamics, and biogenesis are associated with VIDD. Hypoxia-inducible factor 1α (HIF-1α) is crucial in the modulation of diaphragm immune responses. The mechanism through which HIF-1α and mitochondria affect sepsis-related diaphragm injury is unknown. We hypothesized that MV with or without endotoxin administration would aggravate diaphragmatic and mitochondrial injuries through HIF-1α. C57BL/6 mice, either wild-type or HIF-1α-deficient, were exposed to MV with or without endotoxemia for 8 h. MV with endotoxemia augmented VIDD and mitochondrial damage, which presented as increased oxidative loads, dynamin-related protein 1 level, mitochondrial DNA level, and the expressions of HIF-1α and light chain 3-II. Furthermore, disarrayed myofibrils; disorganized mitochondria; increased autophagosome numbers; and substantially decreased diaphragm contractility, electron transport chain activities, mitofusin 2, mitochondrial transcription factor A, peroxisome proliferator activated receptor-γ coactivator-1α, and prolyl hydroxylase domain 2 were observed (p < 0.05). Endotoxin-stimulated VIDD and mitochondrial injuries were alleviated in HIF-1α-deficient mice (p < 0.05). Our data revealed that endotoxin aggravated MV-induced diaphragmatic dysfunction and mitochondrial damages, partially through the HIF-1α signaling pathway.


Asunto(s)
Diafragma/lesiones , Endotoxemia/terapia , Endotoxinas/efectos adversos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Mitocondrias/metabolismo , Respiración Artificial/efectos adversos , Animales , Diafragma/metabolismo , Diafragma/fisiopatología , Modelos Animales de Enfermedad , Endotoxemia/etiología , Endotoxemia/metabolismo , Técnicas de Inactivación de Genes , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ratones Endogámicos C57BL , Contracción Muscular , Estrés Oxidativo , Transducción de Señal
5.
BMC Genomics ; 22(1): 671, 2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34537009

RESUMEN

BACKGROUND: Ventilator-induced diaphragm dysfunction (VIDD) is a common complication of life support by mechanical ventilation observed in critical patients in clinical practice and may predispose patients to severe complications such as ventilator-associated pneumonia or ventilator discontinuation failure. To date, the alterations in microRNA (miRNA) expression in the rat diaphragm in a VIDD model have not been elucidated. This study was designed to identify these alterations in expression. RESULTS: Adult male Wistar rats received conventional controlled mechanical ventilation (CMV) or breathed spontaneously for 12 h. Then, their diaphragm tissues were collected for RNA extraction. The miRNA expression alterations in diaphragm tissue were investigated by high-throughput microRNA-sequencing (miRNA-seq). For targeted mRNA functional analysis, gene ontology (GO) analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were subsequently conducted. qRT-PCR validation and luciferase reporter assays were performed. We successfully constructed a model of ventilator-induced diaphragm dysfunction and identified 38 significantly differentially expressed (DE) miRNAs, among which 22 miRNAs were upregulated and 16 were downregulated. GO analyses identified functional genes, and KEGG pathway analyses revealed the signaling pathways that were most highly correlated, which were the MAPK pathway, FoxO pathway and Autophagy-animal. Luciferase reporter assays showed that STAT3 was a direct target of both miR-92a-1-5p and miR-874-3p and that Trim63 was a direct target of miR-3571. CONCLUSIONS: The current research supplied novel perspectives on miRNAs in the diaphragm, which may not only be implicated in diaphragm dysfunction pathogenesis but could also be considered as therapeutic targets in diaphragm dysfunction.


Asunto(s)
MicroARNs , Animales , Diafragma , Perfilación de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Ratas , Ratas Wistar , Respiración Artificial/efectos adversos , Ventiladores Mecánicos
6.
Paediatr Respir Rev ; 40: 58-64, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33744085

RESUMEN

INTRODUCTION: Ultrasonography has recently emerged as a promising technique that can rapidly estimate diaphragm function, especially during the weaning period. The aims of this study were to describe the evolution of diaphragmatic morphology and functional measurements by ultrasound in ventilated children. MATERIAL AND METHODS: This was a prospective, observational, single-center study. All the children admitted to our Pediatric Intensive Care Unit requiring mechanical ventilation for more than 48 h were included. Diaphragmatic thickness and the thickening fraction were assessed by ultrasound. RESULTS: From June to December 2018, 47 patients (median age 3 months; interquartile range, 1-17) underwent 164 ultrasonographic evaluations. The median duration of mechanical ventilation was 168 h (interquartile range, 96-196). At the initial measurement, the thickness at end-inspiration was 2.2 mm (interquartile range, 1.8-2.5) and the thickness at end-expiration was 1.8 mm (interquartile range, 1.5-2.0) with a median decrease in thickness of -14% (interquartile range, -33% to -3%) and a -2% daily atrophy rate (interquartile range, -4.2% to 0%). Diaphragmatic atrophy was observed in 30/47 cases. Children who had been exposed to neuromuscular blockade infusion (n = 31) had a significantly lower mean thickness [-22% (interquartile range, -34% to -13%) vs. -6% (interquartile range, -12% to 0%); p = 0.009] and increased daily atrophy rate [-2.2% (interquartile range, -4.6 to 0%) vs. -1.4% (interquartile range, -2.6 to 0%); p = 0.049] compared to unexposed children. The decrease in thickness was significantly less in children ventilated for at least 12 hours with pressure support before extubation compared with those with shorter periods of spontaneous respiratory effort [-9.5% (interquartile range, -21 to 0%) vs. -26% (interquartile range, -37 to -12%); p = 0.011]. CONCLUSIONS: Point-of-care diaphragmatic ultrasound can detect diaphragmatic atrophy in mechanically ventilated children. Diaphragmatic atrophy was strongly associated with the use of mechanical ventilation and neuromuscular blockade. Diaphragmatic thickness also tended to decrease less in the pre-extubation stage with pressure support. We found no correlation between progressive diaphragm thinning, extubation failure, or an increased need for non-invasive ventilation post extubation.


Asunto(s)
Diafragma , Respiración Artificial , Niño , Diafragma/diagnóstico por imagen , Humanos , Lactante , Estudios Observacionales como Asunto , Estudios Prospectivos , Respiración Artificial/efectos adversos , Ultrasonografía , Ventiladores Mecánicos
7.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567713

RESUMEN

Mechanical ventilation (MV) is required to maintain life for patients with sepsis-related acute lung injury but can cause diaphragmatic myotrauma with muscle damage and weakness, known as ventilator-induced diaphragm dysfunction (VIDD). Hypoxia-inducible factor 1α (HIF-1α) plays a crucial role in inducing inflammation and apoptosis. Low-molecular-weight heparin (LMWH) was proven to have anti-inflammatory properties. However, HIF-1α and LMWH affect sepsis-related diaphragm injury has not been investigated. We hypothesized that LMWH would reduce endotoxin-augmented VIDD through HIF-1α. C57BL/6 mice, either wild-type or HIF-1α-deficient, were exposed to MV with or without endotoxemia for 8 h. Enoxaparin (4 mg/kg) was administered subcutaneously 30 min before MV. MV with endotoxemia aggravated VIDD, as demonstrated by increased interleukin-6 and macrophage inflammatory protein-2 levels, oxidative loads, and the expression of HIF-1α, calpain, caspase-3, atrogin-1, muscle ring finger-1, and microtubule-associated protein light chain 3-II. Disorganized myofibrils, disrupted mitochondria, increased numbers of autophagic and apoptotic mediators, substantial apoptosis of diaphragm muscle fibers, and decreased diaphragm function were also observed (p < 0.05). Endotoxin-exacerbated VIDD and myonuclear apoptosis were attenuated by pharmacologic inhibition by LMWH and in HIF-1α-deficient mice (p < 0.05). Our data indicate that enoxaparin reduces endotoxin-augmented MV-induced diaphragmatic injury, partially through HIF-1α pathway inhibition.


Asunto(s)
Diafragma/efectos de los fármacos , Modelos Animales de Enfermedad , Endotoxemia/complicaciones , Heparina de Bajo-Peso-Molecular/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Estrés Oxidativo/efectos de los fármacos , Lesión Pulmonar Inducida por Ventilación Mecánica/tratamiento farmacológico , Animales , Endotoxemia/inducido químicamente , Endotoxemia/patología , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Lesión Pulmonar Inducida por Ventilación Mecánica/etiología , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/patología
8.
J Cell Mol Med ; 23(8): 5679-5691, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31339670

RESUMEN

Mechanical ventilation (MV) can save the lives of patients with sepsis. However, MV in both animal and human studies has resulted in ventilator-induced diaphragm dysfunction (VIDD). Sepsis may promote skeletal muscle atrophy in critically ill patients. Elevated high-mobility group box-1 (HMGB1) levels are associated with patients requiring long-term MV. Ethyl pyruvate (EP) has been demonstrated to lengthen survival in patients with severe sepsis. We hypothesized that the administration of HMGB1 inhibitor EP or anti-HMGB1 antibody could attenuate sepsis-exacerbated VIDD by repressing HMGB1 signalling. Male C57BL/6 mice with or without endotoxaemia were exposed to MV (10 mL/kg) for 8 hours after administrating either 100 mg/kg of EP or 100 mg/kg of anti-HMGB1 antibody. Mice exposed to MV with endotoxaemia experienced augmented VIDD, as indicated by elevated proteolytic, apoptotic and autophagic parameters. Additionally, disarrayed myofibrils and disrupted mitochondrial ultrastructures, as well as increased HMGB1 mRNA and protein expression, and plasminogen activator inhibitor-1 protein, oxidative stress, autophagosomes and myonuclear apoptosis were also observed. However, MV suppressed mitochondrial cytochrome C and diaphragm contractility in mice with endotoxaemia (P < 0.05). These deleterious effects were alleviated by pharmacologic inhibition with EP or anti-HMGB1 antibody (P < 0.05). Our data suggest that EP attenuates endotoxin-enhanced VIDD by inhibiting HMGB1 signalling pathway.


Asunto(s)
Diafragma/fisiopatología , Endotoxemia/etiología , Endotoxemia/fisiopatología , Proteína HMGB1/metabolismo , Piruvatos/uso terapéutico , Respiración Artificial/efectos adversos , Animales , Anticuerpos/metabolismo , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Citocinas/metabolismo , Endotoxinas/efectos adversos , Radicales Libres/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Estrés Oxidativo/efectos de los fármacos , Piruvatos/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
Respir Res ; 20(1): 293, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31870367

RESUMEN

BACKGROUND: Ventilator-induced diaphragmatic dysfunction is a serious complication associated with higher ICU mortality, prolonged mechanical ventilation, and unsuccessful withdrawal from mechanical ventilation. Although neurally adjusted ventilatory assist (NAVA) could be associated with lower patient-ventilator asynchrony compared with conventional ventilation, its effects on diaphragmatic dysfunction have not yet been well elucidated. METHODS: Twenty Japanese white rabbits were randomly divided into four groups, (1) no ventilation, (2) controlled mechanical ventilation (CMV) with continuous neuromuscular blockade, (3) NAVA, and (4) pressure support ventilation (PSV). Ventilated rabbits had lung injury induced, and mechanical ventilation was continued for 12 h. Respiratory waveforms were continuously recorded, and the asynchronous events measured. Subsequently, the animals were euthanized, and diaphragm and lung tissue were removed, and stained with Hematoxylin-Eosin to evaluate the extent of lung injury. The myofiber cross-sectional area of the diaphragm was evaluated under the adenosine triphosphatase staining, sarcomere disruptions by electron microscopy, apoptotic cell numbers by the TUNEL method, and quantitative analysis of Caspase-3 mRNA expression by real-time polymerase chain reaction. RESULTS: Physiological index, respiratory parameters, and histologic lung injury were not significantly different among the CMV, NAVA, and PSV. NAVA had lower asynchronous events than PSV (median [interquartile range], NAVA, 1.1 [0-2.2], PSV, 6.8 [3.8-10.0], p = 0.023). No differences were seen in the cross-sectional areas of myofibers between NAVA and PSV, but those of Type 1, 2A, and 2B fibers were lower in CMV compared with NAVA. The area fraction of sarcomere disruptions was lower in NAVA than PSV (NAVA vs PSV; 1.6 [1.5-2.8] vs 3.6 [2.7-4.3], p < 0.001). The proportion of apoptotic cells was lower in NAVA group than in PSV (NAVA vs PSV; 3.5 [2.5-6.4] vs 12.1 [8.9-18.1], p < 0.001). There was a tendency in the decreased expression levels of Caspase-3 mRNA in NAVA groups. Asynchrony Index was a mediator in the relationship between NAVA and sarcomere disruptions. CONCLUSIONS: Preservation of spontaneous breathing using either PSV or NAVA can preserve the cross sectional area of the diaphragm to prevent atrophy. However, NAVA may be superior to PSV in preventing sarcomere injury and apoptosis of myofibrotic cells of the diaphragm, and this effect may be mediated by patient-ventilator asynchrony.


Asunto(s)
Diafragma/lesiones , Diafragma/fisiología , Soporte Ventilatorio Interactivo/métodos , Mecánica Respiratoria/fisiología , Ventiladores Mecánicos , Animales , Diafragma/ultraestructura , Soporte Ventilatorio Interactivo/efectos adversos , Conejos , Distribución Aleatoria , Ventiladores Mecánicos/efectos adversos
10.
Trials ; 25(1): 519, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095923

RESUMEN

BACKGROUND: In the United States in 2017, there were an estimated 903,745 hospitalizations involving mechanical ventilation (MV). Complications from ventilation can result in longer hospital stays, increased risk of disability, and increased healthcare costs. It has been hypothesized that electrically pacing the diaphragm by phrenic nerve stimulation during mechanical ventilation may minimize or reverse diaphragm dysfunction, resulting in faster weaning. METHODS: The ReInvigorate Trial is a prospective, multicenter, randomized, controlled clinical trial evaluating the safety and efficacy of Stimdia's pdSTIM System for facilitating weaning from MV. The pdSTIM system employs percutaneously placed multipolar electrodes to stimulate the cervical phrenic nerves and activate contraction of the diaphragm bilaterally. Patients who were on mechanical ventilation for at least 96 h and who failed at least one weaning attempt were considered for enrollment in the study. The primary efficacy endpoint was the time to successful liberation from mechanical ventilation (treatment vs. control). Secondary endpoints will include the rapid shallow breathing index and other physiological and system characteristics. Safety will be summarized for both primary and additional analyses. All endpoints will be evaluated at 30 days or at the time of removal of mechanical ventilation, whichever is first. DISCUSSION: This pivotal study is being conducted under an investigational device exception with the U.S. Food and Drug Administration. The technology being studied could provide a first-of-kind therapy for difficult-to-wean patients on mechanical ventilation in an intensive care unit setting. TRIAL REGISTRATION: Clinicaltrials.gov, NCT05998018 , registered August 2023.


Asunto(s)
Diafragma , Estudios Multicéntricos como Asunto , Nervio Frénico , Ensayos Clínicos Controlados Aleatorios como Asunto , Desconexión del Ventilador , Humanos , Desconexión del Ventilador/métodos , Diafragma/inervación , Nervio Frénico/fisiología , Estudios Prospectivos , Factores de Tiempo , Resultado del Tratamiento , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Terapia por Estimulación Eléctrica/métodos , Terapia por Estimulación Eléctrica/efectos adversos , Terapia por Estimulación Eléctrica/instrumentación
11.
Pediatr Pulmonol ; 59(4): 855-862, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38353403

RESUMEN

BACKGROUND: Diaphragm dysfunction is associated with poor outcomes in critically ill patients. Ventilator-induced diaphragmatic dysfunction (VIDD), including diaphragm atrophy (DA), is poorly studied in newborns. We aimed to assess VIDD and its associations in newborns. METHODS: Single-center prospective study. Diaphragm thickness was measured at end-inspiration (TDI) and end-expiration (TDE) on the right midaxillary line. DA was defined as decrease in TDE ≥ 10%. Daily measurements were recorded in preterm newborns on invasive mechanical ventilation (IMV) for ≥2 days. Clinical characteristics of patients and extubation failure were recorded. Univariate analysis, logistic regression, and mixed models were performed to describe VIDD and associated factors. RESULTS: We studied 17 patients (median gestational age 270/7 weeks) and 22 IMV cycles (median duration 9 days). Median TDE decreased from 0.118 cm (interquartile range [IQR] 0.094-0.165) on the first IMV day to 0.104 cm (IQR 0.083-0.120) on the last IMV day (p = .092). DA occurred in 11 IMV cycles (50%) from 10 infants early during IMV (median: second IMV day). Mean airway pressure (MAP) and lung ultrasound score (LUS) on the first IMV day were significantly higher in patients who developed DA. DA was more frequent in patients with extubation failure than in those with extubation success within 7 days (83.3 vs. 33.3%, p = .038). CONCLUSIONS: DA, significantly associated with extubation failure, occurred in 58.8% of the study infants on IMV. Higher MAP and LUS at IMV start were associated with DA. Our results suggest a potential role of diaphragm ultrasound to assess DA and predict extubation failure in clinical practice.


Asunto(s)
Respiración Artificial , Desconexión del Ventilador , Lactante , Humanos , Recién Nacido , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Desconexión del Ventilador/métodos , Estudios Prospectivos , Diafragma/diagnóstico por imagen , Extubación Traqueal/efectos adversos , Extubación Traqueal/métodos , Recien Nacido Prematuro , Atrofia/patología
12.
Ann Intensive Care ; 13(1): 92, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752337

RESUMEN

BACKGROUND: Venovenous extracorporeal membrane oxygenation (VV ECMO) is frequently associated with deep sedation and neuromuscular blockades, that may lead to diaphragm dysfunction. However, the prevalence, risk factors, and evolution of diaphragm dysfunction in patients with VV ECMO are unknown. We hypothesized that the prevalence of diaphragm dysfunction is high and that diaphragm activity influences diaphragm function changes. METHODS: Patients with acute respiratory distress syndrome (ARDS) requiring VV ECMO were included in two centers. Diaphragm function was serially assessed by measuring the tracheal pressure in response to phrenic nerve stimulation (Ptr,stim) from ECMO initiation (Day 1) until ECMO weaning. Diaphragm activity was estimated from the percentage of spontaneous breathing ventilation and by measuring the diaphragm thickening fraction (TFdi) with ultrasound. RESULTS: Sixty-three patients were included after a median of 4 days (3-6) of invasive mechanical ventilation. Diaphragm dysfunction, defined by Ptr, stim ≤ 11 cmH2O, was present in 39 patients (62%) on Day 1 of ECMO. Diaphragm function did not change over the study period and was not influenced by the percentage of spontaneous breathing ventilation or the TFdi during the 1 week. Among the 63 patients enrolled in the study, 24 (38%) were still alive at the end of the study period (60 days). CONCLUSIONS: Sixty-two percent of patients undergoing ECMO for ARDS related to SARS CoV-2 infection had a diaphragm dysfunction on Day 1 of ECMO initiation. Diaphragm function remains stable over time and was not associated with the percentage of time with spontaneous breathing. CLINICALTRIALS: gov Identifier NCT04613752 (date of registration February 15, 2021).

13.
J Clin Med ; 11(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35566577

RESUMEN

The number of patients requiring prolonged mechanical ventilation (PMV) is increasing worldwide, placing a burden on healthcare systems. Therefore, investigating the pathophysiology, risk factors, and treatment for PMV is crucial. Various underlying comorbidities have been associated with PMV. The pathophysiology of PMV includes the presence of an abnormal respiratory drive or ventilator-induced diaphragm dysfunction. Numerous studies have demonstrated that ventilator-induced diaphragm dysfunction is related to increases in in-hospital deaths, nosocomial pneumonia, oxidative stress, lung tissue hypoxia, ventilator dependence, and costs. Thus far, the pathophysiologic evidence for PMV has been derived from clinical human studies and experimental studies in animals. Moreover, recent studies have demonstrated the outcome benefits of pharmacological agents and rehabilitative programs for patients requiring PMV. However, methodological limitations affected these studies. Controlled prospective studies with an adequate number of participants are necessary to provide evidence of the mechanism, prognosis, and treatment of PMV. The great epidemiologic impact of PMV and the potential development of treatment make this a key research field.

14.
Front Cell Dev Biol ; 10: 849973, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392172

RESUMEN

Critical illness myopathy (CIM) and ventilator-induced diaphragm dysfunction (VIDD) are characterized by severe muscle wasting, muscle paresis, and extubation failure with subsequent increased medical costs and mortality/morbidity rates in intensive care unit (ICU) patients. These negative effects in response to modern critical care have received increasing attention, especially during the current COVID-19 pandemic. Based on experimental and clinical studies from our group, it has been hypothesized that the ventilator-induced lung injury (VILI) and the release of factors systemically play a significant role in the pathogenesis of CIM and VIDD. Our previous experimental/clinical studies have focused on gene/protein expression and the effects on muscle structure and regulation of muscle contraction at the cell and motor protein levels. In the present study, we have extended our interest to alterations at the metabolomic level. An untargeted metabolomics approach was undertaken to study two respiratory muscles (diaphragm and intercostal muscle) and lung tissue in rats exposed to five days controlled mechanical ventilation (CMV). Metabolomic profiles in diaphragm, intercostal muscles and lung tissue were dramatically altered in response to CMV, most metabolites of which belongs to lipids and amino acids. Some metabolites may possess important biofunctions and play essential roles in the metabolic alterations, such as pyruvate, citrate, S-adenosylhomocysteine, alpha-ketoglutarate, glycerol, and cysteine. Metabolic pathway enrichment analysis identified pathway signatures of each tissue, such as decreased metabolites of dipeptides in diaphragm, increased metabolites of branch-chain amino acid metabolism and purine metabolism in intercostals, and increased metabolites of fatty acid metabolism in lung tissue. These metabolite alterations may be associated with an accelerated myofibrillar protein degradation in the two respiratory muscles, an active inflammatory response in all tissues, an attenuated energy production in two respiratory muscles, and enhanced energy production in lung. These results will lay the basis for future clinical studies in ICU patients and hopefully the discovery of biomarkers in early diagnosis and monitoring, as well as the identification of future therapeutic targets.

15.
J Appl Physiol (1985) ; 130(6): 1736-1742, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33830811

RESUMEN

Ventilator-induced diaphragm dysfunction (VIDD) is increasingly recognized as an important side-effect of invasive ventilation in critically ill patients and is associated with poor outcomes. Whether patients with VIDD benefit from temporary diaphragm pacing is uncertain. Intramuscular diaphragmatic electrodes were implanted for temporary stimulation with a pacing device (TransAeris System) in two patients with VIDD. The electrodes were implanted via laparoscopy (first patient) or via bilateral thoracoscopy (second patient). Stimulation parameters were titrated according to tolerance. Diaphragm thickening fraction by ultrasound, maximum inspiratory pressure (Pimax) and diaphragm electromyography (EMGdi) signal analysis were used to monitor the response to diaphragm pacing. Both patients tolerated diaphragm pacing. In the first patient, improvements in diaphragm excursions were noted once pacing was initiated and diaphragm thickening fraction did not further deteriorate over time. The diaphragm thickening fraction improved in the second patient, and Pimax as well as EMGdi analysis suggested improved muscle function. This patient could be fully weaned from the ventilator. These case reports present the first experience with temporary diaphragm pacing in critically ill patients with VIDD. Our results should be taken cautiously given the reduced sample size, but provide the proof of concept to put forward the hypothesis that a course of diaphragm pacing may be associated with improved diaphragmatic function. Our findings of the tolerance to the procedure and the beneficial physiological effects are not prove of safety and efficacy, but may set the ground to design and conduct larger studies.NEW & NOTEWORTHY Diaphragmatic electrode implantation and temporary diaphragm pacing have not been previously used in ICU patients with VIDD. Patients were monitored using a multimodal monitoring approach including ultrasound of the diaphragm, measurement of maximum inspiratory pressure and EMG signal analysis. Our results suggest that diaphragm pacing may improve diaphragmatic function, with the potential to prevent and treat VIDD in critically ill patients. Safety and efficacy of this intervention is yet to be proven in larger studies.


Asunto(s)
Diafragma , Ventiladores Mecánicos , Diafragma/diagnóstico por imagen , Humanos , Pulmón , Respiración , Respiración Artificial/efectos adversos , Ultrasonografía
16.
Intensive Care Med ; 45(4): 488-500, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30790029

RESUMEN

PURPOSE: Ventilator-induced diaphragm dysfunction or damage (VIDD) is highly prevalent in patients under mechanical ventilation (MV), but its analysis is limited by the difficulty of obtaining histological samples. In this study we compared diaphragm histological characteristics in Maastricht III (MSIII) and brain-dead (BD) organ donors and in control subjects undergoing thoracic surgery (CTL) after a period of either controlled or spontaneous MV (CMV or SMV). METHODS: In this prospective study, biopsies were obtained from diaphragm and quadriceps. Demographic variables, comorbidities, severity on admission, treatment, and ventilatory variables were evaluated. Immunohistochemical analysis (fiber size and type percentages) and quantification of abnormal fibers (a surrogate of muscle damage) were performed. RESULTS: Muscle samples were obtained from 35 patients. MSIII (n = 16) had more hours on MV (either CMV or SMV) than BD (n = 14) and also spent more hours and a greater percentage of time with diaphragm stimuli (time in assisted and spontaneous modalities). Cross-sectional area (CSA) was significantly reduced in the diaphragm and quadriceps in both groups in comparison with CTL (n = 5). Quadriceps CSA was significantly decreased in MSIII compared to BD but there were no differences in the diaphragm CSA between the two groups. Those MSIII who spent 100 h or more without diaphragm stimuli presented reduced diaphragm CSA without changes in their quadriceps CSA. The proportion of internal nuclei in MSIII diaphragms tended to be higher than in BD diaphragms, and their proportion of lipofuscin deposits tended to be lower, though there were no differences in the quadriceps fiber evaluation. CONCLUSIONS: This study provides the first evidence in humans regarding the effects of different modes of MV (controlled, assisted, and spontaneous) on diaphragm myofiber damage, and shows that diaphragm inactivity during mechanical ventilation is associated with the development of VIDD.


Asunto(s)
Diafragma/patología , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Adulto , Anciano , Anciano de 80 o más Años , Biopsia/métodos , Diafragma/anomalías , Diafragma/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Músculo Cuádriceps/anomalías , Músculo Cuádriceps/patología , Músculo Cuádriceps/fisiopatología
17.
Front Physiol ; 9: 1119, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30150942

RESUMEN

Background: Preterm infants are deficient in vitamin A, which is essential for growth and development of the diaphragm. Preterm infants often require mechanical ventilation (MV) for respiratory distress. In adults, MV is associated with the development of ventilation-induced diaphragm dysfunction and difficulty weaning from the ventilator. We assessed the impact of MV on the preterm diaphragm and the protective effect of vitamin A during MV. Methods: Preterm lambs delivered operatively at ∼131 days gestation (full gestation: 150 days) received respiratory support by synchronized intermittent mandatory ventilation for 3 days. Lambs in the treated group received daily (24 h) enteral doses of 2500 IU/kg/day vitamin A combined with 250 IU/kg/day retinoic acid (VARA) during MV, while MV control lambs received saline. Unventilated fetal reference lambs were euthanized at birth, without being allowed to breathe. The fetal diaphragm was collected to quantify mRNA levels of myosin heavy chain (MHC) isoforms, atrophy genes, antioxidant genes, and pro-inflammatory genes; to determine ubiquitin proteasome pathway activity; to measure the abundance of protein carbonyl, and to investigate metabolic signaling. Results: Postnatal MV significantly decreased expression level of the neonatal MHC gene but increased expression level of MHC IIx mRNA level (p < 0.05). Proteasome activity increased after 3 days MV, accompanied by increased MuRF1 mRNA level and accumulated protein carbonyl abundance. VARA supplementation decreased proteasome activity and FOXO1 signaling, down-regulated MuRF1 expression, and reduced reactive oxidant production. Conclusion: These findings suggest that 3 days of MV results in abnormal myofibrillar composition, activation of the proteolytic pathway, and oxidative injury of diaphragms in mechanically ventilated preterm lambs. Daily enteral VARA protects the preterm diaphragm from these adverse effects.

18.
Chest ; 154(6): 1395-1403, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30144420

RESUMEN

The diaphragm is the primary muscle of inspiration. Its capacity to respond to the load imposed by pulmonary disease is a major determining factor both in the onset of ventilatory failure and in the ability to successfully separate patients from ventilator support. It has recently been established that a very large proportion of critically ill patients exhibit major weakness of the diaphragm, which is associated with poor clinical outcomes. The two greatest risk factors for the development of diaphragm weakness in critical illness are the use of mechanical ventilation and the presence of sepsis. Loss of force production by the diaphragm under these conditions is caused by a combination of defective contractility and reduced diaphragm muscle mass. Importantly, many of the same molecular mechanisms are implicated in the diaphragm dysfunction associated with both mechanical ventilation and sepsis. This review outlines the primary cellular mechanisms identified thus far at the nexus of diaphragm dysfunction associated with mechanical ventilation and/or sepsis, and explores the potential for treatment or prevention of diaphragm weakness in critically ill patients through therapeutic manipulation of these final common pathway targets.


Asunto(s)
Enfermedad Crítica , Manejo de Atención al Paciente/métodos , Respiración Artificial/efectos adversos , Parálisis Respiratoria , Sepsis/complicaciones , Humanos , Parálisis Respiratoria/etiología , Parálisis Respiratoria/fisiopatología , Parálisis Respiratoria/terapia
19.
Med Klin Intensivmed Notfmed ; 113(7): 526-532, 2018 10.
Artículo en Alemán | MEDLINE | ID: mdl-27766377

RESUMEN

Diaphragm function is crucial for patient outcome in the ICU setting and during the treatment period. The occurrence of an insufficiency of the respiratory pump, which is predominantly formed by the diaphragm, may result in intubation after failure of noninvasive ventilation. Especially patients suffering from chronic obstructive pulmonary disease are in danger of hypercapnic respiratory failure. Changes in biomechanical properties and fiber texture of the diaphragm are further cofactors directly leading to a need for intubation and mechanical ventilation. After intubation and the following inactivity the diaphragm is subject to profound pathophysiologic changes resulting in atrophy and dysfunction. Besides this inactivity-triggered mechanism (termed as ventilator-induced diaphragmatic dysfunction) multiple factors, comorbidities, pharmaceutical agents and additional hits during the ICU treatment, especially the occurrence of sepsis, influence diaphragm homeostasis and can lead to weaning failure. During the weaning process monitoring of diaphragm function can be done with invasive methods - ultrasound is increasingly established to monitor diaphragm contraction, but further and better powered studies are in need to prove its value as a diagnostic tool.


Asunto(s)
Diafragma , Ventilación no Invasiva , Enfermedad Pulmonar Obstructiva Crónica , Insuficiencia Respiratoria , Diafragma/fisiología , Humanos , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Respiración Artificial , Desconexión del Ventilador
20.
Exp Biol Med (Maywood) ; 243(17-18): 1329-1337, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30453774

RESUMEN

IMPACT STATEMENT: Mechanical ventilation (MV) is life-saving for patients with acute respiratory failure but also causes difficult liberation of patients from ventilator due to rapid decrease of diaphragm muscle endurance and strength, which is termed ventilator-induced diaphragmatic damage (VIDD). Numerous studies have revealed that VIDD could increase extubation failure, ICU stay, ICU mortality, and healthcare expenditures. However, the mechanisms of VIDD, potentially involving a multistep process including muscle atrophy, oxidative loads, structural damage, and muscle fiber remodeling, are not fully elucidated. Further research is necessary to unravel mechanistic framework for understanding the molecular mechanisms underlying VIDD, especially mitochondrial dysfunction and increased mitochondrial oxidative stress, and develop better MV strategies, rehabilitative programs, and pharmacologic agents to translate this knowledge into clinical benefits.


Asunto(s)
Diafragma , Atrofia Muscular , Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/terapia , Diafragma/metabolismo , Diafragma/patología , Diafragma/fisiopatología , Humanos , Mitocondrias Musculares/metabolismo , Fuerza Muscular , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Estrés Oxidativo , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA