Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.673
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 194(3): 1370-1382, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773018

RESUMEN

Lignin is an abundant polymer in plant secondary cell walls. Prototypical lignins derive from the polymerization of monolignols (hydroxycinnamyl alcohols), mainly coniferyl and sinapyl alcohol, via combinatorial radical coupling reactions and primarily via the endwise coupling of a monomer with the phenolic end of the growing polymer. Hydroxycinnamaldehyde units have long been recognized as minor components of lignins. In plants deficient in cinnamyl alcohol dehydrogenase, the last enzyme in the monolignol biosynthesis pathway that reduces hydroxycinnamaldehydes to monolignols, chain-incorporated aldehyde unit levels are elevated. The nature and relative levels of aldehyde components in lignins can be determined from their distinct and dispersed correlations in 2D 1H-13C-correlated nuclear magnetic resonance (NMR) spectra. We recently became aware of aldehyde NMR peaks, well resolved from others, that had been overlooked. NMR of isolated low-molecular-weight oligomers from biomimetic radical coupling reactions involving coniferaldehyde revealed that the correlation peaks belonged to hydroxycinnamaldehyde-derived benzofuran moieties. Coniferaldehyde 8-5-coupling initially produces the expected phenylcoumaran structures, but the derived phenolic radicals undergo preferential disproportionation rather than radical coupling to extend the growing polymer. As a result, the hydroxycinnamaldehyde-derived phenylcoumaran units are difficult to detect in lignins, but the benzofurans are now readily observed by their distinct and dispersed correlations in the aldehyde region of NMR spectra from any lignin or monolignol dehydrogenation polymer. Hydroxycinnamaldehydes that are coupled to coniferaldehyde can be distinguished from those coupled with a generic guaiacyl end-unit. These benzofuran peaks may now be annotated and reported and their structural ramifications further studied.


Asunto(s)
Acroleína/análogos & derivados , Benzofuranos , Cinamatos , Lignina , Lignina/metabolismo , Aldehídos , Polímeros
2.
J Proteome Res ; 23(10): 4637-4647, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39269200

RESUMEN

Natural plant extracts have demonstrated significant potential in alternative antibiotic therapies. Cinnamaldehyde (CA) has garnered considerable attention as a natural antibacterial agent. In this study, Tandem mass tag (TMT) quantitative proteomics combined with Western blot and RT-qPCR methods were employed to explore the antibacterial mechanism of CA against Methicillin-Resistant Staphylococcus aureus (MRSA) at the protein level. The results showed that a total of 254 differentially expressed proteins (DEPs) were identified in the control group and CA treatment group, of which 161 were significantly upregulated and 93 were significantly downregulated. DEPs related to nucleotide synthesis, homeostasis of the internal environment, and protein biosynthesis were significantly upregulated, while DEPs involved in the cell wall, cell membrane, and virulence factors were significantly downregulated. The results of GO and KEGG enrichment analyses demonstrated that CA could exert its antibacterial effects by influencing pyruvate metabolism, the tricarboxylic acid (TCA) cycle, teichoic acid biosynthesis, and the Staphylococcus aureus (S. aureus) infection pathway in MRSA. CA significantly inhibited the expression of recombinant protein MgrA (p < 0.05), significantly reduced the mRNA transcription levels of mgrA, hla, and sdrD genes (p < 0.05), and thermostability migration assays demonstrated that CA can directly interact with MgrA protein, thereby inhibiting its activity. These findings suggest that CA exerts its antibacterial mechanism by regulating the expression of related proteins, providing a theoretical basis for further development of clinical applications of antimicrobial agents derived from natural plant essential oils in the treatment of dairy cow mastitis.


Asunto(s)
Acroleína , Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Proteómica , Acroleína/farmacología , Acroleína/análogos & derivados , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Antibacterianos/farmacología , Proteómica/métodos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Espectrometría de Masas en Tándem , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología
3.
J Proteome Res ; 23(8): 3682-3695, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39037832

RESUMEN

Dental caries is a chronic oral infectious disease, and Streptococcus mutans (S. mutans) plays an important role in the formation of dental caries. Trans-cinnamaldehyde (CA) exhibits broad-spectrum antibacterial activity; however, its target and mechanism of action of CA on S. mutans needs to be further explored. In this study, it was verified that CA could inhibit the growth and biofilm formation of S. mutans. Further proteomic analysis identified 33, 55, and 78 differentially expressed proteins (DEPs) in S. mutans treated with CA for 1, 2, and 4 h, respectively. Bioinformatics analysis showed that CA interfered with carbohydrate metabolism, glycolysis, pyruvate metabolism, and the TCA cycle, as well as amino acid metabolism of S. mutans. Protein interactions suggested that pyruvate dehydrogenase (PDH) plays an important role in the antibacterial effect of CA. Moreover, the upstream and downstream pathways related to PDH were verified by various assays, and the results proved that CA not only suppressed the glucose and sucrose consumption and inhibited glucosyltransferase (GTF) and lactate dehydrogenase (LDH) activities but also decreased the ATP production. Interestingly, the protein interaction, qRT-PCR, and molecular docking analysis showed that PDH might be the target of CA to fight S. mutans. In summary, the study shows that CA interferes with the carbohydrate metabolism of bacteria by inhibiting glycolysis and the tricarboxylic acid (TCA) cycle via binding to PDH, which verifies that PDH is a potential target for the development of new drugs against S. mutans.


Asunto(s)
Acroleína , Metabolismo de los Hidratos de Carbono , Simulación del Acoplamiento Molecular , Complejo Piruvato Deshidrogenasa , Streptococcus mutans , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/genética , Streptococcus mutans/enzimología , Acroleína/farmacología , Acroleína/análogos & derivados , Acroleína/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Complejo Piruvato Deshidrogenasa/antagonistas & inhibidores , Antibacterianos/farmacología , Glucólisis/efectos de los fármacos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteómica/métodos , Caries Dental/microbiología , Ciclo del Ácido Cítrico/efectos de los fármacos , Adenosina Trifosfato/metabolismo
4.
Planta ; 259(6): 138, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687380

RESUMEN

MAIN CONCLUSION: The identification of a functional cinnamoyl-CoA reductase enzyme from Cinnamomum cassia involved in trans-cinnamaldehyde biosynthesis offers the potential for enhancing trans-cinnamaldehyde production through genetic engineering. A significant accumulation of trans-cinnamaldehyde has been found in the bark tissues of C. cassia, used in traditional Chinese medicine. trans-Cinnamaldehyde exhibits various pharmacological properties such as anti-inflammatory, analgesic, and protection of the stomach and the digestive tract. However, further elucidation and characterization of the biosynthetic pathway for trans-cinnamaldehyde is required. In this study, we conducted an integrated analysis of trans-cinnamaldehyde accumulation profiles and transcriptomic data from five different C. cassia tissues to identify the genes involved in its biosynthesis. The transcriptome data we obtained included nearly all genes associated with the trans-cinnamaldehyde pathway, with the majority demonstrating high abundance in branch barks and trunk barks. We successfully cloned four C. cassia cinnamoyl-CoA reductases (CcCCRs), a key gene in trans-cinnamaldehyde biosynthesis. We found that the recombinant CcCCR1 protein was the only one that more efficiently converted cinnamoyl-CoA into trans-cinnamaldehyde. CcCCR1 exhibited approximately 14.7-fold higher catalytic efficiency (kcat/Km) compared to the Arabidopsis thaliana cinnamoyl-CoA reductase 1 (AtCCR1); therefore, it can be utilized for engineering higher trans-cinnamaldehyde production as previously reported. Molecular docking studies and mutagenesis experiments also validated the superior catalytic activity of CcCCR1 compared to AtCCR1. These findings provide valuable insights for the functional characterization of enzyme-coding genes and hold potential for future engineering of trans-cinnamaldehyde biosynthetic pathways.


Asunto(s)
Acroleína , Acroleína/análogos & derivados , Aldehído Oxidorreductasas , Cinnamomum aromaticum , Acroleína/metabolismo , Cinnamomum aromaticum/genética , Cinnamomum aromaticum/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Corteza de la Planta/genética , Corteza de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Microb Pathog ; 195: 106877, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39173853

RESUMEN

BACKGROUND: Candida albicans is an opportunistic pathogen commonly found in human mucous membranes. In light of the escalating challenge posed by antibiotic resistance of C. albicans strains worldwide, it is an urgently necessary to explore alternative therapeutic options. OBJECTIVE: This study aims to assess the efficacy of two Cinnamaldehyde derivatives, 2-Cl Cinnamaldehyde (2-Cl CA) and 4-Cl Cinnamaldehyde (4-Cl CA), against C. albicans through both in vitro experiments and in vivo murine models and to evaluate their potential as new drug candidates for treating C. albicans. METHODS AND RESULTS: The minimum inhibitory concentrations (MICs) of Cinnamaldehyde 2-Cl and 4-Cl benzene ring derivatives against C. albicans were 25 µg/mL. Time-killing experiments revealed that both Cinnamaldehyde derivatives exhibited fungicidal activity against C. albicans at concentrations of 5 MIC and 10 MIC. In the checkerboard experiment, 4-Cl CA did not show any antagonistic effect when combined with first-line antifungal drugs. Instead, it exhibited additive effects in combination with nystatin. Both 2-Cl and 4-Cl CA demonstrated inhibitory activity against C. albicans biofilm formation, especially at 8 MIC and 16 MIC concentrations. In C. albicans biofilm eradication experiments, although high drug concentrations of 2-Cl and 4-Cl CA were unable to eradicate the biofilm completely, they were still effective in killing C. albicans cells within the biofilm. Moreover, sub-inhibitory concentrations of 4-Cl CA (ranging from 5 to 20 µg/mL) significantly inhibited cell aggregation and hyphal formation. Furthermore, 4-Cl CA effectively inhibited intracellular C. albicans infection in macrophages. Lastly, the effectiveness of 4-Cl CA was evaluated in a mouse model of hematogenous disseminated candidiasis caused by C. albicans, which revealed that 4-Cl CA significantly reduced fungal burden and improved mouse survival compared to the untreated controls. CONCLUSION: The 4-Cl CA exhibited inhibitory effects against C. albicans through both in vivo and in vitro models, demonstrating its therapeutic potential as a promising new drug candidate for treating drug-resistant candidiasis albicans.


Asunto(s)
Acroleína , Antifúngicos , Biopelículas , Candida albicans , Candidiasis , Modelos Animales de Enfermedad , Farmacorresistencia Fúngica , Fluconazol , Pruebas de Sensibilidad Microbiana , Acroleína/análogos & derivados , Acroleína/farmacología , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Animales , Biopelículas/efectos de los fármacos , Farmacorresistencia Fúngica/efectos de los fármacos , Ratones , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Fluconazol/farmacología , Femenino , Ratones Endogámicos BALB C
6.
Microvasc Res ; 152: 104654, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38215901

RESUMEN

BACKGROUND: Quantification of the vasodilation after topical application of capsaicin or cinnamaldehyde is often implemented to indirectly assess Transient Receptor Potential (TRP) Vanilloid 1 (TRPV1) or Ankyrin 1 (TRPA1) functionality respectively. This method has been well-established on the human forearm. However, to enable TRP functionality assessments in distal peripheral neuropathy, the vascular response upon TRP activation on dorsal finger skin was characterized. METHODS: Two doses of cinnamaldehyde (3 % and 10 % v/v) and capsaicin (300 µg and 1000 µg) were topically applied (20 µL) on the skin of the mid three proximal phalanges in 17 healthy men. The dose-response, and inter-hand and inter-period reproducibility of the dermal blood flow (DBF) increase was assessed using Laser Speckle Contrast Imaging (LSCI) during 60 min post-application. Linear mixed models explored dose-driven differences, whereas the intra-class correlation coefficient (ICC) estimated the reproducibility of the vascular response. RESULTS: Both doses of cinnamaldehyde and capsaicin induced a robust, dose-dependent increase in DBF. The vascular response to cinnamaldehyde 10 % on finger skin, expressed as area under the curve, correlated well over time (ICC = 0.66) and excellently between hands (ICC = 0.87). Similarly, the response to capsaicin 1000 µg correlated moderately over time (ICC = 0.50) and well between hands (ICC = 0.73). CONCLUSION: The vascular response upon topical cinnamaldehyde and capsaicin application on finger skin is an alternative approach for measurements on forearm skin. Thereby, it is a promising vascular read-out to investigate the pathophysiology, and TRP involvement in particular, of specific peripheral neuropathic pain syndromes.


Asunto(s)
Acroleína/análogos & derivados , Canales de Potencial de Receptor Transitorio , Masculino , Humanos , Capsaicina/farmacología , Reproducibilidad de los Resultados , Nervios Periféricos , Canales Catiónicos TRPV
7.
Arch Biochem Biophys ; 753: 109922, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38341069

RESUMEN

Inflammation is the primary driver of skeletal muscle wasting, with oxidative stress serving as both a major consequence and a contributor to its deleterious effects. In this regard, regulation of both can efficiently prevent atrophy and thus will increase the rate of survival [1]. With this idea, we hypothesize that preincubation of Cinnamaldehyde (CNA), a known compound with anti-oxidative and anti-inflammatory properties, may be able to prevent skeletal muscle loss. To examine the same, C2C12 post-differentiated myotubes were treated with 25 ng/ml Tumor necrosis factor-alpha (TNF-α) in the presence or absence of 50 µM CNA. The data showed that TNF-α mediated myotube thinning and a lower fusion index were prevented by CNA supplementation 4 h before TNF-α treatment. Moreover, a lower level of ROS and thus maintained antioxidant defense system further underlines the antioxidative function of CNA in atrophic conditions. CNA preincubation also inhibited an increase in the level of inflammatory cytokines and thus led to a lower level of inflammation even in the presence of TNF-α. With decreased oxidative stress and inflammation by CNA, it was able to maintain the intracellular level of injury markers (CK, LDH) and SDH activity of mitochondria. In addition, CNA modulates all five proteolytic systems [cathepsin-L, UPS (atrogin-1), calpain, LC3, beclin] simultaneously with an upregulation of Akt/mTOR pathway, in turn, preserves the muscle-specific proteins (MHCf) from degradation by TNF-α. Altogether, our study exhibits attenuation of muscle loss and provides insight into the possible mechanism of action of CNA in curbing TNF-α induced muscle loss, specifically its effect on proteolysis and protein synthesis.


Asunto(s)
Acroleína/análogos & derivados , Músculo Esquelético , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Proteolisis , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Inflamación/metabolismo
8.
Faraday Discuss ; 252(0): 279-294, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-38842386

RESUMEN

Biocatalysis is becoming a powerful and sustainable alternative for asymmetric catalysis. However, enzymes are often restricted to metabolic and less complex reactivities. This can be addressed by protein engineering, such as incorporating new-to-nature functional groups into proteins through the so-called expansion of the genetic code to produce artificial enzymes. Selecting a suitable protein scaffold is a challenging task that plays a key role in designing artificial enzymes. In this work, we explored different protein scaffolds for an abiological model of iminium-ion catalysis, Michael addition of nitromethane into E-cinnamaldehyde. We studied scaffolds looking for open hydrophobic pockets and enzymes with described binding sites for the targeted substrate. The proteins were expressed and variants harboring functional amine groups - lysine, p-aminophenylalanine, or N6-(D-prolyl)-L-lysine - were analyzed for the model reaction. Among the newly identified scaffolds, a thermophilic ene-reductase from Thermoanaerobacter pseudethanolicus was shown to be the most promising biomolecular scaffold for this reaction.


Asunto(s)
Biocatálisis , Iminas , Iminas/química , Iminas/metabolismo , Ingeniería de Proteínas , Thermoanaerobacter/enzimología , Acroleína/química , Acroleína/análogos & derivados , Acroleína/metabolismo , Modelos Moleculares
9.
Eur J Clin Microbiol Infect Dis ; 43(10): 1899-1908, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39066966

RESUMEN

PURPOSE: Colistin is used as a last resort antibiotic against infections caused by multidrug-resistant gram-negative bacteria, especially carbapenem-resistant bacteria. However, colistin-resistance in clinical isolates is becoming more prevalent. Cinnamaldehyde and baicalin, which are the major active constituents of Cinnamomum and Scutellaria, have been reported to exhibit antibacterial properties. The aim of this study was to evaluate the capacity of cinnamaldehyde and baicalin to enhance the antibiotic activity of colistin in Enterobacterales and Acinetobacter baumannii strains. METHODS: The MICs of colistin were determined with and without fixed concentrations of cinnamaldehyde and baicalin by the broth microdilution method. The FIC indices were also calculated. In addition, time-kill assays were performed with colistin alone and in combination with cinnamaldehyde and baicalin to determine the bactericidal action of the combinations. Similarly, the effects of L-arginine, L-glutamic acid and sucrose on the MICs of colistin combined with cinnamaldehyde and baicalin were studied to evaluate the possible effects of these compounds on the charge of the bacterial cell- wall. RESULTS: At nontoxic concentrations, cinnamaldehyde and baicalin partially or fully reversed resistance to colistin in Enterobacterales and A. baumannii. The combinations of the two compounds with colistin had bactericidal or synergistic effects on the most resistant strains. The ability of these agents to reverse colistin resistance could be associated with bacterial cell wall damage and increased permeability. CONCLUSION: Cinnamaldehyde and baicalin are good adjuvants for the antibiotic colistin against Enterobacterales- and A. baumannii-resistant strains.


Asunto(s)
Acinetobacter baumannii , Acroleína , Antibacterianos , Colistina , Flavonoides , Pruebas de Sensibilidad Microbiana , Acroleína/análogos & derivados , Acroleína/farmacología , Colistina/farmacología , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Flavonoides/farmacología , Humanos , Enterobacteriaceae/efectos de los fármacos , Sinergismo Farmacológico , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos
10.
Photochem Photobiol Sci ; 23(6): 1129-1142, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734995

RESUMEN

Bacterial infections are a global health concern, particularly due to the increasing resistance of bacteria to antibiotics. Multi-drug resistance (MDR) is a considerable challenge, and novel approaches are needed to treat bacterial infections. Photodynamic inactivation (PDI) of microorganisms is increasingly recognized as an effective method to inactivate a broad spectrum of bacteria and overcome resistance mechanisms. This study presents the synthesis of a new cationic 5,15-di-imidazolyl porphyrin derivative and the impact of n-octanol/water partition coefficient (logP) values of this class of photosensitizers on PDI efficacy of Escherichia coli. The derivative with logP = -0.5, IP-H-OH2+, achieved a remarkable 3 log CFU reduction of E. coli at 100 nM with only 1.36 J/cm2 light dose at 415 nm, twice as effective as the second-best porphyrin IP-H-Me2+, of logP = -1.35. We relate the rapid uptake of IP-H-OH2+ by E. coli to improved PDI and the very low uptake of a fluorinated derivative, IP-H-CF32+, logP ≈ 1, to its poor performance. Combination of PDI with cinnamaldehyde, a major component of the cinnamon plant known to alter bacteria cell membranes, offered synergic inactivation of E. coli (7 log CFU reduction), using 50 nM of IP-H-OH2+ and just 1.36 J/cm2 light dose. The success of combining PDI with this natural compound broadens the scope of therapies for MDR infections that do not add drug resistance. In vivo studies on a mouse model of wound infection showed the potential of cationic 5,15-di-imidazolyl porphyrins to treat clinically relevant infected wounds.


Asunto(s)
Acroleína , Antibacterianos , Escherichia coli , Imidazoles , Fármacos Fotosensibilizantes , Porfirinas , Escherichia coli/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/síntesis química , Porfirinas/farmacología , Porfirinas/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Acroleína/análogos & derivados , Acroleína/farmacología , Acroleína/química , Imidazoles/química , Imidazoles/farmacología , Imidazoles/síntesis química , Cationes/química , Cationes/farmacología , Pruebas de Sensibilidad Microbiana , Animales , Ratones , Sinergismo Farmacológico , Fotoquimioterapia
11.
J Pharmacol Sci ; 156(1): 1-8, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39068030

RESUMEN

Accumulation of advanced glycation end-products (AGEs) in the brain contributes significantly to cognitive impairment in patients with diabetes by disrupting the post-mitotic state of neuronal cells, thereby triggering ectopic cell cycle re-entry (CCR) and subsequent neuronal apoptosis. Cinnamaldehyde (CINA), a potential mitigator of cognitive impairment due to its blood glucose-lowering properties, warrants exploration for its role in counteracting diabetes-related neurological damage. In this study, we examined the neuroprotective effect of CINA on AGE-damaged SH-SY5Y human neuroblastoma cells differentiated in vitro. We investigated the impact of CINA on AGE-induced neuronal CCR and apoptosis, finding that it substantially suppressed aberrant DNA replication, precluded cells from entering the mitotic preparatory phase, and diminished apoptosis. Additionally, CINA inhibited the expression of eIF4E without altering S6K1 phosphorylation. These findings indicate that CINA safeguards neuronal cells from AGE-related damage by preventing abnormal CCR, preserving the post-mitotic state of neuronal cells, and reducing AGE-induced apoptosis, potentially through the inhibition of eIF4E-controlled cell proliferation. Our results highlight the prospective utility of CINA in managing diabetic neuropathy.


Asunto(s)
Acroleína , Apoptosis , Ciclo Celular , Productos Finales de Glicación Avanzada , Neuronas , Fármacos Neuroprotectores , Acroleína/análogos & derivados , Acroleína/farmacología , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Apoptosis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ciclo Celular/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Línea Celular Tumoral , Neuropatías Diabéticas/prevención & control , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/tratamiento farmacológico , Replicación del ADN/efectos de los fármacos , Fosforilación/efectos de los fármacos
12.
Neurourol Urodyn ; 43(1): 276-288, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38010891

RESUMEN

AIMS: This study aimed to investigate whether pathways involving transient receptor potential ankyrin 1 (TRPA1) channels in the urinary bladder mediate the bladder overactivity elicited by exposure to a low temperature in rats. METHODS: At postnatal week 10, female Sprague-Dawley (SD) rats were intraperitoneally injected with the TRPA1 channel antagonist, HC030031, at room temperature (RT) and subsequently exposed to low temperature (LT). Bladder specimens treated with HC030031 were evaluated for contractions through cumulative addition of the TRPA1 channel agonist trans-cinnamaldehyde. Two days before cystometric investigation, small interfering RNA (siRNA) targeting TRPA1 was transfected into urinary bladders. Then, cystometric investigations were performed on rats subjected to TRPA1 siRNA transfection at both RT and LT. Expression of TRPA1 channels in the urinary bladder was assessed through immunohistochemistry and real-time reverse transcription-polymerase chain reaction. RESULTS: At RT, micturition patterns were unaffected by HC030031 treatment. However, upon exposure to LT, rats treated with HC030031 exhibited a reduction of LT-elicited bladder overactivity, as evidenced by inhibited decreases in voiding interval, micturition volume, and bladder capacity. Additionally, HC030031 inhibited trans-cinnamaldehyde-induced contractions. Immunohistochemical analysis showed the presence of TRPA1 channels in the urinary bladder. Notably, rats with TRPA1 siRNA-transfected bladders could partially inhibit bladder overactivity during LT exposure. CONCLUSIONS: These findings indicate that pathways involving TRPA1 channels expressed in the urinary bladder could mediate the LT-elicited bladder overactivity.


Asunto(s)
Vejiga Urinaria Hiperactiva , Vejiga Urinaria , Animales , Ratas , Vejiga Urinaria/metabolismo , Vejiga Urinaria Hiperactiva/metabolismo , Femenino , Ratas Sprague-Dawley , Canal Catiónico TRPA1/metabolismo , Acroleína/administración & dosificación , Acroleína/análogos & derivados
13.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38471695

RESUMEN

AIMS: To evaluate the effect of silver nanoparticles alone and in combination with Triclosan, and trans-cinnamaldehyde against Staphylococcus aureus and Escherichia coli biofilms on sutures to improve patients' outcomes. METHODS AND RESULTS: Silver nanoparticles were prepared by chemical method and characterized by UV-visible spectrophotometer and dynamic light scattering. The minimum inhibitory concentration was assessed by the Microdilution assay. The antibiofilm activity was determined using crystal violet assay. A checkerboard assay using the fractional inhibitory concentration index and time-kill curve was used to investigate the synergistic effect of silver nanoparticle combinations. The hemolytic activity was determined using an erythrocyte hemolytic assay. Our results revealed that silver nanoparticles, Triclosan, and trans-cinnamaldehyde (TCA) inhibited S.aureus and E.coli biofilms. Silver nanoparticles with TCA showed a synergistic effect (FICI values 0.35 and 0.45 against S. aureus and E. coli biofilms, respectively), and silver nanoparticles with Triclosan showed complete inhibition of S. aureus biofilm. The hemolytic activity was <2.50% for the combinations.


Asunto(s)
Acroleína/análogos & derivados , Antiinfecciosos , Nanopartículas del Metal , Triclosán , Humanos , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Staphylococcus aureus , Triclosán/farmacología , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Biopelículas , Suturas , Pruebas de Sensibilidad Microbiana
14.
J Appl Microbiol ; 135(10)2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39122661

RESUMEN

AIMS: This study aimed to explore the effectiveness of dietary citronellol, thymol, and trans-cinnamaldehyde (CTC) essential oils blend on broilers' growth performance, immunity, intestinal microbial count, gut integrity, and resistance against Clostridium perfringens utilizing the necrotic enteritis (NE) challenge model. METHODS AND RESULTS: A total of 200 Ross 308 male broiler chicks received either a control diet or diet supplemented with three graded levels of CTC blend, including 300, 600, and 900 mg of CTC blend/kg diet and experimentally infected with C. perfringens strain at 23 days of age. Herein, dietary CTC blend fortifications significantly improved the broilers' growth performance, which was supported by upregulating the expression levels of MUC-2, occludin, and JAM-2 genes. Moreover, dietary CTC blend inclusion significantly enhanced the levels of blood phagocytic percentage and serum IgA, IgG, and MPO, and reduced the values of serum CRP, and NO at 5 days pre-infection, 10-, and 15 days post-infection (dpi) with C. perfringens. At 15 dpi, CTC blend inclusion significantly reduced the intestinal digesta pH, coliforms and C. perfringens loads, and the expression levels of genes related to C. perfringens virulence (cpe, cnaA, and nanI), proinflammatory cytokines (IL-1ß and TNF-α), and chemokines (CCL20), in addition to increasing the count of beneficial total Lactobacillus and total aerobic bacteria, and the expression levels of genes related to anti-inflammatory cytokines (IL-10) and chemokines (AvBD6 and AvBD612). CONCLUSION: Our results point to the growth-provoking, immunostimulant, antibacterial, anti-inflammatory, and antivirulence characteristics of the CTC blend, which improves the broilers' resistance to C. perfringens and ameliorates the negative impacts of NE.


Asunto(s)
Acroleína , Monoterpenos Acíclicos , Alimentación Animal , Pollos , Infecciones por Clostridium , Clostridium perfringens , Enfermedades de las Aves de Corral , Timol , Animales , Pollos/microbiología , Timol/farmacología , Acroleína/análogos & derivados , Acroleína/farmacología , Enfermedades de las Aves de Corral/microbiología , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/microbiología , Masculino , Monoterpenos Acíclicos/farmacología , Alimentación Animal/análisis , Suplementos Dietéticos , Dieta/veterinaria , Microbioma Gastrointestinal/efectos de los fármacos , Resistencia a la Enfermedad/efectos de los fármacos , Enteritis/microbiología , Enteritis/veterinaria , Aceites Volátiles/farmacología , Monoterpenos/farmacología
15.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587823

RESUMEN

AIM: In this study, it was aimed to examine the antibacterial activity of the essential oil components (EOCs), carvacrol (CAR), cinnamaldehyde (CIN), thymol (TH), alpha pinene (α-PN), eucalyptol (EU), limonene (LIM), and the antibiotics, linezolid (LZD), vancomycin (VAN), gentamicin (GEN), ciprofloxacin (CIP), clindamycin (CLN), and penicillin (PEN) against 50 multidrug resistant Corynebacterium striatum strains, and the synergistic interactions of CAR and CIN with the antibiotics against 10 randomly selected Coryne. striatum strains to explore synergistic interactions to determine if their combined use could enhance antibiotic activity and potentially reduce resistance. METHODS AND RESULTS: The activity of the EOCs and the antibiotics against Coryne. striatum strains isolated from clinical specimens, was examined by broth microdilution method. The synergistic interactions of the EOCs with the antibiotics against 10 randomly selected Coryne. striatum strains were determined by checkerboard method. EOCs, CIN, and CAR and antibiotics, LZD, VAN, GEN, CIP, and CLN were detected to have antibacterial activity against Coryne. striatum strains alone and either synergistic interactions were observed in combinations of the antibiotics with EOCs. CONCLUSIONS: All Coryne. striatum strains were determined to be susceptible to VAN and LZD and resistant to GEN, PEN, CIP, and CLN. Synergistic interactions were observed in all combinations of antibiotics tested with CAR and CIN.


Asunto(s)
Acroleína , Acroleína/análogos & derivados , Antibacterianos , Corynebacterium , Farmacorresistencia Bacteriana Múltiple , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Monoterpenos , Aceites Volátiles , Antibacterianos/farmacología , Corynebacterium/efectos de los fármacos , Aceites Volátiles/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Acroleína/farmacología , Monoterpenos/farmacología , Cimenos/farmacología , Ciprofloxacina/farmacología , Gentamicinas/farmacología , Vancomicina/farmacología , Linezolid/farmacología , Limoneno/farmacología , Eucaliptol/farmacología , Timol/farmacología , Clindamicina/farmacología , Humanos , Penicilinas/farmacología , Terpenos/farmacología , Ciclohexenos/farmacología , Infecciones por Corynebacterium/microbiología
16.
Dig Dis Sci ; 69(8): 2875-2882, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38879737

RESUMEN

OBJECTIVE: Gastric cancer is a malignant tumor with high morbidity and mortality all around the world. Because of its poor prognosis and low survival rate, the treatment of gastric cancer has received extensive attention. Cinnamaldehyde (CA) is the main single active component of the Chinese herbal medicine cinnamon, which has a variety of pharmacological effects. The inhibitory effect of CA on the growth of some tumor cells has been proven, but its therapeutic effect on gastric cancer has rarely been reported. METHODS: Through network pharmacology, bioinformatics methods, and molecular docking technology, we predicted the interaction targets of CA and gastric cancer. Moreover, we found that apoptosis is an important mode of action of CA on gastric cancer cells. Subsequently, we validated it in gastric cancer cell lines cultured in vitro. RESULTS: The results showed that in the presence of CA, the Jak2/Stat3 pathway was inhibited, the ratio of Bcl-2/Bax decreased, and the apoptosis of gastric cancer cells was promoted in a concentration-dependent. CONCLUSION: In conclusion, CA can promote the apoptosis of gastric cancer cells by inhibiting the activity of the Jak2/Stat3 pathway, which may achieve the effect of treating gastric cancer.


Asunto(s)
Acroleína , Apoptosis , Movimiento Celular , Janus Quinasa 2 , Factor de Transcripción STAT3 , Transducción de Señal , Neoplasias Gástricas , Humanos , Acroleína/análogos & derivados , Acroleína/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Factor de Transcripción STAT3/metabolismo , Janus Quinasa 2/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
17.
Nutr Neurosci ; 27(2): 132-146, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36652384

RESUMEN

Cinnamon is the inner bark of trees named Cinnamomum. Studies have shown that cinnamon and its bioactive compounds can influence brain function and affect behavioral characteristics. This study aimed to systematically review studies about the relationship between cinnamon and its key components in memory and learning. Two thousand six hundred five studies were collected from different databases (PubMed, Scopus, Google Scholar, and Web of Science) in September 2021 and went under investigation for eligibility. As a result, 40 studies met our criteria and were included in this systematic review. Among the included studies, 33 were In vivo studies, five were In vitro, and two clinical studies were also accomplished. The main outcome of most studies (n = 40) proved that cinnamon significantly improves cognitive function (memory and learning). In vivo studies showed that using cinnamon or its components, such as eugenol, cinnamaldehyde, and cinnamic acid, could positively alter cognitive function. In vitro studies also showed that adding cinnamon or cinnamaldehyde to a cell medium can reduce tau aggregation, Amyloid ß and increase cell viability. For clinical studies, one study showed positive effects, and another reported no changes in cognitive function. Most studies reported that cinnamon might be useful for preventing and reducing cognitive function impairment. It can be used as an adjuvant in the treatment of related diseases. However, more studies need to be done on this subject.


Asunto(s)
Cinnamomum zeylanicum , Disfunción Cognitiva , Acroleína/análogos & derivados , Péptidos beta-Amiloides , Cinnamomum zeylanicum/química , Cognición/efectos de los fármacos , Eugenol , Disfunción Cognitiva/prevención & control
18.
Phytopathology ; 114(7): 1502-1514, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39023506

RESUMEN

Late blight, caused by the notorious pathogen Phytophthora infestans, poses a significant threat to potato (Solanum tuberosum) crops worldwide, impacting their quality as well as yield. Here, we aimed to investigate the potential use of cinnamaldehyde, carvacrol, and eugenol as control agents against P. infestans and to elucidate their underlying mechanisms of action. To determine the pathogen-inhibiting concentrations of these three plant essential oils (PEOs), a comprehensive evaluation of their effects using gradient dilution, mycelial growth rate, and spore germination methods was carried out. Cinnamaldehyde, carvacrol, and eugenol were capable of significantly inhibiting P. infestans by hindering its mycelial radial growth, zoospore release, and sporangium germination; the median effective inhibitory concentration of the three PEOs was 23.87, 8.66, and 89.65 µl/liter, respectively. Scanning electron microscopy revealed that PEOs caused the irreversible deformation of P. infestans, resulting in hyphal shrinkage, distortion, and breakage. Moreover, propidium iodide staining and extracellular conductivity measurements demonstrated that all three PEOs significantly impaired the integrity and permeability of the pathogen's cell membrane in a time- and dose-dependent manner. In vivo experiments confirmed the dose-dependent efficacy of PEOs in reducing the lesion diameter of potato late blight. Altogether, these findings provide valuable insight into the antifungal mechanisms of PEOs vis-à-vis late blight-causing P. infestans. By utilizing the inherent capabilities of these natural compounds, we could effectively limit the harmful impacts of late blight on potato crops, thereby enhancing agricultural practices and ensuring the resilience of global potato food production.


Asunto(s)
Cimenos , Eugenol , Aceites Volátiles , Phytophthora infestans , Enfermedades de las Plantas , Solanum tuberosum , Phytophthora infestans/efectos de los fármacos , Phytophthora infestans/fisiología , Solanum tuberosum/microbiología , Aceites Volátiles/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Eugenol/farmacología , Cimenos/farmacología , Monoterpenos/farmacología , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Aceites de Plantas/farmacología , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Esporas/efectos de los fármacos , Esporas/fisiología , Acroleína/análogos & derivados
19.
Biofouling ; 40(8): 483-498, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39069795

RESUMEN

Using existing adrentimicrobials with essential oil components to prevent antimicrobial resistance is an alternative strategy. This study aimed to evaluate the resistance status, synergistic combinations, and in vitro biofilm formation activities of clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), Stenotrophomonas maltophilia and Candida albicans against antimicrobial agents and cinnamaldehyde, carvacrol, eugenol, limonene and eucalyptol. Antimicrobial activities were evaluated by microdilution, cytotoxicity by XTT, synergy by checkerboard and time-kill, and biofilm inhibition by microplate methods. Cinnamaldehyde and carvacrol showed strong antimicrobial activity. Synergistic effects were observed when using all essential oils with antimicrobials. Only two C. albicans isolates showed antagonism with cinnamaldehyde and fluconazole. The constituents showed cytotoxic effects in the L929 cell line (except limonene). A time-kill analysis revealed a bacteriostatic effect on S. maltophilia and MRSA isolates and a fungicidal effect on C. albicans isolates. These results are important for further research to improve antimicrobial efficacy or to develop new agents.


Asunto(s)
Antiinfecciosos , Biopelículas , Candida albicans , Sinergismo Farmacológico , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Aceites Volátiles , Stenotrophomonas maltophilia , Biopelículas/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/fisiología , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Stenotrophomonas maltophilia/efectos de los fármacos , Stenotrophomonas maltophilia/fisiología , Antiinfecciosos/farmacología , Limoneno/farmacología , Acroleína/análogos & derivados , Acroleína/farmacología , Cimenos/farmacología , Línea Celular , Monoterpenos/farmacología , Antibacterianos/farmacología , Terpenos/farmacología , Eucaliptol/farmacología , Eugenol/farmacología , Ciclohexenos/farmacología , Ratones
20.
Food Microbiol ; 121: 104524, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637086

RESUMEN

Aspergillus flavus colonization on agricultural products during preharvest and postharvest results in tremendous economic losses. Inspired by the synergistic antifungal effects of essential oils, the aims of this study were to explore the mechanism of combined cinnamaldehyde and nonanal (SCAN) against A. flavus and to evaluate the antifungal activity of SCAN loading into diatomite (DM). Shriveled mycelia were observed by scanning electron microscopy, especially in the SCAN treatment group. Calcofluor white staining, transmission electron microscopy, dichloro-dihydro-fluorescein diacetate staining and the inhibition of key enzymes in tricarboxylic acid cycle indicated that the antifungal mechanism of SCAN against A. flavus was related to the cell wall damage, reactive oxygen species accumulation and energy metabolism interruption. RNA sequencing revealed that some genes involved in antioxidation were upregulated, whereas genes responsible for cell wall biosynthesis, oxidative stress, cell cycle and spore development were significantly downregulated, supporting the occurrence of cellular apoptosis. In addition, compared with the control group, conidia production in 1.5 mg/mL DM/cinnamaldehyde, DM/nonanal and DM/SCAN groups were decreased by 27.16%, 48.22% and 76.66%, respectively, and the aflatoxin B1 (AFB1) contents decreased by 2.00%, 73.02% and 84.15%, respectively. These finding suggest that DM/SCAN complex has potential uses in food preservation.


Asunto(s)
Acroleína/análogos & derivados , Aldehídos , Antifúngicos , Aspergillus flavus , Antifúngicos/farmacología , Antifúngicos/metabolismo , Aflatoxina B1/metabolismo , Conservación de Alimentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA