Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107.949
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 37: 325-347, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30676821

RESUMEN

ATP, NAD+, and nucleic acids are abundant purines that, in addition to having critical intracellular functions, have evolved extracellular roles as danger signals released in response to cell lysis, apoptosis, degranulation, or membrane pore formation. In general ATP and NAD+ have excitatory and adenosine has anti-inflammatory effects on immune cells. This review focuses on recent advances in our understanding of purine release mechanisms, ectoenzymes that metabolize purines (CD38, CD39, CD73, ENPP1, and ENPP2/autotaxin), and signaling by key P2 purinergic receptors (P2X7, P2Y2, and P2Y12). In addition to metabolizing ATP or NAD+, some purinergic ectoenzymes metabolize other inflammatory modulators, notably lysophosphatidic acid and cyclic GMP-AMP (cGAMP). Also discussed are extracellular signaling effects of NAD+ mediated by ADP-ribosylation, and epigenetic effects of intracellular adenosine mediated by modification of S-adenosylmethionine-dependent DNA methylation.


Asunto(s)
Inflamación/inmunología , Purinas/metabolismo , Receptores Purinérgicos/metabolismo , ADP-Ribosilación , Adenosina Trifosfato/metabolismo , Animales , Metilación de ADN , Humanos , Inflamación/genética , Inflamación/metabolismo , Lisofosfolípidos/metabolismo , Transducción de Señal
2.
Annu Rev Biochem ; 93(1): 233-259, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38621235

RESUMEN

Peroxisomes are organelles that play a central role in lipid metabolism and cellular redox homeostasis. The import of peroxisomal matrix proteins by peroxisomal targeting signal (PTS) receptors is an ATP-dependent mechanism. However, the energy-dependent steps do not occur early during the binding of the receptor-cargo complex to the membrane but late, because they are linked to the peroxisomal export complex for the release of the unloaded receptor. The first ATP-demanding step is the cysteine-dependent monoubiquitination of the PTS receptors, which is required for recognition by the AAA+ peroxins. They execute the second ATP-dependent step by extracting the ubiqitinated PTS receptors from the membrane for release back to the cytosol. After deubiquitination, the PTS receptors regain import competence and can facilitate further rounds of cargo import. Here, we give a general overview and discuss recent data regarding the ATP-dependent steps in peroxisome protein import.


Asunto(s)
Adenosina Trifosfato , Peroxisomas , Transporte de Proteínas , Ubiquitinación , Peroxisomas/metabolismo , Adenosina Trifosfato/metabolismo , Humanos , Animales , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Señales de Direccionamiento al Peroxisoma , Peroxinas/metabolismo , Peroxinas/genética , Proteínas de la Membrana
3.
Annu Rev Biochem ; 93(1): 317-338, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39094034

RESUMEN

Discovered in 1993, inositol pyrophosphates are evolutionarily conserved signaling metabolites whose versatile modes of action are being increasingly appreciated. These include their emerging roles as energy regulators, phosphodonors, steric/allosteric regulators, and G protein-coupled receptor messengers. Through studying enzymes that metabolize inositol pyrophosphates, progress has also been made in elucidating the various cellular and physiological functions of these pyrophosphate-containing, energetic molecules. The two main forms of inositol pyrophosphates, 5-IP7 and IP8, synthesized respectively by inositol-hexakisphosphate kinases (IP6Ks) and diphosphoinositol pentakisphosphate kinases (PPIP5Ks), regulate phosphate homeostasis, ATP synthesis, and several other metabolic processes ranging from insulin secretion to cellular energy utilization. Here, we review the current understanding of the catalytic and regulatory mechanisms of IP6Ks and PPIP5Ks, as well as their counteracting phosphatases. We also highlight the genetic and cellular evidence implicating inositol pyrophosphates as essential mediators of mammalian metabolic homeostasis.


Asunto(s)
Fosfatos de Inositol , Fosfotransferasas (Aceptor del Grupo Fosfato) , Transducción de Señal , Humanos , Fosfatos de Inositol/metabolismo , Animales , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Homeostasis , Metabolismo Energético , Adenosina Trifosfato/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética
4.
Cell ; 186(5): 999-1012.e20, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36764292

RESUMEN

Adenosine-to-inosine RNA editing has been proposed to be involved in a bacterial anti-phage defense system called RADAR. RADAR contains an adenosine triphosphatase (RdrA) and an adenosine deaminase (RdrB). Here, we report cryo-EM structures of RdrA, RdrB, and currently identified RdrA-RdrB complexes in the presence or absence of RNA and ATP. RdrB assembles into a dodecameric cage with catalytic pockets facing outward, while RdrA adopts both autoinhibited tetradecameric and activation-competent heptameric rings. Structural and functional data suggest a model in which RNA is loaded through the bottom section of the RdrA ring and translocated along its inner channel, a process likely coupled with ATP-binding status. Intriguingly, up to twelve RdrA rings can dock one RdrB cage with precise alignments between deaminase catalytic pockets and RNA-translocation channels, indicative of enzymatic coupling of RNA translocation and deamination. Our data uncover an interesting mechanism of enzymatic coupling and anti-phage defense through supramolecular assemblies.


Asunto(s)
Adenosina Trifosfato , ARN , Adenosina Desaminasa/genética
5.
Cell ; 186(17): 3619-3631.e13, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37595565

RESUMEN

During viral infection, cells can deploy immune strategies that deprive viruses of molecules essential for their replication. Here, we report a family of immune effectors in bacteria that, upon phage infection, degrade cellular adenosine triphosphate (ATP) and deoxyadenosine triphosphate (dATP) by cleaving the N-glycosidic bond between the adenine and sugar moieties. These ATP nucleosidase effectors are widely distributed within multiple bacterial defense systems, including cyclic oligonucleotide-based antiviral signaling systems (CBASS), prokaryotic argonautes, and nucleotide-binding leucine-rich repeat (NLR)-like proteins, and we show that ATP and dATP degradation during infection halts phage propagation. By analyzing homologs of the immune ATP nucleosidase domain, we discover and characterize Detocs, a family of bacterial defense systems with a two-component phosphotransfer-signaling architecture. The immune ATP nucleosidase domain is also encoded within diverse eukaryotic proteins with immune-like architectures, and we show biochemically that eukaryotic homologs preserve the ATP nucleosidase activity. Our findings suggest that ATP and dATP degradation is a cell-autonomous innate immune strategy conserved across the tree of life.


Asunto(s)
Virosis , Humanos , Células Eucariotas , Células Procariotas , Adenosina Trifosfato , N-Glicosil Hidrolasas
6.
Cell ; 186(5): 987-998.e15, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36764290

RESUMEN

RADAR is a two-protein bacterial defense system that was reported to defend against phage by "editing" messenger RNA. Here, we determine cryo-EM structures of the RADAR defense complex, revealing RdrA as a heptameric, two-layered AAA+ ATPase and RdrB as a dodecameric, hollow complex with twelve surface-exposed deaminase active sites. RdrA and RdrB join to form a giant assembly up to 10 MDa, with RdrA docked as a funnel over the RdrB active site. Surprisingly, our structures reveal an RdrB active site that targets mononucleotides. We show that RdrB catalyzes ATP-to-ITP conversion in vitro and induces the massive accumulation of inosine mononucleotides during phage infection in vivo, limiting phage replication. Our results define ATP mononucleotide deamination as a determinant of RADAR immunity and reveal supramolecular assembly of a nucleotide-modifying machine as a mechanism of anti-phage defense.


Asunto(s)
Bacteriófagos , Bacteriófagos/metabolismo , Microscopía por Crioelectrón/métodos , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfato , Adenosina Desaminasa/metabolismo
7.
Cell ; 185(25): 4770-4787.e20, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36493755

RESUMEN

The ATP-dependent ring-shaped chaperonin TRiC/CCT is essential for cellular proteostasis. To uncover why some eukaryotic proteins can only fold with TRiC assistance, we reconstituted the folding of ß-tubulin using human prefoldin and TRiC. We find unstructured ß-tubulin is delivered by prefoldin to the open TRiC chamber followed by ATP-dependent chamber closure. Cryo-EM resolves four near-atomic-resolution structures containing progressively folded ß-tubulin intermediates within the closed TRiC chamber, culminating in native tubulin. This substrate folding pathway appears closely guided by site-specific interactions with conserved regions in the TRiC chamber. Initial electrostatic interactions between the TRiC interior wall and both the folded tubulin N domain and its C-terminal E-hook tail establish the native substrate topology, thus enabling C-domain folding. Intrinsically disordered CCT C termini within the chamber promote subsequent folding of tubulin's core and middle domains and GTP-binding. Thus, TRiC's chamber provides chemical and topological directives that shape the folding landscape of its obligate substrates.


Asunto(s)
Chaperonina con TCP-1 , Tubulina (Proteína) , Humanos , Chaperonina con TCP-1/química , Tubulina (Proteína)/metabolismo , Pliegue de Proteína , Proteostasis , Adenosina Trifosfato/metabolismo
8.
Cell ; 185(2): 345-360.e28, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35063075

RESUMEN

We present a whole-cell fully dynamical kinetic model (WCM) of JCVI-syn3A, a minimal cell with a reduced genome of 493 genes that has retained few regulatory proteins or small RNAs. Cryo-electron tomograms provide the cell geometry and ribosome distributions. Time-dependent behaviors of concentrations and reaction fluxes from stochastic-deterministic simulations over a cell cycle reveal how the cell balances demands of its metabolism, genetic information processes, and growth, and offer insight into the principles of life for this minimal cell. The energy economy of each process including active transport of amino acids, nucleosides, and ions is analyzed. WCM reveals how emergent imbalances lead to slowdowns in the rates of transcription and translation. Integration of experimental data is critical in building a kinetic model from which emerges a genome-wide distribution of mRNA half-lives, multiple DNA replication events that can be compared to qPCR results, and the experimentally observed doubling behavior.


Asunto(s)
Células/citología , Simulación por Computador , Adenosina Trifosfato/metabolismo , Ciclo Celular/genética , Proliferación Celular/genética , Células/metabolismo , Replicación del ADN/genética , Regulación de la Expresión Génica , Imagenología Tridimensional , Cinética , Lípidos/química , Redes y Vías Metabólicas , Metaboloma , Anotación de Secuencia Molecular , Nucleótidos/metabolismo , Termodinámica , Factores de Tiempo
9.
Cell ; 185(24): 4474-4487.e17, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36334590

RESUMEN

How the eukaryotic 43S preinitiation complex scans along the 5' untranslated region (5' UTR) of a capped mRNA to locate the correct start codon remains elusive. Here, we directly track yeast 43S-mRNA binding, scanning, and 60S subunit joining by real-time single-molecule fluorescence spectroscopy. 43S engagement with mRNA occurs through a slow, ATP-dependent process driven by multiple initiation factors including the helicase eIF4A. Once engaged, 43S scanning occurs rapidly and directionally at ∼100 nucleotides per second, independent of multiple cycles of ATP hydrolysis by RNA helicases post ribosomal loading. Scanning ribosomes can proceed through RNA secondary structures, but 5' UTR hairpin sequences near start codons drive scanning ribosomes at start codons backward in the 5' direction, requiring rescanning to arrive once more at a start codon. Direct observation of scanning ribosomes provides a mechanistic framework for translational regulation by 5' UTR structures and upstream near-cognate start codons.


Asunto(s)
Ribosomas , Saccharomyces cerevisiae , Codón Iniciador/metabolismo , ARN Mensajero/metabolismo , Regiones no Traducidas 5' , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas
10.
Annu Rev Biochem ; 90: 503-505, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-34153216

RESUMEN

This volume of the Annual Review of Biochemistry contains three reviews on membrane channel proteins: the first by Szczot et al., titled The Form and Function of PIEZO2; the second by Ruprecht & Kunji, titled Structural Mechanism of Transport of Mitochondrial Carriers; and the third by McIlwain et al., titled Membrane Exporters of Fluoride Ion. These reviews provide nice illustrations of just how far evolution has been able to play with the basic helix-bundle architecture of integral membrane proteins to produce membrane channels and transporters of widely different functions.


Asunto(s)
Canales Iónicos/química , Canales Iónicos/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Fluoruros/metabolismo
11.
Nat Rev Mol Cell Biol ; 25(4): 309-332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38081975

RESUMEN

The packaging of DNA into chromatin in eukaryotes regulates gene transcription, DNA replication and DNA repair. ATP-dependent chromatin remodelling enzymes (re)arrange nucleosomes at the first level of chromatin organization. Their Snf2-type motor ATPases alter histone-DNA interactions through a common DNA translocation mechanism. Whether remodeller activities mainly catalyse nucleosome dynamics or accurately co-determine nucleosome organization remained unclear. In this Review, we discuss the emerging mechanisms of chromatin remodelling: dynamic remodeller architectures and their interactions, the inner workings of the ATPase cycle, allosteric regulation and pathological dysregulation. Recent mechanistic insights argue for a decisive role of remodellers in the energy-driven self-organization of chromatin, which enables both stability and plasticity of genome regulation - for example, during development and stress. Different remodellers, such as members of the SWI/SNF, ISWI, CHD and INO80 families, process (epi)genetic information through specific mechanisms into distinct functional outputs. Combinatorial assembly of remodellers and their interplay with histone modifications, histone variants, DNA sequence or DNA-bound transcription factors regulate nucleosome mobilization or eviction or histone exchange. Such input-output relationships determine specific nucleosome positions and compositions with distinct DNA accessibilities and mediate differential genome regulation. Finally, remodeller genes are often mutated in diseases characterized by genome dysregulation, notably in cancer, and we discuss their physiological relevance.


Asunto(s)
Cromatina , Histonas , Humanos , Histonas/metabolismo , Nucleosomas , Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina , ADN , Adenosina Trifosfato/metabolismo
12.
Cell ; 184(21): 5448-5464.e22, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34624221

RESUMEN

Structural maintenance of chromosomes (SMC) complexes organize genome topology in all kingdoms of life and have been proposed to perform this function by DNA loop extrusion. How this process works is unknown. Here, we have analyzed how loop extrusion is mediated by human cohesin-NIPBL complexes, which enable chromatin folding in interphase cells. We have identified DNA binding sites and large-scale conformational changes that are required for loop extrusion and have determined how these are coordinated. Our results suggest that DNA is translocated by a spontaneous 50 nm-swing of cohesin's hinge, which hands DNA over to the ATPase head of SMC3, where upon binding of ATP, DNA is clamped by NIPBL. During this process, NIPBL "jumps ship" from the hinge toward the SMC3 head and might thereby couple the spontaneous hinge swing to ATP-dependent DNA clamping. These results reveal mechanistic principles of how cohesin-NIPBL and possibly other SMC complexes mediate loop extrusion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/química , Conformación de Ácido Nucleico , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/química , ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Hidrólisis , Cinética , Microscopía de Fuerza Atómica , Modelos Moleculares , Proteínas Nucleares/metabolismo , Conformación Proteica , Cohesinas
13.
Cell ; 184(16): 4168-4185.e21, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34216539

RESUMEN

Metabolism is a major regulator of immune cell function, but it remains difficult to study the metabolic status of individual cells. Here, we present Compass, an algorithm to characterize cellular metabolic states based on single-cell RNA sequencing and flux balance analysis. We applied Compass to associate metabolic states with T helper 17 (Th17) functional variability (pathogenic potential) and recovered a metabolic switch between glycolysis and fatty acid oxidation, akin to known Th17/regulatory T cell (Treg) differences, which we validated by metabolic assays. Compass also predicted that Th17 pathogenicity was associated with arginine and downstream polyamine metabolism. Indeed, polyamine-related enzyme expression was enhanced in pathogenic Th17 and suppressed in Treg cells. Chemical and genetic perturbation of polyamine metabolism inhibited Th17 cytokines, promoted Foxp3 expression, and remodeled the transcriptome and epigenome of Th17 cells toward a Treg-like state. In vivo perturbations of the polyamine pathway altered the phenotype of encephalitogenic T cells and attenuated tissue inflammation in CNS autoimmunity.


Asunto(s)
Autoinmunidad/inmunología , Modelos Biológicos , Células Th17/inmunología , Acetiltransferasas/metabolismo , Adenosina Trifosfato/metabolismo , Aerobiosis/efectos de los fármacos , Algoritmos , Animales , Autoinmunidad/efectos de los fármacos , Cromatina/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Citocinas/metabolismo , Eflornitina/farmacología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Epigenoma , Ácidos Grasos/metabolismo , Glucólisis/efectos de los fármacos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones Endogámicos C57BL , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Oxidación-Reducción/efectos de los fármacos , Putrescina/metabolismo , Análisis de la Célula Individual , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Células Th17/efectos de los fármacos , Transcriptoma/genética
14.
Annu Rev Biochem ; 89: 583-603, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31874046

RESUMEN

P-type ATPases are found in all kingdoms of life and constitute a wide range of cation transporters, primarily for H+, Na+, K+, Ca2+, and transition metal ions such as Cu(I), Zn(II), and Cd(II). They have been studied through a wide range of techniques, and research has gained very significant insight on their transport mechanism and regulation. Here, we review the structure, function, and dynamics of P2-ATPases including Ca2+-ATPases and Na,K-ATPase. We highlight mechanisms of functional transitions that are associated with ion exchange on either side of the membrane and how the functional cycle is regulated by interaction partners, autoregulatory domains, and off-cycle states. Finally, we discuss future perspectives based on emerging techniques and insights.


Asunto(s)
Adenosina Trifosfato/química , ATPasas Transportadoras de Cobre/química , ATPasa Intercambiadora de Hidrógeno-Potásio/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasa Intercambiadora de Sodio-Potasio/química , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Cationes Bivalentes , Cationes Monovalentes , ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Humanos , Transporte Iónico , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Protones , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Imagen Individual de Molécula , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Especificidad por Sustrato
15.
Annu Rev Biochem ; 89: 605-636, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32569521

RESUMEN

ATP-binding cassette (ABC) transporters constitute one of the largest and most ancient protein superfamilies found in all living organisms. They function as molecular machines by coupling ATP binding, hydrolysis, and phosphate release to translocation of diverse substrates across membranes. The substrates range from vitamins, steroids, lipids, and ions to peptides, proteins, polysaccharides, and xenobiotics. ABC transporters undergo substantial conformational changes during substrate translocation. A comprehensive understanding of their inner workings thus requires linking these structural rearrangements to the different functional state transitions. Recent advances in single-particle cryogenic electron microscopy have not only delivered crucial information on the architecture of several medically relevant ABC transporters and their supramolecular assemblies, including the ATP-sensitive potassium channel and the peptide-loading complex, but also made it possible to explore the entire conformational space of these nanomachines under turnover conditions and thereby gain detailed mechanistic insights into their mode of action.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato/química , Bacterias/metabolismo , Membrana Celular/metabolismo , Resistencia a Múltiples Medicamentos/genética , Mitocondrias/metabolismo , Transportadoras de Casetes de Unión a ATP/clasificación , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Bacterias/efectos de los fármacos , Bacterias/genética , Sitios de Unión , Transporte Biológico , Fenómenos Biomecánicos , Membrana Celular/efectos de los fármacos , Humanos , Cinética , Mitocondrias/efectos de los fármacos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Especificidad por Sustrato , Xenobióticos/metabolismo , Xenobióticos/farmacología
16.
Annu Rev Biochem ; 89: 667-693, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32169021

RESUMEN

Myosins are among the most fascinating enzymes in biology. As extremely allosteric chemomechanical molecular machines, myosins are involved in myriad pivotal cellular functions and are frequently sites of mutations leading to disease phenotypes. Human ß-cardiac myosin has proved to be an excellent target for small-molecule therapeutics for heart muscle diseases, and, as we describe here, other myosin family members are likely to be potentially unique targets for treating other diseases as well. The first part of this review focuses on how myosins convert the chemical energy of ATP hydrolysis into mechanical movement, followed by a description of existing therapeutic approaches to target human ß-cardiac myosin. The next section focuses on the possibility of targeting nonmuscle members of the human myosin family for several diseases. We end the review by describing the roles of myosin in parasites and the therapeutic potential of targeting them to block parasitic invasion of their hosts.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Miosinas/metabolismo , Neoplasias/tratamiento farmacológico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Infecciones por Protozoos/tratamiento farmacológico , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Fenómenos Biomecánicos , Cryptosporidium/efectos de los fármacos , Cryptosporidium/enzimología , Inhibidores Enzimáticos/química , Expresión Génica , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Humanos , Familia de Multigenes , Mutación , Miosinas/antagonistas & inhibidores , Miosinas/clasificación , Miosinas/genética , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Enfermedades del Sistema Nervioso/enzimología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología , Plasmodium/efectos de los fármacos , Plasmodium/enzimología , Infecciones por Protozoos/enzimología , Infecciones por Protozoos/genética , Infecciones por Protozoos/patología , Toxoplasma/efectos de los fármacos , Toxoplasma/enzimología
17.
Nat Rev Mol Cell Biol ; 24(4): 255-272, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36316383

RESUMEN

The classical role of AMP-activated protein kinase (AMPK) is as a cellular energy sensor activated by falling energy status, signalled by increases in AMP to ATP and ADP to ATP ratios. Once activated, AMPK acts to restore energy homeostasis by promoting ATP-producing catabolic pathways while inhibiting energy-consuming processes. In this Review, we provide an update on this canonical (AMP/ADP-dependent) activation mechanism, but focus mainly on recently described non-canonical pathways, including those by which AMPK senses the availability of glucose, glycogen or fatty acids and by which it senses damage to lysosomes and nuclear DNA. We also discuss new findings on the regulation of carbohydrate and lipid metabolism, mitochondrial and lysosomal homeostasis, and DNA repair. Finally, we discuss the role of AMPK in cancer, obesity, diabetes, nonalcoholic steatohepatitis (NASH) and other disorders where therapeutic targeting may exert beneficial effects.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Metabolismo Energético , Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo de los Lípidos , Glucosa/metabolismo , Adenosina Trifosfato/metabolismo
18.
Cell ; 183(6): 1572-1585.e16, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33157040

RESUMEN

Cellular functioning requires the orchestration of thousands of molecular interactions in time and space. Yet most molecules in a cell move by diffusion, which is sensitive to external factors like temperature. How cells sustain complex, diffusion-based systems across wide temperature ranges is unknown. Here, we uncover a mechanism by which budding yeast modulate viscosity in response to temperature and energy availability. This "viscoadaptation" uses regulated synthesis of glycogen and trehalose to vary the viscosity of the cytosol. Viscoadaptation functions as a stress response and a homeostatic mechanism, allowing cells to maintain invariant diffusion across a 20°C temperature range. Perturbations to viscoadaptation affect solubility and phase separation, suggesting that viscoadaptation may have implications for multiple biophysical processes in the cell. Conditions that lower ATP trigger viscoadaptation, linking energy availability to rate regulation of diffusion-controlled processes. Viscoadaptation reveals viscosity to be a tunable property for regulating diffusion-controlled processes in a changing environment.


Asunto(s)
Metabolismo Energético , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Temperatura , Adaptación Fisiológica , Adenosina Trifosfato/metabolismo , Difusión , Glucógeno/metabolismo , Homeostasis , Modelos Biológicos , Solubilidad , Trehalosa , Viscosidad
19.
Cell ; 183(2): 457-473.e20, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32979320

RESUMEN

Rubisco, the key enzyme of CO2 fixation in photosynthesis, is prone to inactivation by inhibitory sugar phosphates. Inhibited Rubisco undergoes conformational repair by the hexameric AAA+ chaperone Rubisco activase (Rca) in a process that is not well understood. Here, we performed a structural and mechanistic analysis of cyanobacterial Rca, a close homolog of plant Rca. In the Rca:Rubisco complex, Rca is positioned over the Rubisco catalytic site under repair and pulls the N-terminal tail of the large Rubisco subunit (RbcL) into the hexamer pore. Simultaneous displacement of the C terminus of the adjacent RbcL opens the catalytic site for inhibitor release. An alternative interaction of Rca with Rubisco is mediated by C-terminal domains that resemble the small Rubisco subunit. These domains, together with the N-terminal AAA+ hexamer, ensure that Rca is packaged with Rubisco into carboxysomes. The cyanobacterial Rca is a dual-purpose protein with functions in Rubisco repair and carboxysome organization.


Asunto(s)
Cianobacterias/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Orgánulos/metabolismo , Fotosíntesis/fisiología , Ribulosa-Bifosfato Carboxilasa/fisiología , Activador de Tejido Plasminógeno/química , Activador de Tejido Plasminógeno/metabolismo
20.
Cell ; 182(5): 1170-1185.e9, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32795412

RESUMEN

Loss of the gene (Fmr1) encoding Fragile X mental retardation protein (FMRP) causes increased mRNA translation and aberrant synaptic development. We find neurons of the Fmr1-/y mouse have a mitochondrial inner membrane leak contributing to a "leak metabolism." In human Fragile X syndrome (FXS) fibroblasts and in Fmr1-/y mouse neurons, closure of the ATP synthase leak channel by mild depletion of its c-subunit or pharmacological inhibition normalizes stimulus-induced and constitutive mRNA translation rate, decreases lactate and key glycolytic and tricarboxylic acid (TCA) cycle enzyme levels, and triggers synapse maturation. FMRP regulates leak closure in wild-type (WT), but not FX synapses, by stimulus-dependent ATP synthase ß subunit translation; this increases the ratio of ATP synthase enzyme to its c-subunit, enhancing ATP production efficiency and synaptic growth. In contrast, in FXS, inability to close developmental c-subunit leak prevents stimulus-dependent synaptic maturation. Therefore, ATP synthase c-subunit leak closure encourages development and attenuates autistic behaviors.


Asunto(s)
Adenosina Trifosfato/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Subunidades de Proteína/metabolismo , Animales , Línea Celular , Ciclo del Ácido Cítrico/fisiología , Fibroblastos/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Células HEK293 , Humanos , Ratones , Neuronas/metabolismo , ARN Mensajero , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA