Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 100: 129620, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38280655

RESUMEN

Six amino derivatives of xanthone were obtained via chemical synthesis. Biochemical studies revealed their SIRT2 inhibitory activity ranging from 48.5 % (compound 4, 5-chloro-2-((4-(3-methoxyphenyl)piperazin-1-yl)methyl)-9H-xanthen-9-one hydrochloride) to 93.2 % (compound 3, 5-chloro-2-(((2-methoxyphenethyl)amino)methyl)-9H-xanthen-9-one hydrochloride). The structure-activity analysis showed favourable properties of secondary amines relative to tertiary piperazine derivatives. The tested compounds do not possess additional SIRT1 activating activity and no antioxidant activity (DPPH in vitro assay). Comprehensive analysis of the lipophilicity of the obtained compounds was also performed. For compound 3 potential molecular targets and similar active compounds were predicted in order to facilitate further research in this group of compounds.


Asunto(s)
Sirtuina 2 , Xantonas , Piperazina , Xantonas/farmacología , Xantonas/química , Relación Estructura-Actividad
2.
Bioorg Med Chem ; 103: 117655, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38493728

RESUMEN

Caged xanthones represent a class of natural secondary metabolites exhibiting significant potential as antitumor agents. These compounds are characterized by their distinct cage-like structures, which offer novel and compelling frameworks for drug design. Nonetheless, there exists a dearth of research focused on the structural modification of these compounds, particularly in relation to their cage-like architectures. This study aims to address this gap by introducing an innovative synthetic method for constructing a novel caged structure that incorporates a widely employed maleimide group. Drawing upon the well-established synthetic approach for dihydroxanthones previously developed within our research group, we successfully synthesized 13 new caged xanthones using the Diels-Alder reaction. Subsequently, we evaluated their anti-proliferative activity against HepG2, A549, and MDA-MB-231 cell lines. The results revealed that compound 10i exhibited IC50 values of 15.86 µM ± 1.29, 19.27 µM ± 1.58, and 12.96 µM ± 0.09 against these cell lines, respectively. Further investigations into the mechanism of action of 10i demonstrated its ability to induce G2/M cell cycle arrest and initiate mitochondria-mediated apoptosis in breast cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Xantonas , Humanos , Femenino , Xantonas/farmacología , Xantonas/química , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Estructura Molecular
3.
Xenobiotica ; 54(6): 266-278, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38819995

RESUMEN

The use of topical photoprotection is necessary to reduce adverse effects caused by excessive exposure to ultraviolet radiation. Despite the high standards set for UV filters, many of them may contribute to the occurrence of adverse effects. The newly synthesised compound K-116, the (E)-cinnamoyl xanthone derivative, could be an alternative. We conducted extended in vitro safety evaluation of compound K-116. The research included assessment of irritation potential on skin tissue, evaluation of penetration through the epidermis, and assessment of phototoxicity, and mutagenicity. Additionally, the eco-safety of compound K-116 was evaluated, including an examination of its degradation pathway in the Cunninghamella echinulata model, as well as in silico simulation of the toxicity of both the parent compound and its degradation products. The research showed that compound K-116 tested in future application conditions is deprived of skin irritant potential additionally it does not penetrate through the epidermis. Results showed that K-116 concentrate is not phototoxic and not mutagenic. The eco-safety studies showed that it undergoes biodegradation in 27% in Cunninghamella echinulata model. The parent compound and formed metabolite are less toxic than reference UV filters (octinoxate and octocrylene).


Asunto(s)
Acrilatos , Protectores Solares , Rayos Ultravioleta , Protectores Solares/toxicidad , Piel/efectos de los fármacos , Piel/metabolismo , Humanos , Pruebas de Mutagenicidad , Animales
4.
Mar Drugs ; 22(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38535443

RESUMEN

The co-culture strategy, which mimics natural ecology by constructing an artificial microbial community, is a useful tool for the activation of biosynthetic gene clusters (BGCs) to generate new metabolites, as well as to increase the yield of respective target metabolites. As part of our project aiming at the discovery of structurally novel and biologically active natural products from mangrove endophytic fungi, we selected the co-culture of a strain of Phomopsis asparagi DHS-48 with another Phomopsis genus fungus DHS-11, both endophyted in mangrove Rhizophora mangle considering the impart of the taxonomic criteria and ecological data. The competition interaction of the two strains was investigated through morphology observation and scanning electron microscopy (SEM), and it was found that the mycelia of the DHS-48 and DHS-11 compacted and tangled with each other with an interwoven pattern in the co-culture system. A new approach that integrates HPLC chromatogram, 1HNMR spectroscopy, UPLC-MS-PCA, and molecular networking enabled the targeted isolation of the induced metabolites, including three new dimeric xanthones phomoxanthones L-N (1-3), along with six known analogs (4-9). Their planar structures were elucidated by an analysis of their HRMS, MS/MS, and NMR spectroscopic data and the absolute configurations based on ECD calculations. These metabolites showed broad cytotoxic activity against the cancer cells assessed, of which compounds 7-9 displayed significant cytotoxicity towards human liver cells HepG-2 with IC50 values ranging from 4.83 µM to 12.06 µM. Compounds 1-6 exhibited weak immunosuppressive activity against the proliferation of ConA-induced (T-cell) and LPS-induced (B-cell) murine splenic lymphocytes. Therefore, combining co-cultivation with a metabolomics-guided strategy as a discovery tool will be implemented as a systematic strategy for the quick discovery of target bioactive compounds.


Asunto(s)
Phomopsis , Espectrometría de Masas en Tándem , Humanos , Animales , Ratones , Cromatografía Liquida , Técnicas de Cocultivo , Hongos
5.
Chem Biodivers ; 21(4): e202400063, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38329295

RESUMEN

The xanthone lichenxanthone did not show toxic effects (LC50>1.0 mg/mL). lichenxanthone prevented nociceptive behavior induced by acidic saline, and its analgesic effect was blocked by amiloride, highlighting the involvement of neuromodulation of acid-sensitive ion channels (ASICs). In the analysis of anti-inflammatory activity, concentrations of 0.1 and 0.5 mg/mL of lichenxanthone reduced the edema induced by k-carrageenan 3.5 %, observed from the fourth hour of analysis. This effect was similar to that observed with ibuprofen (positive control). No leukocyte infiltrates were observed in lichenxanthone, suggesting that the compound acts in the acute inflammatory response. The results of the molecular docking study revealed that lichenxanthone exhibited better affinity energy when compared to the ibuprofen control against the two targets evaluated.


Asunto(s)
Ibuprofeno , Pez Cebra , Animales , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología , Canales Iónicos
6.
Molecules ; 29(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338348

RESUMEN

Chronic inflammation plays a crucial role in the development and progression of numerous chronic diseases. To search for anti-inflammatory metabolites from endophytic fungi isolated from plants growing in Thai mangrove areas, a chemical investigation of those fungi was performed. Five new oxygenated isocoumarins, setosphamarins A-E (1-5) were isolated from the EtOAc extract of an endophytic fungus Setosphaeria rostrata, along with four known isocoumarins and one xanthone. Their structures were determined by extensive spectroscopic analysis. The absolute configurations of the undescribed compounds were established by comparative analysis between experimental and calculated circular dichroism (ECD) spectroscopy. All the compounds were evaluated for their anti-inflammatory activity by monitoring nitric oxide inhibition in lipopolysaccharide-induced macrophage J774A.1 cells. Only a xanthone, ravenelin (9), showed potent activity, with an IC50 value of 6.27 µM, and detailed mechanistic study showed that it suppressed iNOS and COX-2 expression.


Asunto(s)
Ascomicetos , Xantonas , Isocumarinas/química , Tailandia , Ascomicetos/química , Antiinflamatorios/farmacología , Xantonas/farmacología , Estructura Molecular
7.
Chembiochem ; 24(5): e202200586, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36342352

RESUMEN

Many dimeric natural products containing bisanthraquinone and related xanthones with diverse structures and versatile bioactivities have been isolated over the years. However, the complicated biosynthetic pathways of such natural products, which have remained elusive until recently, negatively impact their mass bioproduction and biosynthetic structural modification for drug discovery. In this concept, we summarize the recent progress in gene cluster mining and biosynthetic pathway elucidation of natural products containing bisanthraquinone and related xanthones. These pioneering works may pave the way for further biosynthetic pathway elucidation and structure modification of dimeric natural products through gene and protein engineering.


Asunto(s)
Productos Biológicos , Xantonas , Vías Biosintéticas , Xantonas/química , Xantonas/metabolismo , Productos Biológicos/metabolismo , Descubrimiento de Drogas
8.
Neurochem Res ; 48(12): 3485-3511, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37578655

RESUMEN

Xanthones are natural secondary metabolites that possess great potential as neuroprotective agents due to their prominent biological effects on Alzheimer's disease (AD). However, their underlying mechanisms in AD remain unclear. This study aimed to systematically review the effects and mechanisms of xanthones in cell culture and animal studies, gaining a better understanding of their roles in AD. A comprehensive literature search was conducted in the Medline and Scopus databases using specific keywords to identify relevant articles published up to June 2023. After removing duplicates, all articles were imported into the Rayyan software. The article titles were screened based on predefined inclusion and exclusion criteria. Relevant full-text articles were assessed for biases using the OHAT tool. The results were presented in tables. Xanthones have shown various pharmacological effects towards AD from the 21 preclinical studies included. Cell culture studies demonstrated the anti-cholinesterase activity of xanthones, which protects against the loss of acetylcholine. Xanthones exhibited neuroprotective effects by promoting cell viability, reducing the accumulation of ß-amyloid and tau aggregation. The administration of xanthones in animal models resulted in a reduction in neuronal inflammation by decreasing microglial and astrocyte burden. In terms of molecular mechanisms, xanthones prevented neuroinflammation through the modulation of signaling pathways, including TLR4/TAK1/NF-κB and MAPK pathways. Mechanisms such as activation of caspase-3 and -9 and suppression of endoplasmic reticulum stress were also reported. Despite the various neuroprotective effects associated with xanthones, there are limited studies reported on their underlying mechanisms in AD. Further studies are warranted to fully understand their potential roles in AD.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Xantonas , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Antioxidantes/farmacología , Fármacos Neuroprotectores/farmacología , Xantonas/farmacología
9.
Chem Biodivers ; 20(2): e202200910, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36628555

RESUMEN

Garcinia cowa of the Clusiaceae family, native to South-East Asia used in traditional medicine. It has antipyretic, antimicrobial, and many other biological activities. In this review, a thorough study of this plant's chemical constituents and pharmacological and therapeutic effects was conducted from the research articles from PubMed, Science Direct, Google Scholar, and Scopus from 1977 to 2022. Reported secondary metabolites are enriched with xanthones, phloroglucinols, depsidones, steroids, etc. α-mangostin, ß-mangostin, cowaxanthone, rubraxanthone, cowanin, norcowanin, etc. represent the major xanthones. This article discusses the relationship between the different functional groups in xanthone compounds and their bioactivity against cancer, diabetes, bacteria, leishmania, malaria, and inflammation. This review is a comprehensive compendium of major bioactive molecules and its implication for human disease.


Asunto(s)
Garcinia , Xantonas , Humanos , Garcinia/química , Fitoquímicos , Extractos Vegetales/química , Xantonas/química
10.
Chem Biodivers ; 20(2): e202201040, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36581794

RESUMEN

An undescribed xanthone dimer, 1,3,5,8-tetrahydroxy-7-(1',5',8'-trihydroxy-3'-methoxy-2'-xanthonyl)xanthone (1) was separated together with eleven known compounds (2-12) from the dried whole herb of Swertia pseudochinensis. It was the first time that the compounds 8-12 were isolated from the Swertia genus. The structure of compound 1 was illuminated based on chemical evidence and spectral data analysis (UV, 1D and 2D-NMR, HR-ESI-MS). Moreover, the inhibitory effects of all compounds on NO production in LPS-induced RAW 264.7 cells were tested, compounds 8, 9, 10, 11 and 12 showing significant inhibition. The IC50 value of compound 12 was 3.05±1.10 µM. Using target screening and molecular docking, we hypothesized that compound 12 may bind neutrophil elastase to exert its anti-inflammatory effects.


Asunto(s)
Swertia , Xantonas , Swertia/química , Simulación del Acoplamiento Molecular , Xantonas/química , Antiinflamatorios , Espectroscopía de Resonancia Magnética , Estructura Molecular
11.
Chem Biodivers ; 20(1): e202200900, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36404281

RESUMEN

Four new xanthone glucosides, 3-hydroxy-2-methoxyxanthone-4-O-ß-D-glucopyranoside (1), 4,8-dihydroxy-2-methoxyxanthone-3-O-ß-D-glucopyranoside (2), 2-methoxyxanthone-5-O-ß-D-glucopyranoside (3), 4-hydroxy-2-methoxyxanthone-3-O-ß-D-glucopyranoside (4), a new phenolic acid, 4,4'-dihydroxy-3,3'-imino-di-benzoic acid monomethyl ester (5), and a new isoquinoline, methyl 6-hydroxy-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (6) were isolated from the fruit of Hypericum patulum. The structural elucidation of the isolated compounds was primarily based on HR-ESI-MS, UV, IR, 1D and 2D NMR. All compounds were evaluated for their inhibitory effect against LPS-induced NO production in RAW 264.7 cells. Compound 2, 3 exhibited moderate inhibitory activity against NO production.


Asunto(s)
Hypericum , Hypericum/química , Frutas/química , Glucósidos/química , Espectroscopía de Resonancia Magnética
12.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835343

RESUMEN

Mangosteen peel, a waste produced during mangosteen processing, has been reported to be rich in xanthone and anthocyanin, both of which possess vital biological activities such as anti-cancer properties. The objectives of this study were to analyze various xanthones and anthocyanins in mangosteen peel by UPLC-MS/MS for the subsequent preparation of both xanthone and anthocyanin nanoemulsions to study their inhibition effects on liver cancer cells HepG2. Results showed that methanol was the optimal solvent for the extraction of xanthones and anthocyanins, with a total amount of 68,543.39 and 2909.57 µg/g, respectively. A total of seven xanthones, including garcinone C (513.06 µg/g), garcinone D (469.82 µg/g), γ-mangostin (11,100.72 µg/g), 8-desoxygartanin (1490.61 µg/g), gartanin (2398.96 µg/g), α-mangostin (51,062.21 µg/g) and ß-mangostin (1508.01 µg/g), as well as two anthocyanins including cyanidin-3-sophoroside (2889.95 µg/g) and cyanidin-3-glucoside (19.72 µg/g), were present in mangosteen peel. The xanthone nanoemulsion was prepared by mixing an appropriate portion of soybean oil, CITREM, Tween 80 and deionized water, while the anthocyanin nanoemulsion composed of soybean oil, ethanol, PEG400, lecithin, Tween 80, glycerol and deionized water was prepared as well. The mean particle size of the xanthone extract and nanoemulsion were, respectively, 22.1 and 14.0 nm as determined by DLS, while the zeta potential was -87.7 and -61.5 mV. Comparatively, xanthone nanoemulsion was more effective than xanthone extract in inhibiting the growth of HepG2 cells, with the IC50 being 5.78 µg/mL for the former and 6.23 µg/mL for the latter. However, the anthocyanin nanoemulsion failed to inhibit growth of HepG2 cells. Cell cycle analysis revealed that the proportion of the sub-G1 phase followed a dose-dependent increase, while that of the G0/G1 phase showed a dose-dependent decline for both xanthone extracts and nanoemulsions, with the cell cycle being possibly arrested at the S phase. The proportion of late apoptosis cells also followed a dose-dependent rise for both xanthone extracts and nanoemulsions, with the latter resulting in a much higher proportion at the same dose. Similarly, the activities of caspase-3, caspase-8 and caspase-9 followed a dose-dependent increase for both xanthone extracts and nanoemulsions, with the latter exhibiting a higher activity at the same dose. Collectively, xanthone nanoemulsion was more effective than xanthone extract in inhibiting the growth of HepG2 cells. Further research is needed to study the anti-tumor effect in vivo.


Asunto(s)
Garcinia mangostana , Neoplasias Hepáticas , Xantonas , Humanos , Antocianinas , Espectrometría de Masas en Tándem , Aceite de Soja , Cromatografía Liquida , Polisorbatos , Xantonas/farmacología , Línea Celular Tumoral , Extractos Vegetales/farmacología , Agua
13.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834121

RESUMEN

Xanthone compounds from Cratoxylum cochinchinensis (C. cochinchinensis) have demonstrated antioxidant effects and potency in treating many inflammatory diseases. However, the efficiency of the three xanthone extracts isolated from the young fruit of this plant, i.e., two geranyloxy xanthones (F6, F8) and one 1,3,7-hydroxy xanthone (F137), as antioxidants and therapeutics for periodontal disease has not been evaluated. The aim of this study was to investigate the antioxidant effects of three xanthones isolated from C. cochinchinensis on periodontal ligament stem cells (PDLSCs) and their osteogenic differentiation. The antioxidant activity of the aqueous extracts was determined using a DPPH assay, and their cytotoxicity was evaluated using an MTT assay. H2O2 was used to induce intracellular stress, and the scavenging effect of the isolated compounds against reactive oxygen species (ROS) was analyzed with a fluorescence assay. The expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) was evaluated, and the effects of the three compounds on PDLSCs osteogenic differentiation were investigated. The isolated compounds reduced both extracellular and intracellular ROS in a dose-dependent manner and induced the expression of Nrf2 and HO-1 in PDLSCs. Under redox conditions, these compounds potentiated PDLSCs osteogenic differentiation. Our study demonstrated that the hydroxy xanthones from C. cochinchinensis had antioxidant effects on the Nrf2/HO-1 pathway and might be effective therapeutic substrates for damage prevention and the regeneration of damaged periodontal tissues in periodontitis patients.


Asunto(s)
Clusiaceae , Xantonas , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Osteogénesis , Ligamento Periodontal , Clusiaceae/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Células Madre/metabolismo , Diferenciación Celular , Xantonas/farmacología , Xantonas/metabolismo , Células Cultivadas
14.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768602

RESUMEN

Colorectal carcinoma (CRC) is a kind of malignant tumor closely related to ulcerative colitis. Xanthone derivatives are one of the most promising therapeutic drugs which have been used in phase I/II clinical trials for cancer therapy. Our previous study indicated that the aerial parts of Gentianella acuta Michx. Hulten (GA) was rich in xanthones and showed a good therapeutic effect on ulcerative colitis in mice, suggesting that GA xanthones might have some therapeutic or ameliorative effects on CRC. However, no relevant study has been reported. This study aims to find the effective substances of GA inhibiting CRC and clarify their mechanism. Solvent extraction, column chromatographic separation, and LC-MS analysis were used to characterize the 70% EtOH extract of GA and track xanthones abundant fraction XF. MTT assay was carried out to clarify the activity of GA fractions; the result showed XF to be the main active fraction. LC-MS analysis was executed to characterize XF, 38 xanthones were identified. Network pharmacology prediction, in vitro activity screening, and molecular docking assay were combined to predict the potential mechanism; the PI3K/Akt/mTOR signaling pathway was found to be most important. Western blot assay on the main active xanthones 1,3,5-trihydroxyxanthone (16), 1,3,5,8-tetrahydroxyxanthone (17), 1,5,8-trihydroxy-3-methoxyxanthone (18), and 1,7-dihydroxy-3,8-dimethoxyxanthone (19) was used to verify the above prediction; these xanthones were found to inhibit the PI3K/Akt/mTOR signaling pathway, and 17 played a significant role among them through Western blot assay using PI3K/AKT/mTOR agonist IGF-1. In conclusion, this study demonstrated that GA xanthones were effective compounds of GA inhibiting CRC by regulating PI3K/Akt/mTOR signaling pathway transduction, at least. Importantly, 1,3,5,8-tetrahydroxyxanthone (17), the most abundant active xanthone in GA, might be a candidate drug for CRC.


Asunto(s)
Colitis Ulcerosa , Neoplasias Colorrectales , Gentianella , Xantonas , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Gentianella/química , Fosfatidilinositol 3-Quinasas/metabolismo , Simulación del Acoplamiento Molecular , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Xantonas/farmacología , Xantonas/química , Neoplasias Colorrectales/tratamiento farmacológico , Proliferación Celular
15.
Molecules ; 28(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36838545

RESUMEN

The UHPLC-HRMS analysis of Cortinarius ominosus basidiomata extract revealed that this mushroom accumulated elevated yields of an unreported specialized metabolite. The molecular formula of this unknown compound, C17H10O8, indicated that a challenging structure elucidation lay ahead, owing to its critically low H/C atom ratio. The structure of this new isolate, namely ominoxanthone (1), could not be solved from the interpretation of the usual set of 1D/2D NMR data that conveyed too limited information to afford a single, unambiguous structure. To remedy this, a Computer-Assisted Structure Elucidation (CASE) workflow was used to rank the different possible structure candidates consistent with our scarce spectroscopic data. DFT-based chemical shift calculations on a limited set of top-ranked structures further ascertained the determined structure for ominoxanthone. Although the determined scaffold of ominoxanthone is unprecedented as a natural product, a plausible biosynthetic scenario involving a precursor known from cortinariaceous sources and classical biogenetic reactions could be proposed.


Asunto(s)
Productos Biológicos , Xantonas , Estructura Molecular , Espectroscopía de Resonancia Magnética , Xantonas/química , Productos Biológicos/química
16.
Molecules ; 28(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446849

RESUMEN

ACE2 and Mpro in the pathology of SARS-CoV-2 show great potential in developing COVID-19 drugs as therapeutic targets, due to their roles as the "gate" of viral entry and viral reproduction. Of the many potential compounds for ACE2 and Mpro inhibition, α-mangostin is a promising candidate. Unfortunately, the potential of α-mangostin as a secondary metabolite with the anti-SARS-CoV-2 activity is hindered due to its low solubility in water. Other xanthone isolates, which also possess the xanthone core structure like α-mangostin, are predicted to be potential alternatives to α-mangostin in COVID-19 treatment, addressing the low drug-likeness of α-mangostin. This study aims to assess the potential of xanthone derivative compounds in the pericarp of mangosteen (Garcinia mangostana L.) through computational study. The study was conducted through screening activity using molecular docking study, drug-likeness prediction using Lipinski's rule of five filtration, pharmacokinetic and toxicity prediction to evaluate the safety profile, and molecular dynamic study to evaluate the stability of formed interactions. The research results showed that there were 11 compounds with high potential to inhibit ACE2 and 12 compounds to inhibit Mpro. However, only garcinone B, in addition to being indicated as active, also possesses a drug-likeness, pharmacokinetic, and toxicity profile that was suitable. The molecular dynamic study exhibited proper stability interaction between garcinone B with ACE2 and Mpro. Therefore, garcinone B, as a xanthone derivative isolate compound, has promising potential for further study as a COVID-19 treatment as an ACE2 and Mpro inhibitor.


Asunto(s)
COVID-19 , Garcinia mangostana , Xantonas , Humanos , Garcinia mangostana/química , Enzima Convertidora de Angiotensina 2 , Simulación del Acoplamiento Molecular , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Xantonas/farmacología , Xantonas/uso terapéutico , Xantonas/química
17.
Saudi Pharm J ; 31(6): 998-1018, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37234350

RESUMEN

Pyran is a heterocyclic group containing oxygen that possesses a variety of pharmacological effects. Pyran is also one of the most prevalent structural subunits in natural products, such as xanthones, coumarins, flavonoids, benzopyrans, etc. Additionally demonstrating the neuroprotective properties of pyrans is the fact that this heterocycle has recently attracted the attention of scientists worldwide. Alzheimer's Disease (AD) treatment and diagnosis are two of the most critical research objectives worldwide. Increased amounts of extracellular senile plaques, intracellular neurofibrillary tangles, and a progressive shutdown of cholinergic basal forebrain neuron transmission are often related with cognitive impairment. This review highlights the various pyran scaffolds of natural and synthetic origin that are effective in the treatment of AD. For better understanding synthetic compounds are categorized as different types of pyran derivatives like chromene, flavone, xanthone, xanthene, etc. The discussion encompasses both the structure-activity correlations of these compounds as well as their activity against AD. Because of the intriguing actions that were uncovered by these pyran-based scaffolds, there is no question that they are at the forefront of the search for potential medication candidates that could treat Alzheimer's disease.

18.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5817-5821, 2023 Nov.
Artículo en Zh | MEDLINE | ID: mdl-38114177

RESUMEN

Eight compounds were isolated from ethyl acetate fraction of 80% ethanol extract of the hulls of Garcinia mangostana by silica gel, Sephadex LH-20 column chromatography, as well as prep-HPLC methods. By HR-ESI-MS, MS, 1D and 2D NMR spectral analyses, the structures of the eight compounds were identified as 16-en mangostenone E(1), α-mangostin(2), 1,7-dihydroxy-2-(3-methy-lbut-2-enyl)-3-methoxyxanthone(3), cratoxyxanthone(4), 2,6-dimethoxy-para-benzoquinone(5), methyl orselinate(6), ficusol(7), and 4-(4-carboxy-2-methoxyphenoxy)-3,5-dimethoxybenzoic acid(8). Compound 1 was a new xanthone, and compound 4 was a xanthone dimer, compound 5 was a naphthoquinone. All compounds were isolated from this plant for the first time except compounds 2 and 3. Cytotoxic bioassay suggested that compounds 1, 2 and 4 possessed moderate cytotoxicity, suppressing HeLa cell line with IC_(50) va-lues of 24.3, 35.5 and 17.1 µmol·L~(-1), respectively. Compound 4 also could suppress K562 cells with an IC_(50) value of 39.8 µmol·L~(-1).


Asunto(s)
Antineoplásicos , Garcinia mangostana , Garcinia , Xantonas , Humanos , Garcinia mangostana/química , Células HeLa , Espectroscopía de Resonancia Magnética , Xantonas/farmacología , Garcinia/química , Extractos Vegetales/química , Estructura Molecular
19.
Plant J ; 107(6): 1711-1723, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34245606

RESUMEN

Cultivated Japanese gentians traditionally produce vivid blue flowers because of the accumulation of delphinidin-based polyacylated anthocyanins. However, recent breeding programs developed several red-flowered cultivars, but the underlying mechanism for this red coloration was unknown. Thus, we characterized the pigments responsible for the red coloration in these cultivars. A high-performance liquid chromatography with photodiode array analysis revealed the presence of phenolic compounds, including flavones and xanthones, as well as the accumulation of colored cyanidin-based anthocyanins. The chemical structures of two xanthone compounds contributing to the coloration of red-flowered gentian petals were determined by mass spectrometry and nuclear magnetic resonance spectroscopy. The compounds were identified as norathyriol 6-O-glucoside (i.e., tripteroside designated as Xt1) and a previously unreported norathyriol-6-O-(6'-O-malonyl)-glucoside (designated Xt2). The copigmentation effects of these compounds on cyanidin 3-O-glucoside were detected in vitro. Additionally, an RNA sequencing analysis was performed to identify the cDNAs encoding the enzymes involved in the biosynthesis of these xanthones. Recombinant proteins encoded by the candidate genes were produced in a wheat germ cell-free protein expression system and assayed. We determined that a UDP-glucose-dependent glucosyltransferase (StrGT9) catalyzes the transfer of a glucose moiety to norathyriol, a xanthone aglycone, to produce Xt1, which is converted to Xt2 by a malonyltransferase (StrAT2). An analysis of the progeny lines suggested that the accumulation of Xt2 contributes to the vivid red coloration of gentian flowers. Our data indicate that StrGT9 and StrAT2 help mediate xanthone biosynthesis and contribute to the coloration of red-flowered gentians via copigmentation effects.


Asunto(s)
Flores/fisiología , Gentiana/fisiología , Pigmentación/genética , Proteínas de Plantas/genética , Xantonas/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Cromatografía Líquida de Alta Presión , Flores/genética , Gentiana/genética , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Estructura Molecular , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ARN , Xantenos/metabolismo , Xantonas/química , Xantonas/aislamiento & purificación
20.
J Recept Signal Transduct Res ; 42(4): 361-372, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34384326

RESUMEN

Increasing diabetic population is one of the major health concerns all over the world. Inhibition of α-glucosidase is a clinically proved and attractive strategy to manage diabetes. In this study, robust and reliable QSAR models to predict α-glucosidase inhibitory potential of xanthone derivatives are developed by the Monte Carlo technique. The chemical structures are represented by SMILES notation without any 3D-optimization. The significance of the index of ideality correlation (IIC) with applicability domain (AD) is also studied in depth. The models developed using CORAL software by considering IIC criteria are found to be statistically more significant and robust than simple balance of correlation. The QSAR models are validated by both internal and external validation methods. The promoters of increase and decrease of activity are also extracted and interpreted in detail. The interpretation of developed models explains the role of different structural attributes in predicting the pIC50 of xanthone derivatives as α-glucosidase inhibitors. Based on the results of model interpretation, modifications are done on some xanthone derivatives and 15 new molecules are designed. The α-glucosidase inhibitory activity of novel molecules is further supported by docking studies.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Xantonas , Inhibidores de Glicósido Hidrolasas/farmacología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa , Xantonas/química , Xantonas/farmacología , alfa-Glucosidasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA