Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Magn Reson Med ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39385350

RESUMEN

PURPOSE: Cardiac magnetic resonance is the gold standard for evaluating left-ventricular ejection fraction (LVEF). Standard protocols, however, can be inefficient, facing challenges due to significant operator and patient involvement. Although the free-running framework (FRF) addresses these challenges, the potential of the extensive data it collects remains underutilized. Therefore, we propose to leverage the large amount of data collected by incorporating interbin cardiac motion compensation into FRF (FRF-MC) to improve both image quality and LVEF measurement accuracy, while reducing the sensitivity to user-defined regularization parameters. METHODS: FRF-MC consists of several steps: data acquisition, self-gating signal extraction, deformation field estimations, and motion-resolved reconstruction with interbin cardiac motion compensation. FRF-MC was compared with the original 5D-FRF method using LVEF and several image-quality metrics. The cardiac regularization weight ( λ c $$ {\lambda}_c $$ ) was optimized for both methods by maximizing image quality without compromising LVEF measurement accuracy. Evaluations were performed in numerical simulations and in 9 healthy participants. In vivo images were assessed by blinded expert reviewers and compared with reference standard 2D-cine images. RESULTS: Both in silico and in vivo results revealed that FRF-MC outperformed FRF in terms of image quality and LVEF accuracy. FRF-MC reduced temporal blurring, preserving detailed anatomy even at higher cardiac regularization weights, and led to more accurate LVEF measurements. Optimized λ c $$ {\lambda}_c $$ produced accurate LVEF for both methods compared with the 2D-cine reference (FRF-MC: 0.59% [-7.2%, 6.0%], p = 0.47; FRF: 0.86% [-8.5%, 6.7%], p = 0.36), but FRF-MC resulted in superior image quality (FRF-MC: 2.89 ± 0.58, FRF: 2.11 ± 0.47; p < 10-3). CONCLUSION: Incorporating interbin cardiac motion compensation significantly improved image quality, supported higher cardiac regularization weights without compromising LVEF measurement accuracy, and reduced sensitivity to user-defined regularization parameters.

2.
Magn Reson Med ; 83(1): 45-55, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31452244

RESUMEN

PURPOSE: To implement, optimize, and test fast interrupted steady-state (FISS) for natively fat-suppressed free-running 5D whole-heart MRI at 1.5 tesla (T) and 3T. METHODS: FISS was implemented for fully self-gated free-running cardiac- and respiratory-motion-resolved radial imaging of the heart at 1.5T and 3T. Numerical simulations and phantom scans were performed to compare fat suppression characteristics and to determine parameter ranges (number of readouts [NR] per FISS module and TR) for effective fat suppression. Subsequently, free-running FISS data were collected in 10 healthy volunteers and images were reconstructed with compressed sensing. All acquisitions were compared with a continuous balanced steady-state free precession version of the same sequence, and both fat suppression and scan times were analyzed. RESULTS: Simulations demonstrate a variable width and location of suppression bands in FISS that were dependent on TR and NR. For a fat suppression bandwidth of 100 Hz and NR ≤ 8, simulations demonstrated that a TR between 2.2 ms and 3.0 ms is required at 1.5T, whereas a range of 3.0 ms to 3.5 ms applies at 3T. Fat signal increases with NR. These findings were corroborated in phantom experiments. In volunteers, fat SNR was significantly decreased using FISS compared with balanced steady-state free precession (P < 0.05) at both field strengths. After protocol optimization, high-resolution (1.1 mm3 ) 5D whole-heart free-running FISS can be performed with effective fat suppression in under 8 min at 1.5T and 3T at a modest scan time increase compared to balanced steady-state free precession. CONCLUSION: An optimal FISS parameter range was determined enabling natively fat-suppressed 5D whole-heart free-running MRI with a single continuous scan at 1.5T and 3T, demonstrating potential for cardiac imaging and noncontrast angiography.


Asunto(s)
Radicales Libres , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética , Técnicas de Imagen Sincronizada Respiratorias , Algoritmos , Simulación por Computador , Angiografía Coronaria , Electrocardiografía , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Teóricos , Movimiento (Física) , Distribución Normal , Fantasmas de Imagen , Relación Señal-Ruido
3.
Magn Reson Med ; 82(6): 2118-2132, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31321816

RESUMEN

PURPOSE: To develop a previously reported, electrocardiogram (ECG)-gated, motion-resolved 5D compressed sensing whole-heart sparse MRI methodology into an automated, optimized, and fully self-gated free-running framework in which external gating or triggering devices are no longer needed. METHODS: Cardiac and respiratory self-gating signals were extracted from raw image data acquired in 12 healthy adult volunteers with a non-ECG-triggered 3D radial golden-angle 1.5 T balanced SSFP sequence. To extract cardiac self-gating signals, central k-space coefficient signal analysis (k0 modulation), as well as independent and principal component analyses were performed on selected k-space profiles. The procedure yielding triggers with the smallest deviation from those of the reference ECG was selected for the automated protocol. Thus, optimized cardiac and respiratory self-gating signals were used for binning in a compressed sensing reconstruction pipeline. Coronary vessel length and sharpness of the resultant 5D images were compared with image reconstructions obtained with ECG-gating. RESULTS: Principal component analysis-derived cardiac self-gating triggers yielded a smaller deviation ( 17.4±6.1ms ) from the reference ECG counterparts than k0 modulation ( 26±7.5ms ) or independent component analysis ( 19.8±5.2ms ). Cardiac and respiratory motion-resolved 5D images were successfully reconstructed with the automated and fully self-gated approach. No significant difference was found for coronary vessel length and sharpness between images reconstructed with the fully self-gated and the ECG-gated approach (all P≥.06 ). CONCLUSION: Motion-resolved 5D compressed sensing whole-heart sparse MRI has successfully been developed into an automated, optimized, and fully self-gated free-running framework in which external gating, triggering devices, or navigators are no longer mandatory. The resultant coronary MRA image quality was equivalent to that obtained with conventional ECG-gating.


Asunto(s)
Electrocardiografía , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Procesamiento de Señales Asistido por Computador , Adulto , Técnicas de Imagen Sincronizada Cardíacas , Medios de Contraste/química , Procesamiento Automatizado de Datos , Femenino , Voluntarios Sanos , Corazón , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Movimiento (Física) , Análisis de Componente Principal , Estándares de Referencia , Valores de Referencia , Técnicas de Imagen Sincronizada Respiratorias
4.
Magn Reson Med ; 79(2): 826-838, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28497486

RESUMEN

PURPOSE: A 5D whole-heart sparse imaging framework is proposed for simultaneous assessment of myocardial function and high-resolution cardiac and respiratory motion-resolved whole-heart anatomy in a single continuous noncontrast MR scan. METHODS: A non-electrocardiograph (ECG)-triggered 3D golden-angle radial balanced steady-state free precession sequence was used for data acquisition. The acquired 3D k-space data were sorted into a 5D dataset containing separated cardiac and respiratory dimensions using a self-extracted respiratory motion signal and a recorded ECG signal. Images were then reconstructed using XD-GRASP, a multidimensional compressed sensing technique exploiting correlations/sparsity along cardiac and respiratory dimensions. 5D whole-heart imaging was compared with respiratory motion-corrected 3D and 4D whole-heart imaging in nine volunteers for evaluation of the myocardium, great vessels, and coronary arteries. It was also compared with breath-held, ECG-gated 2D cardiac cine imaging for validation of cardiac function quantification. RESULTS: 5D whole-heart images received systematic higher quality scores in the myocardium, great vessels and coronary arteries. Quantitative coronary sharpness and length were always better for the 5D images. Good agreement was obtained for quantification of cardiac function compared with 2D cine imaging. CONCLUSION: 5D whole-heart sparse imaging represents a robust and promising framework for simplified comprehensive cardiac MRI without the need for breath-hold and motion correction. Magn Reson Med 79:826-838, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Técnicas de Imagen Cardíaca/métodos , Corazón/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Algoritmos , Vasos Coronarios/diagnóstico por imagen , Femenino , Humanos , Masculino , Adulto Joven
5.
Magn Reson Imaging ; 113: 110209, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38972471

RESUMEN

BACKGROUND: 5D, free-running imaging resolves sets of 3D whole-heart images in both cardiac and respiratory dimensions. In an application such as coronary imaging when a single, static image is of interest, computationally expensive offline iterative reconstruction is still needed to compute the multiple 3D datasets. PURPOSE: Evaluate how the number of physiologic bins included in the reconstruction affects the computational cost and resulting image quality of a single, static volume reconstruction. STUDY TYPE: Retrospective. SUBJECTS: 15 pediatric patients following Ferumoxytol infusion (4 mg/kg). FIELD STRENGTH/SEQUENCE: 1.5 T/Ungated 5D free-running GRE sequence. ASSESSMENT: The raw data of each subject were binned and reconstructed into a 5D (x-y-z-cardiac-respiratory) images. 1, 3, 5, 7, and 9 bins adjacent to both sides of the retrospectively determined cardiac resting phase and 1, 3 bins adjacent to the end-expiration phase are used for limited frame reconstructions. The static volume within each limited reconstruction was compared with the corresponding full 5D reconstruction using the structural similarity index measure (SSIM). A non-linear regression model was used to fit SSIM with the percentage of data used compared to full reconstruction (% data). A linear regression model was used to fit computation time with % raw data used. Coronary artery sharpness is measured on each limited reconstructed images to determine the minimal number of cardiac and respiratory bins needed to preserve image quality. STATISTICAL TESTS: The coefficient of determination (R2) is computed for each regression model. RESULTS: The % of data used in the reconstruction was linearly related to the computational time (R2 = 0.99). The SSIM of the static image from the limited reconstructions is non-linearly related with the % of data used (R2 = 0.80). Over the 15 patients, the model showed SSIM of 0.9 with 18% of data, and SSIM of 0.96 with 30% of data. The coronary artery sharpness of images reconstructed using no less than 5 cardiac and all respiratory phases is not significantly different from the full reconstructed images using all cardiac and respiratory bins. DATA CONCLUSION: Reconstruction using only a limited number of acquired physiological states can linearly reduce the computational cost while preserving similarity to the full reconstruction image. It is suggested to use no less than 5 cardiac and all respiratory phases in the limited reconstruction to best preserve the original quality seen on the full reconstructed images.


Asunto(s)
Medios de Contraste , Imagenología Tridimensional , Angiografía por Resonancia Magnética , Humanos , Estudios Retrospectivos , Masculino , Femenino , Niño , Angiografía por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Adolescente , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Corazón/diagnóstico por imagen , Óxido Ferrosoférrico , Vasos Coronarios/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Preescolar
6.
Front Cardiovasc Med ; 10: 1284743, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38179508

RESUMEN

Background: Cardiovascular MRI is advantageous in transcatheter aortic valve implantation (TAVI) planning. This study aimed to evaluate the feasibility of comprehensive non-contrast MRI [relaxation-enhanced angiography without contrast and triggering (REACT)] combined with a three-dimensional whole-heart MRI protocol for preprocedural planning of TAVI vs. computed tomography angiography (CTA). Methods: Thirty patients with severe aortic stenosis were prospectively enrolled. The anatomical properties of the aortic root anatomy, including the perimeter and area of the virtual aortic valve annulus and coronary heights, were determined from 3D whole-heart MRI and cardiac CTA (CCTA) images, respectively. The diameters of the aorta (thoracic and abdominal aorta) and iliofemoral arteries were measured from REACT and aortic CTA (ACTA) images, respectively. A paired t-test was used to compare these two modalities. Bland-Altman plots were used to assess cardiovascular MRI and CTA measurements. Transcatheter heart valve (THV) sizing was performed based on CCTA measurements and compared with 3D whole-heart MRI measurements. The extent of annular calcification on 3D whole-heart MRI images was evaluated by a four-point grading scale and compared with CCTA data. Results: All 30 patients completed CTA and cardiovascular MRI examinations, with the TAVI procedure being administered in 25 patients. The mean acquisition time of the comprehensive MRI protocol was 18 ± 3.2 min. There were no significant differences between ACTA and REACT data in regard to the diameters of aortic and iliofemoral arteries, including the ascending thoracic aorta (37 ± 4.6 mm vs. 37.7 ± 5.2 mm, p = 0.085), descending thoracic aorta (24.3 ± 2.8 mm vs. 24.3 ± 2.8 mm, p = 0.832), abdominal aorta (20.9 ± 2.5 mm vs. 20.8 ± 2.5 mm, p = 0.602), bilateral common iliac arteries (right: 8.36 ± 1.44 mm vs. 8.42 ± 1.27 mm, p = 0.590; left: 8.61 ± 1.71 mm vs. 8.86 ± 1.46 mm, p = 0.050), and bilateral femoral arteries (right: 6.77 ± 1.06 mm vs. 6.87 ± 1.00 mm, p = 0.157; left: 6.75 ± 1.02 mm vs. 6.90 ± 0.80 mm, p = 0.142). Both modalities showed similar aortic valve morphology and semi-quantitative valve calcification (all, p's > 0.05). Overall agreement for implanted THV was found in all 25 (100%) patients assessed with both modalities. Conclusion: REACT combined with 3D whole-heart MRI enables reliable measurements of aortic root anatomy, annular calcification, and aorta and iliofemoral access in patients under evaluation for TAVI.

7.
Magn Reson Imaging ; 34(7): 1017-25, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27067473

RESUMEN

A three-dimensional dual-cardiac-phase (3D-DCP) scan has been proposed to acquire two data sets of the whole heart and great vessels during the end-diastolic and end-systolic cardiac phases in a single free-breathing scan. This method has shown accurate assessment of cardiac anatomy and function but is limited by long acquisition times. This work proposes to accelerate the acquisition and reconstruction of 3D-DCP scans by exploiting redundant information of the outer k-space regions of both cardiac phases. This is achieved using a modified radial-phase-encoding trajectory and gridding reconstruction with uniform coil combination. The end-diastolic acquisition trajectory was angularly shifted with respect to the end-systolic phase. Initially, a fully-sampled 3D-DCP scan was acquired to determine the optimal percentage of the outer k-space data that can be combined between cardiac phases. Thereafter, prospectively undersampled data were reconstructed based on this percentage. As gold standard images, the undersampled data were also reconstructed using iterative SENSE. To validate the method, image quality assessments and a cardiac volume analysis were performed. The proposed method was tested in thirteen healthy volunteers (mean age, 30years). Prospectively undersampled data (R=4) reconstructed with 50% combination led high quality images. There were no significant differences in the image quality and in the cardiac volume analysis between our method and iterative SENSE. In addition, the proposed approach reduced the reconstruction time from 40min to 1min. In conclusion, the proposed method obtains 3D-DCP scans with an image quality comparable to those reconstructed with iterative SENSE, and within a clinically acceptable reconstruction time.


Asunto(s)
Corazón/diagnóstico por imagen , Corazón/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Algoritmos , Humanos , Estudios Prospectivos , Valores de Referencia , Reproducibilidad de los Resultados , Respiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA