Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.281
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(21): 6035-6054.e27, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39305902

RESUMEN

m6A modification is best known for its critical role in controlling multiple post-transcriptional processes of the mRNAs. Here, we discovered elevated levels of m6A modification on centromeric RNA (cenRNA) in cancerous cells compared with non-cancerous cells. We then identified CENPA, an H3 variant, as an m6A reader of cenRNA. CENPA is localized at centromeres and is essential in preserving centromere integrity and function during mitosis. The m6A-modified cenRNA stabilizes centromeric localization of CENPA in cancer cells during the S phase of the cell cycle. Mutations of CENPA at the Leu61 and the Arg63 or removal of cenRNA m6A modification lead to loss of centromere-bound CENPA during S phase. This in turn results in compromised centromere integrity and abnormal chromosome separation and hinders cancer cell proliferation and tumor growth. Our findings unveil an m6A reading mechanism by CENPA that epigenetically governs centromere integrity in cancer cells, providing potential targets for cancer therapy.


Asunto(s)
Proteína A Centromérica , Centrómero , Centrómero/metabolismo , Humanos , Proteína A Centromérica/metabolismo , Proteína A Centromérica/genética , Línea Celular Tumoral , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Animales , Ratones , Adenosina/metabolismo , Adenosina/análogos & derivados , Mitosis , ARN/metabolismo , Proliferación Celular , Epigénesis Genética , Segregación Cromosómica , Proteínas Cromosómicas no Histona/metabolismo
2.
Cell ; 187(11): 2801-2816.e17, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38657601

RESUMEN

The niche is typically considered as a pre-established structure sustaining stem cells. Therefore, the regulation of its formation remains largely unexplored. Whether distinct molecular mechanisms control the establishment versus maintenance of a stem cell niche is unknown. To address this, we compared perinatal and adult bone marrow mesenchymal stromal cells (MSCs), a key component of the hematopoietic stem cell (HSC) niche. MSCs exhibited enrichment in genes mediating m6A mRNA methylation at the perinatal stage and downregulated the expression of Mettl3, the m6A methyltransferase, shortly after birth. Deletion of Mettl3 from developing MSCs but not osteoblasts led to excessive osteogenic differentiation and a severe HSC niche formation defect, which was significantly rescued by deletion of Klf2, an m6A target. In contrast, deletion of Mettl3 from MSCs postnatally did not affect HSC niche. Stem cell niche generation and maintenance thus depend on divergent molecular mechanisms, which may be exploited for regenerative medicine.


Asunto(s)
Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Metiltransferasas , Ratones Endogámicos C57BL , Nicho de Células Madre , Animales , Ratones , Adenosina/metabolismo , Adenosina/análogos & derivados , Diferenciación Celular , Epigénesis Genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Factores de Transcripción de Tipo Kruppel , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Metiltransferasas/metabolismo , Metiltransferasas/genética , Osteoblastos/metabolismo , Osteoblastos/citología , Osteogénesis , ARN Mensajero/metabolismo , ARN Mensajero/genética , Transcriptoma/genética , Humanos
3.
Annu Rev Biochem ; 92: 145-173, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37068770

RESUMEN

Over the past decade, mRNA modifications have emerged as important regulators of gene expression control in cells. Fueled in large part by the development of tools for detecting RNA modifications transcriptome wide, researchers have uncovered a diverse epitranscriptome that serves as an additional layer of gene regulation beyond simple RNA sequence. Here, we review the proteins that write, read, and erase these marks, with a particular focus on the most abundant internal modification, N6-methyladenosine (m6A). We first describe the discovery of the key enzymes that deposit and remove m6A and other modifications and discuss how our understanding of these proteins has shaped our views of modification dynamics. We then review current models for the function of m6A reader proteins and how our knowledge of these proteins has evolved. Finally, we highlight important future directions for the field and discuss key questions that remain unanswered.


Asunto(s)
Adenosina , Regulación de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adenosina/genética , Adenosina/metabolismo , Proteínas/genética , Proteínas/metabolismo , Transcriptoma
4.
Cell ; 184(12): 3125-3142.e25, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33930289

RESUMEN

The N6-methyladenosine (m6A) RNA modification is used widely to alter the fate of mRNAs. Here we demonstrate that the C. elegans writer METT-10 (the ortholog of mouse METTL16) deposits an m6A mark on the 3' splice site (AG) of the S-adenosylmethionine (SAM) synthetase pre-mRNA, which inhibits its proper splicing and protein production. The mechanism is triggered by a rich diet and acts as an m6A-mediated switch to stop SAM production and regulate its homeostasis. Although the mammalian SAM synthetase pre-mRNA is not regulated via this mechanism, we show that splicing inhibition by 3' splice site m6A is conserved in mammals. The modification functions by physically preventing the essential splicing factor U2AF35 from recognizing the 3' splice site. We propose that use of splice-site m6A is an ancient mechanism for splicing regulation.


Asunto(s)
Adenosina/análogos & derivados , Sitios de Empalme de ARN/genética , Empalme del ARN/genética , Factor de Empalme U2AF/metabolismo , Adenosina/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Secuencia Conservada/genética , Dieta , Células HeLa , Humanos , Intrones/genética , Metionina Adenosiltransferasa , Metilación , Metiltransferasas/química , Ratones , Mutación/genética , Conformación de Ácido Nucleico , Unión Proteica , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Nuclear Pequeño , S-Adenosilmetionina , Transcriptoma/genética
5.
Cell ; 181(7): 1582-1595.e18, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32492408

RESUMEN

N6-methyladenosine (m6A) is the most abundant mRNA nucleotide modification and regulates critical aspects of cellular physiology and differentiation. m6A is thought to mediate its effects through a complex network of interactions between different m6A sites and three functionally distinct cytoplasmic YTHDF m6A-binding proteins (DF1, DF2, and DF3). In contrast to the prevailing model, we show that DF proteins bind the same m6A-modified mRNAs rather than different mRNAs. Furthermore, we find that DF proteins do not induce translation in HeLa cells. Instead, the DF paralogs act redundantly to mediate mRNA degradation and cellular differentiation. The ability of DF proteins to regulate stability and differentiation becomes evident only when all three DF paralogs are depleted simultaneously. Our study reveals a unified model of m6A function in which all m6A-modified mRNAs are subjected to the combined action of YTHDF proteins in proportion to the number of m6A sites.


Asunto(s)
Adenosina/análogos & derivados , Proteínas de Unión al ARN/metabolismo , Adenosina/genética , Adenosina/metabolismo , Diferenciación Celular , Células HeLa , Humanos , Metilación , Metiltransferasas/metabolismo , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética
6.
Cell ; 180(2): 278-295.e23, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31978345

RESUMEN

Mutations in FAMIN cause arthritis and inflammatory bowel disease in early childhood, and a common genetic variant increases the risk for Crohn's disease and leprosy. We developed an unbiased liquid chromatography-mass spectrometry screen for enzymatic activity of this orphan protein. We report that FAMIN phosphorolytically cleaves adenosine into adenine and ribose-1-phosphate. Such activity was considered absent from eukaryotic metabolism. FAMIN and its prokaryotic orthologs additionally have adenosine deaminase, purine nucleoside phosphorylase, and S-methyl-5'-thioadenosine phosphorylase activity, hence, combine activities of the namesake enzymes of central purine metabolism. FAMIN enables in macrophages a purine nucleotide cycle (PNC) between adenosine and inosine monophosphate and adenylosuccinate, which consumes aspartate and releases fumarate in a manner involving fatty acid oxidation and ATP-citrate lyase activity. This macrophage PNC synchronizes mitochondrial activity with glycolysis by balancing electron transfer to mitochondria, thereby supporting glycolytic activity and promoting oxidative phosphorylation and mitochondrial H+ and phosphate recycling.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Adenina/metabolismo , Adenosina/metabolismo , Adenosina Desaminasa/metabolismo , Cromatografía Liquida/métodos , Células HEK293 , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Espectrometría de Masas/métodos , Enzimas Multifuncionales/genética , Fosforilación , Proteínas/genética , Nucleótidos de Purina/metabolismo , Purinas/metabolismo
7.
Cell ; 172(1-2): 90-105.e23, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29249359

RESUMEN

R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity in vitro and in vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG inhibits fat mass and obesity-associated protein (FTO) activity, thereby increasing global N6-methyladenosine (m6A) RNA modification in R-2HG-sensitive leukemia cells, which in turn decreases the stability of MYC/CEBPA transcripts, leading to the suppression of relevant pathways. Ectopically expressed mutant IDH1 and S-2HG recapitulate the effects of R-2HG. High levels of FTO sensitize leukemic cells to R-2HG, whereas hyperactivation of MYC signaling confers resistance that can be reversed by the inhibition of MYC signaling. R-2HG also displays anti-tumor activity in glioma. Collectively, while R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, our work demonstrates anti-tumor effects of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/m6A/MYC/CEBPA signaling.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Glutaratos/farmacología , Leucemia/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Antineoplásicos/uso terapéutico , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Línea Celular Tumoral , Glutaratos/uso terapéutico , Células HEK293 , Humanos , Células Jurkat , Ratones , Proteínas Proto-Oncogénicas c-myc/metabolismo , Procesamiento Postranscripcional del ARN
8.
Cell ; 169(2): 326-337.e12, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388414

RESUMEN

Transcription and translation are two main pillars of gene expression. Due to the different timings, spots of action, and mechanisms of regulation, these processes are mainly regarded as distinct and generally uncoupled, despite serving a common purpose. Here, we sought for a possible connection between transcription and translation. Employing an unbiased screen of multiple human promoters, we identified a positive effect of TATA box on translation and a general coupling between mRNA expression and translational efficiency. Using a CRISPR-Cas9-mediated approach, genome-wide analyses, and in vitro experiments, we show that the rate of transcription regulates the efficiency of translation. Furthermore, we demonstrate that m6A modification of mRNAs is co-transcriptional and depends upon the dynamics of the transcribing RNAPII. Suboptimal transcription rates lead to elevated m6A content, which may result in reduced translation. This study uncovers a general and widespread link between transcription and translation that is governed by epigenetic modification of mRNAs.


Asunto(s)
Adenosina/análogos & derivados , Regulación de la Expresión Génica , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Transcripción Genética , Adenosina/metabolismo , Humanos , Metilación , Iniciación de la Cadena Peptídica Traduccional , ARN Polimerasa II/metabolismo , TATA Box
9.
Mol Cell ; 84(19): 3572-3573, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39366343

RESUMEN

In this issue of Molecular Cell, Tang et al. suggest that m6A deposition is predominantly post-transcriptional.1 They further propose that nuclear dwell time dictates the post-transcriptional accumulation of m6A. These findings have important implications for m6A biogenesis and function.


Asunto(s)
Adenosina , Humanos , Adenosina/metabolismo , Adenosina/análogos & derivados , Núcleo Celular/metabolismo , Núcleo Celular/genética , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARN Mensajero/genética , Animales , Factores de Tiempo
10.
Mol Cell ; 84(19): 3610-3626, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39366350

RESUMEN

Complex pathways involving the DNA damage response (DDR) contend with cell-intrinsic and -extrinsic sources of DNA damage. DDR mis-regulation results in genome instability that can contribute to aging and diseases including cancer and neurodegeneration. Recent studies have highlighted key roles for several RNA species in the DDR, including short RNAs and RNA/DNA hybrids (R-loops) at DNA break sites, all contributing to efficient DNA repair. RNAs can undergo more than 170 distinct chemical modifications. These RNA modifications have emerged as key orchestrators of the DDR. Here, we highlight the function of enzyme- and non-enzyme-induced RNA modifications in the DDR, with particular emphasis on m6A, m5C, and RNA editing. We also discuss stress-induced RNA damage, including RNA alkylation/oxidation, RNA-protein crosslinks, and UV-induced RNA damage. Uncovering molecular mechanisms that underpin the contribution of RNA modifications to DDR and genome stability will have direct application to disease and approaches for therapeutic intervention.


Asunto(s)
Daño del ADN , Reparación del ADN , Epigénesis Genética , ARN , Humanos , Animales , ARN/metabolismo , ARN/genética , Transcriptoma , Procesamiento Postranscripcional del ARN , Inestabilidad Genómica , Edición de ARN , Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/genética
11.
Mol Cell ; 84(9): 1631-1632, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701738

RESUMEN

In this issue of Molecular Cell, Hao et al.1 demonstrate that the RNA helicase DDX21 recruits the m6A methyltransferase complex to R-loops, ensuring proper transcription termination and genome stability.


Asunto(s)
ARN Helicasas DEAD-box , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Humanos , Estructuras R-Loop , Metiltransferasas/metabolismo , Metiltransferasas/genética , Inestabilidad Genómica , Adenosina/metabolismo , Adenosina/análogos & derivados , Terminación de la Transcripción Genética
12.
Mol Cell ; 84(19): 3758-3774.e10, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39127036

RESUMEN

N6-methyladenosine (m6A) modification is deemed to be co-transcriptionally installed on pre-mRNAs, thereby influencing various downstream RNA metabolism events. However, the causal relationship between m6A modification and RNA processing is often unclear, resulting in premature or even misleading generalizations on the function of m6A modification. Here, we develop 4sU-coupled m6A-level and isoform-characterization sequencing (4sU-m6A-LAIC-seq) and 4sU-GLORI to quantify the m6A levels for both newly synthesized and steady-state RNAs at transcript and single-base-resolution levels, respectively, which enable dissecting the relationship between m6A modification and alternative RNA polyadenylation. Unexpectedly, our results show that many m6A addition events occur post-transcriptionally, especially on transcripts with high m6A levels. Importantly, we find higher m6A levels on shorter 3' UTR isoforms, which likely result from sequential polyadenylation of longer 3' UTR isoforms with prolonged nuclear dwelling time. Therefore, m6A modification can also take place post-transcriptionally to intimately couple with other key RNA metabolism processes to establish and dynamically regulate epi-transcriptomics in mammalian cells.


Asunto(s)
Adenosina , Núcleo Celular , Poliadenilación , Procesamiento Postranscripcional del ARN , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Regiones no Traducidas 3' , ARN Mensajero/metabolismo , ARN Mensajero/genética , Células HEK293 , Metiltransferasas/metabolismo , Metiltransferasas/genética , Células HeLa , Animales
13.
Mol Cell ; 84(12): 2304-2319.e8, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38838666

RESUMEN

Circular RNAs (circRNAs) are upregulated during neurogenesis. Where and how circRNAs are localized and what roles they play during this process have remained elusive. Comparing the nuclear and cytoplasmic circRNAs between H9 cells and H9-derived forebrain (FB) neurons, we identify that a subset of adenosine (A)-rich circRNAs are restricted in H9 nuclei but exported to cytosols upon differentiation. Such a subcellular relocation of circRNAs is modulated by the poly(A)-binding protein PABPC1. In the H9 nucleus, newly produced (A)-rich circRNAs are bound by PABPC1 and trapped by the nuclear basket protein TPR to prevent their export. Modulating (A)-rich motifs in circRNAs alters their subcellular localization, and introducing (A)-rich circRNAs in H9 cytosols results in mRNA translation suppression. Moreover, decreased nuclear PABPC1 upon neuronal differentiation enables the export of (A)-rich circRNAs, including circRTN4(2,3), which is required for neurite outgrowth. These findings uncover subcellular localization features of circRNAs, linking their processing and function during neurogenesis.


Asunto(s)
Transporte Activo de Núcleo Celular , Adenosina , Núcleo Celular , Neurogénesis , Neuronas , Proteína I de Unión a Poli(A) , ARN Circular , ARN , ARN Circular/metabolismo , ARN Circular/genética , Neuronas/metabolismo , Adenosina/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteína I de Unión a Poli(A)/metabolismo , Proteína I de Unión a Poli(A)/genética , Animales , ARN/metabolismo , ARN/genética , Línea Celular , Diferenciación Celular , Citoplasma/metabolismo , Prosencéfalo/metabolismo
14.
Mol Cell ; 84(9): 1711-1726.e11, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38569554

RESUMEN

N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.


Asunto(s)
Adenosina , Adenosina/análogos & derivados , ARN Helicasas DEAD-box , Exorribonucleasas , Inestabilidad Genómica , Metiltransferasas , Estructuras R-Loop , ARN Polimerasa II , Terminación de la Transcripción Genética , Humanos , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Adenosina/metabolismo , Adenosina/genética , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Células HEK293 , Cromatina/metabolismo , Cromatina/genética , Daño del ADN , Células HeLa , ARN/metabolismo , ARN/genética , Transcripción Genética , Metilación de ARN
15.
Genes Dev ; 38(17-20): 915-930, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39362776

RESUMEN

Long noncoding (lnc)RNAs emerge as regulators of genome stability. The nuclear-enriched abundant transcript 1 (NEAT1) is overexpressed in many tumors and is responsive to genotoxic stress. However, the mechanism that links NEAT1 to DNA damage response (DDR) is unclear. Here, we investigate the expression, modification, localization, and structure of NEAT1 in response to DNA double-strand breaks (DSBs). DNA damage increases the levels and N6-methyladenosine (m6A) marks on NEAT1, which promotes alterations in NEAT1 structure, accumulation of hypermethylated NEAT1 at promoter-associated DSBs, and DSB signaling. The depletion of NEAT1 impairs DSB focus formation and elevates DNA damage. The genome-protective role of NEAT1 is mediated by the RNA methyltransferase 3 (METTL3) and involves the release of the chromodomain helicase DNA binding protein 4 (CHD4) from NEAT1 to fine-tune histone acetylation at DSBs. Our data suggest a direct role for NEAT1 in DDR.


Asunto(s)
Adenosina , Roturas del ADN de Doble Cadena , Inestabilidad Genómica , Metiltransferasas , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Inestabilidad Genómica/genética , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Metilación , Daño del ADN/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , Histonas/metabolismo , Histonas/genética , Regulación de la Expresión Génica
16.
Nat Immunol ; 20(2): 173-182, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30559377

RESUMEN

N6-methyladenosine (m6A) is the most common mRNA modification. Recent studies have revealed that depletion of m6A machinery leads to alterations in the propagation of diverse viruses. These effects were proposed to be mediated through dysregulated methylation of viral RNA. Here we show that following viral infection or stimulation of cells with an inactivated virus, deletion of the m6A 'writer' METTL3 or 'reader' YTHDF2 led to an increase in the induction of interferon-stimulated genes. Consequently, propagation of different viruses was suppressed in an interferon-signaling-dependent manner. Significantly, the mRNA of IFNB, the gene encoding the main cytokine that drives the type I interferon response, was m6A modified and was stabilized following repression of METTL3 or YTHDF2. Furthermore, we show that m6A-mediated regulation of interferon genes was conserved in mice. Together, our findings uncover the role m6A serves as a negative regulator of interferon response by dictating the fast turnover of interferon mRNAs and consequently facilitating viral propagation.


Asunto(s)
Adenosina/análogos & derivados , Interacciones Huésped-Patógeno/genética , Inmunidad Innata/genética , Interferón Tipo I/genética , ARN Mensajero/metabolismo , Adenosina/metabolismo , Animales , Línea Celular Tumoral , Citomegalovirus/inmunología , Modelos Animales de Enfermedad , Femenino , Fibroblastos , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Interacciones Huésped-Patógeno/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Interferón Tipo I/inmunología , Masculino , Metilación , Metiltransferasas/genética , Metiltransferasas/inmunología , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Muromegalovirus/inmunología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Proteínas de Unión al ARN/metabolismo
17.
Nat Rev Mol Cell Biol ; 20(10): 608-624, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31520073

RESUMEN

RNA methylation to form N6-methyladenosine (m6A) in mRNA accounts for the most abundant mRNA internal modification and has emerged as a widespread regulatory mechanism that controls gene expression in diverse physiological processes. Transcriptome-wide m6A mapping has revealed the distribution and pattern of m6A in cellular RNAs, referred to as the epitranscriptome. These maps have revealed the specific mRNAs that are regulated by m6A, providing mechanistic links connecting m6A to cellular differentiation, cancer progression and other processes. The effects of m6A on mRNA are mediated by an expanding list of m6A readers and m6A writer-complex components, as well as potential erasers that currently have unclear relevance to m6A prevalence in the transcriptome. Here we review new and emerging methods to characterize and quantify the epitranscriptome, and we discuss new concepts - in some cases, controversies - regarding our understanding of the mechanisms and functions of m6A readers, writers and erasers.


Asunto(s)
Adenosina/análogos & derivados , Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARN Neoplásico/metabolismo , Adenosina/genética , Adenosina/metabolismo , Animales , Humanos , Metilación , Neoplasias/genética , Neoplasias/patología , ARN Mensajero/genética , ARN Neoplásico/genética
18.
Cell ; 167(3): 816-828.e16, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27745969

RESUMEN

tRNA is a central component of protein synthesis and the cell signaling network. One salient feature of tRNA is its heavily modified status, which can critically impact its function. Here, we show that mammalian ALKBH1 is a tRNA demethylase. It mediates the demethylation of N1-methyladenosine (m1A) in tRNAs. The ALKBH1-catalyzed demethylation of the target tRNAs results in attenuated translation initiation and decreased usage of tRNAs in protein synthesis. This process is dynamic and responds to glucose availability to affect translation. Our results uncover reversible methylation of tRNA as a new mechanism of post-transcriptional gene expression regulation.


Asunto(s)
Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Regulación de la Expresión Génica , Biosíntesis de Proteínas/genética , ARN de Transferencia/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Glucosa/deficiencia , Células HeLa , Humanos , Metilación , Polirribosomas/metabolismo
19.
Annu Rev Cell Dev Biol ; 33: 319-342, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28759256

RESUMEN

In recent years, m6A has emerged as an abundant and dynamically regulated modification throughout the transcriptome. Recent technological advances have enabled the transcriptome-wide identification of m6A residues, which in turn has provided important insights into the biology and regulation of this pervasive regulatory mark. Also central to our current understanding of m6A are the discovery and characterization of m6A readers, writers, and erasers. Over the last few years, studies into the function of these proteins have led to important discoveries about the regulation and function of m6A. However, during this time our understanding of these proteins has also evolved considerably, sometimes leading to the reversal of early concepts regarding the reading, writing and erasing of m6A. In this review, we summarize recent advances in m6A research, and we highlight how these new findings have reshaped our understanding of how m6A is regulated in the transcriptome.


Asunto(s)
Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Metilación de ADN/genética , Humanos , ARN/metabolismo
20.
Mol Cell ; 83(3): 428-441, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36736310

RESUMEN

Since the early days of foundational studies of nucleic acids, many chemical moieties have been discovered to decorate RNA and DNA in diverse organisms. In mammalian cells, one of these chemical modifications, N6-methyl adenosine (m6A), is unique in a way that it is highly abundant not only on RNA polymerase II (RNAPII) transcribed, protein-coding transcripts but also on non-coding RNAs, such as ribosomal RNAs and snRNAs, mediated by distinct, evolutionarily conserved enzymes. Here, we review RNA m6A modification in the light of the recent appreciation of nuclear roles for m6A in regulating chromatin states and gene expression, as well as the recent discoveries of the evolutionarily conserved methyltransferases, which catalyze methylation of adenosine on diverse sets of RNAs. Considering that the substrates of these enzymes are involved in many important biological processes, this modification warrants further research to understand the molecular mechanisms and functions of m6A in health and disease.


Asunto(s)
Metiltransferasas , Transcriptoma , Animales , Metilación , Metiltransferasas/metabolismo , Adenosina/metabolismo , ARN/metabolismo , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA