RESUMEN
Enhanced by polyamide surfactant Syn3, intravesical administration of rAd-IFNα2b results in transduction of the virus into the bladder epithelium, resulting in the synthesis and expression of local IFNα2b cytokine. Upon secretion, IFNα2b binds to the IFNα receptor on bladder cancer and other cells, resulting in signaling via the JAK-STAT pathway. A plethora of induced IFN-stimulated genes containing IFN-sensitive response elements that contribute to activation of pathways restrict cancer growth.
Asunto(s)
Quinasas Janus , Neoplasias de la Vejiga Urinaria , Humanos , Factores de Transcripción STAT , Transducción de Señal , Adenoviridae , Interferón-alfa , Terapia GenéticaRESUMEN
A mucosal route of vaccination could prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication at the site of infection and limit transmission. We compared protection against heterologous XBB.1.16 challenge in nonhuman primates (NHPs) ~5 months following intramuscular boosting with bivalent mRNA encoding WA1 and BA.5 spike proteins or mucosal boosting with a WA1-BA.5 bivalent chimpanzee adenoviral-vectored vaccine delivered by intranasal or aerosol device. NHPs boosted by either mucosal route had minimal virus replication in the nose and lungs, respectively. By contrast, protection by intramuscular mRNA was limited to the lower airways. The mucosally delivered vaccine elicited durable airway IgG and IgA responses and, unlike the intramuscular mRNA vaccine, induced spike-specific B cells in the lungs. IgG, IgA and T cell responses correlated with protection in the lungs, whereas mucosal IgA alone correlated with upper airway protection. This study highlights differential mucosal and serum correlates of protection and how mucosal vaccines can durably prevent infection against SARS-CoV-2.
Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Inmunoglobulina A , SARS-CoV-2 , Animales , Inmunoglobulina A/inmunología , SARS-CoV-2/inmunología , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Macaca mulatta , Adenoviridae/inmunología , Adenoviridae/genética , Inmunidad Mucosa , Vacunas contra el Adenovirus/inmunología , Vacunas contra el Adenovirus/administración & dosificación , Femenino , Pulmón/virología , Pulmón/inmunología , Linfocitos B/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Administración Intranasal , Vacunación/métodos , HumanosRESUMEN
We previously reported that a single immunization with an adenovirus serotype 26 (Ad26)-vector-based vaccine expressing an optimized SARS-CoV-2 spike (Ad26.COV2.S) protected rhesus macaques against SARS-CoV-2 challenge. To evaluate reduced doses of Ad26.COV2.S, 30 rhesus macaques were immunized once with 1 × 1011, 5 × 1010, 1.125 × 1010, or 2 × 109 viral particles (vp) Ad26.COV2.S or sham and were challenged with SARS-CoV-2. Vaccine doses as low as 2 × 109 vp provided robust protection in bronchoalveolar lavage, whereas doses of 1.125 × 1010 vp were required for protection in nasal swabs. Activated memory B cells and binding or neutralizing antibody titers following vaccination correlated with protective efficacy. At suboptimal vaccine doses, viral breakthrough was observed but did not show enhancement of disease. These data demonstrate that a single immunization with relatively low dose of Ad26.COV2.S effectively protected against SARS-CoV-2 challenge in rhesus macaques, although a higher vaccine dose may be required for protection in the upper respiratory tract.
Asunto(s)
Adenoviridae/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Femenino , Inmunogenicidad Vacunal/inmunología , Memoria Inmunológica/inmunología , Macaca mulatta , Masculino , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación/métodosRESUMEN
Vaccines are critical tools for maintaining global health. Traditional vaccine technologies have been used across a wide range of bacterial and viral pathogens, yet there are a number of examples where they have not been successful, such as for persistent infections, rapidly evolving pathogens with high sequence variability, complex viral antigens, and emerging pathogens. Novel technologies such as nucleic acid and viral vector vaccines offer the potential to revolutionize vaccine development as they are well-suited to address existing technology limitations. In this review, we discuss the current state of RNA vaccines, recombinant adenovirus vector-based vaccines, and advances from biomaterials and engineering that address these important public health challenges.
Asunto(s)
Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/uso terapéutico , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/uso terapéutico , Adenoviridae/genética , Animales , Antígenos Virales/genética , Materiales Biocompatibles , COVID-19/virología , Sistemas de Liberación de Medicamentos/métodos , Vectores Genéticos/inmunología , Humanos , Inmunogenicidad Vacunal , Liposomas , Nanopartículas , ARN Mensajero/síntesis química , ARN Mensajero/inmunología , Vacunas de ARNmRESUMEN
The coronavirus disease 2019 pandemic has made deployment of an effective vaccine a global health priority. We evaluated the protective activity of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (ChAd-SARS-CoV-2-S) in challenge studies with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mice expressing the human angiotensin-converting enzyme 2 receptor. Intramuscular dosing of ChAd-SARS-CoV-2-S induces robust systemic humoral and cell-mediated immune responses and protects against lung infection, inflammation, and pathology but does not confer sterilizing immunity, as evidenced by detection of viral RNA and induction of anti-nucleoprotein antibodies after SARS-CoV-2 challenge. In contrast, a single intranasal dose of ChAd-SARS-CoV-2-S induces high levels of neutralizing antibodies, promotes systemic and mucosal immunoglobulin A (IgA) and T cell responses, and almost entirely prevents SARS-CoV-2 infection in both the upper and lower respiratory tracts. Intranasal administration of ChAd-SARS-CoV-2-S is a candidate for preventing SARS-CoV-2 infection and transmission and curtailing pandemic spread.
Asunto(s)
Infecciones por Coronavirus/inmunología , Inmunogenicidad Vacunal , Neumonía Viral/inmunología , Vacunas Virales/inmunología , Adenoviridae/genética , Administración Intranasal , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19 , Vacunas contra la COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/prevención & control , Femenino , Células HEK293 , Humanos , Inyecciones Intramusculares , Ratones , Ratones Endogámicos BALB C , Pandemias , Neumonía Viral/patología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero , Vacunas Virales/administración & dosificaciónRESUMEN
Pathogens and vaccines that produce persisting antigens can generate expanded pools of effector memory CD8+ T cells, described as memory inflation. While properties of inflating memory CD8+ T cells have been characterized, the specific cell types and tissue factors responsible for their maintenance remain elusive. Here, we show that clinically applied adenovirus vectors preferentially target fibroblastic stromal cells in cultured human tissues. Moreover, we used cell-type-specific antigen targeting to define critical cells and molecules that sustain long-term antigen presentation and T cell activity after adenovirus vector immunization in mice. While antigen targeting to myeloid cells was insufficient to activate antigen-specific CD8+ T cells, genetic activation of antigen expression in Ccl19-cre-expressing fibroblastic stromal cells induced inflating CD8+ T cells. Local ablation of vector-targeted cells revealed that lung fibroblasts support the protective function and metabolic fitness of inflating memory CD8+ T cells in an interleukin (IL)-33-dependent manner. Collectively, these data define a critical fibroblastic niche that underpins robust protective immunity operating in a clinically important vaccine platform.
Asunto(s)
Adenoviridae/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Interleucina-33/inmunología , Activación de Linfocitos/inmunología , Células del Estroma/inmunología , Adenoviridae/genética , Animales , Línea Celular Tumoral , Quimiocina CCL19/metabolismo , Quimera/genética , Epítopos de Linfocito T/inmunología , Fibroblastos/citología , Fibroblastos/metabolismo , Vectores Genéticos/inmunología , Humanos , Pulmón/citología , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , VacunaciónRESUMEN
Biallelic mutations in the RPE65 gene are associated with inherited retinal degenerations/dystrophies (IRD) and disrupt the visual cycle, leading to loss of vision. A new adenoviral vector-based gene therapy surgically delivered to retinal cells provides normal human RPE65 protein that can restore the visual cycle and some vision. To view this Bench to Bedside, open or download the PDF.
Asunto(s)
Degeneración Retiniana/terapia , Adenoviridae/genética , Terapia Genética , Vectores Genéticos/economía , Vectores Genéticos/genética , Vectores Genéticos/uso terapéutico , Humanos , Amaurosis Congénita de Leber/epidemiología , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/terapia , Degeneración Retiniana/epidemiología , Degeneración Retiniana/genética , cis-trans-Isomerasas/genética , cis-trans-Isomerasas/metabolismoRESUMEN
In response to cellular genome breaks, MRE11/RAD50/NBS1 (MRN) activates a global ATM DNA damage response (DDR) that prevents cellular replication. Here, we show that MRN-ATM also has critical functions in defending the cell against DNA viruses. We reveal temporally distinct responses to adenovirus genomes: a critical MRN-ATM DDR that must be inactivated by E1B-55K/E4-ORF3 viral oncoproteins and a global MRN-independent ATM DDR to viral nuclear domains that does not impact viral replication. We show that MRN binds to adenovirus genomes and activates a localized ATM response that specifically prevents viral DNA replication. In contrast to chromosomal breaks, ATM activation is not amplified by H2AX across megabases of chromatin to induce global signaling and replicative arrest. Thus, γH2AX foci discriminate "self" and "non-self" genomes and determine whether a localized anti-viral or global ATM response is appropriate. This provides an elegant mechanism to neutralize viral genomes without jeopardizing cellular viability.
Asunto(s)
Infecciones por Adenoviridae/inmunología , Reparación del ADN , Genoma Viral , Adenoviridae/genética , Adenoviridae/fisiología , Proteínas E1B de Adenovirus/metabolismo , Proteínas E4 de Adenovirus/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Genoma Humano , Histonas/metabolismo , Humanos , Fosforilación , Replicación ViralRESUMEN
Cytosolic DNA-mediated activation of the transcription factor IRF3 is a key event in host antiviral responses. Here we found that infection with DNA viruses induced interaction of the metabolic checkpoint kinase mTOR downstream effector and kinase S6K1 and the signaling adaptor STING in a manner dependent on the DNA sensor cGAS. We further demonstrated that the kinase domain, but not the kinase function, of S6K1 was required for the S6K1-STING interaction and that the TBK1 critically promoted this process. The formation of a tripartite S6K1-STING-TBK1 complex was necessary for the activation of IRF3, and disruption of this signaling axis impaired the early-phase expression of IRF3 target genes and the induction of T cell responses and mucosal antiviral immunity. Thus, our results have uncovered a fundamental regulatory mechanism for the activation of IRF3 in the cytosolic DNA pathway.
Asunto(s)
ADN/inmunología , Factor 3 Regulador del Interferón/inmunología , Proteínas de la Membrana/inmunología , Proteínas Quinasas S6 Ribosómicas 90-kDa/inmunología , Adenoviridae/genética , Adenoviridae/inmunología , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células Cultivadas , Citosol/inmunología , Citosol/metabolismo , Citosol/virología , ADN/genética , ADN/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células HEK293 , Herpes Simple/inmunología , Herpes Simple/virología , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/fisiología , Humanos , Inmunización/métodos , Immunoblotting , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/inmunología , Nucleotidiltransferasas/metabolismo , Ovalbúmina/genética , Ovalbúmina/inmunología , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismoRESUMEN
Gene therapy is a potentially curative medicine for many currently untreatable diseases, and recombinant adeno-associated virus (rAAV) is the most successful gene delivery vehicle for in vivo applications1-3. However, rAAV-based gene therapy suffers from several limitations, such as constrained DNA cargo size and toxicities caused by non-physiological expression of a transgene4-6. Here we show that rAAV delivery of a suppressor tRNA (rAAV.sup-tRNA) safely and efficiently rescued a genetic disease in a mouse model carrying a nonsense mutation, and effects lasted for more than 6 months after a single treatment. Mechanistically, this was achieved through a synergistic effect of premature stop codon readthrough and inhibition of nonsense-mediated mRNA decay. rAAV.sup-tRNA had a limited effect on global readthrough at normal stop codons and did not perturb endogenous tRNA homeostasis, as determined by ribosome profiling and tRNA sequencing, respectively. By optimizing the AAV capsid and the route of administration, therapeutic efficacy in various target tissues was achieved, including liver, heart, skeletal muscle and brain. This study demonstrates the feasibility of developing a toolbox of AAV-delivered nonsense suppressor tRNAs operating on premature termination codons (AAV-NoSTOP) to rescue pathogenic nonsense mutations and restore gene function under endogenous regulation. As nonsense mutations account for 11% of pathogenic mutations, AAV-NoSTOP can benefit a large number of patients. AAV-NoSTOP obviates the need to deliver a full-length protein-coding gene that may exceed the rAAV packaging limit, elicit adverse immune responses or cause transgene-related toxicities. It therefore represents a valuable addition to gene therapeutics.
Asunto(s)
Codón sin Sentido , Dependovirus , Terapia Genética , Adenoviridae , Animales , Codón sin Sentido/genética , Codón de Terminación/genética , Codón de Terminación/metabolismo , Dependovirus/genética , Enfermedades Genéticas Congénitas/terapia , Vectores Genéticos , Humanos , Ratones , Degradación de ARNm Mediada por Codón sin Sentido/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismoRESUMEN
Within the virion, adenovirus DNA associates with the virus-encoded, protamine-like structural protein pVII. Whether this association is organized, and how genome packaging changes during infection and subsequent transcriptional activation is currently unclear. Here, we combined RNA-seq, MNase-seq, ChIP-seq, and single genome imaging during early adenovirus infection to unveil the structure- and time-resolved dynamics of viral chromatin changes as well as their correlation with gene transcription. Our MNase mapping data indicates that the adenoviral genome is arranged in precisely positioned nucleoprotein particles with nucleosome-like characteristics, that we term adenosomes. We identified 238 adenosomes that are positioned by a DNA sequence code and protect about 60-70 bp of DNA. The incoming adenoviral genome is more accessible at early gene loci that undergo additional chromatin de-condensation upon infection. Histone H3.3 containing nucleosomes specifically replaces pVII at distinct genomic sites and at the transcription start sites of early genes. Acetylation of H3.3 is predominant at the transcription start sites and precedes transcriptional activation. Based on our results, we propose a central role for the viral pVII nucleoprotein architecture, which is required for the dynamic structural changes during early infection, including the regulation of nucleosome assembly prior to transcription initiation. Our study thus may aid the rational development of recombinant adenoviral vectors exhibiting sustained expression in gene therapy.
Asunto(s)
Cromatina , Nucleosomas , Nucleosomas/genética , Activación Transcripcional , Cromatina/genética , ADN/metabolismo , Ensamble y Desensamble de Cromatina , Adenoviridae/genéticaRESUMEN
Brown adipose tissue (BAT) is the main site of nonshivering thermogenesis which plays an important role in thermogenesis and energy metabolism. However, the regulatory factors that inhibit BAT activity remain largely unknown. Here, cardiotrophin-like cytokine factor 1 (CLCF1) is identified as a negative regulator of thermogenesis in BAT. Adenovirus-mediated overexpression of CLCF1 in BAT greatly impairs the thermogenic capacity of BAT and reduces the metabolic rate. Consistently, BAT-specific ablation of CLCF1 enhances the BAT function and energy expenditure under both thermoneutral and cold conditions. Mechanistically, adenylate cyclase 3 (ADCY3) is identified as a downstream target of CLCF1 to mediate its role in regulating thermogenesis. Furthermore, CLCF1 is identified to negatively regulate the PERK-ATF4 signaling axis to modulate the transcriptional activity of ADCY3, which activates the PKA substrate phosphorylation. Moreover, CLCF1 deletion in BAT protects the mice against diet-induced obesity by promoting BAT activation and further attenuating impaired glucose and lipid metabolism. Therefore, our results reveal the essential role of CLCF1 in regulating BAT thermogenesis and suggest that inhibiting CLCF1 signaling might be a potential therapeutic strategy for improving obesity-related metabolic disorders.
Asunto(s)
Tejido Adiposo Pardo , Metabolismo Energético , Animales , Ratones , Adenoviridae , Interleucinas , Obesidad/genética , Termogénesis/genéticaRESUMEN
Adenovirus transformed cells have a dedifferentiated phenotype. Eliminating E1A in transformed human embryonic kidney cells derepressed â¼2600 genes, generating a gene expression profile closely resembling mesenchymal stem cells (MSCs). This was associated with a dramatic change in cell morphology from one with scant cytoplasm and a globular nucleus to one with increased cytoplasm, extensive actin stress fibers, and actomyosin-dependent flattening against the substratum. E1A-induced hypoacetylation at histone H3 Lys27 and Lys18 (H3K27/18) was reversed. Most of the increase in H3K27/18ac was in enhancers near TEAD transcription factors bound by Hippo signaling-regulated coactivators YAP and TAZ. E1A causes YAP/TAZ cytoplasmic sequestration. After eliminating E1A, YAP/TAZ were transported into nuclei, where they associated with poised enhancers with DNA-bound TEAD4 and H3K4me1. This activation of YAP/TAZ required RHO family GTPase signaling and caused histone acetylation by p300/CBP, chromatin remodeling, and cohesin loading to establish MSC-associated enhancers and then superenhancers. Consistent results were also observed in primary rat embryo kidney cells, human fibroblasts, and human respiratory tract epithelial cells. These results together with earlier studies suggest that YAP/TAZ function in a developmental checkpoint controlled by signaling from the actin cytoskeleton that prevents differentiation of a progenitor cell until it is in the correct cellular and tissue environment.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas E1A de Adenovirus/metabolismo , Diferenciación Celular/genética , Silenciador del Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Fosfoproteínas/genética , Citoesqueleto de Actina/metabolismo , Adenoviridae , Animales , Células Cultivadas , Células HEK293 , Humanos , Ratas , Transducción de Señal , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAPRESUMEN
Adenoviral pVII proteins are multifunctional, highly basic, histone-like proteins that can bind to and transport the viral genome into the host cell nucleus. Despite the identification of several nuclear localization signals (NLSs) in the pVII protein of human adenovirus (HAdV)2, the mechanistic details of nuclear transport are largely unknown. Here we provide a full characterization of the nuclear import of precursor (Pre-) pVII protein from an ancient siadenovirus, frog siadenovirus 1 (FrAdV1), using a combination of structural, functional, and biochemical approaches. Two strong NLSs (termed NLSa and NLSd) interact with importin (IMP)ß1 and IMPα, respectively, and are the main drivers of nuclear import. A weaker NLS (termed NLSb) also contributes, together with an additional signal (NLSc) which we found to be important for nucleolar targeting and intranuclear binding. Expression of wild-type and NLS defective derivatives Pre-pVII in the presence of selective inhibitors of different nuclear import pathways revealed that, unlike its human counterpart, FrAdV1 Pre-pVII nuclear import is dependent on IMPα/ß1 and IMPß1, but not on transportin-1 (IMPß2). Clearly, AdVs evolved to maximize the nuclear import pathways for the pVII proteins, whose subcellular localization is the result of a complex process. Therefore, our results pave the way for an evolutionary comparison of the interaction of different AdVs with the host cell nuclear transport machinery.
Asunto(s)
Transporte Activo de Núcleo Celular , Señales de Localización Nuclear , Señales de Localización Nuclear/metabolismo , Humanos , Núcleo Celular/metabolismo , beta Carioferinas/metabolismo , Animales , alfa Carioferinas/metabolismo , alfa Carioferinas/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Adenoviridae/metabolismo , Adenoviridae/genética , Secuencia de AminoácidosRESUMEN
BACKGROUND: Viral cardiac infection represents a significant clinical challenge encompassing several etiological agents, disease stages, complex presentation, and a resulting lack of mechanistic understanding. Myocarditis is a major cause of sudden cardiac death in young adults, where current knowledge in the field is dominated by later disease phases and pathological immune responses. However, little is known regarding how infection can acutely induce an arrhythmogenic substrate before significant immune responses. Adenovirus is a leading cause of myocarditis, but due to species specificity, models of infection are lacking, and it is not understood how adenoviral infection may underlie sudden cardiac arrest. Mouse adenovirus type-3 was previously reported as cardiotropic, yet it has not been utilized to understand the mechanisms of cardiac infection and pathology. METHODS: We have developed mouse adenovirus type-3 infection as a model to investigate acute cardiac infection and molecular alterations to the infected heart before an appreciable immune response or gross cardiomyopathy. RESULTS: Optical mapping of infected hearts exposes decreases in conduction velocity concomitant with increased Cx43Ser368 phosphorylation, a residue known to regulate gap junction function. Hearts from animals harboring a phospho-null mutation at Cx43Ser368 are protected against mouse adenovirus type-3-induced conduction velocity slowing. Additional to gap junction alterations, patch clamping of mouse adenovirus type-3-infected adult mouse ventricular cardiomyocytes reveals prolonged action potential duration as a result of decreased IK1 and IKs current density. Turning to human systems, we find human adenovirus type-5 increases phosphorylation of Cx43Ser368 and disrupts synchrony in human induced pluripotent stem cell-derived cardiomyocytes, indicating common mechanisms with our mouse whole heart and adult cardiomyocyte data. CONCLUSIONS: Together, these findings demonstrate that adenoviral infection creates an arrhythmogenic substrate through direct targeting of gap junction and ion channel function in the heart. Such alterations are known to precipitate arrhythmias and likely contribute to sudden cardiac death in acutely infected patients.
Asunto(s)
Células Madre Pluripotentes Inducidas , Miocarditis , Humanos , Ratones , Animales , Conexina 43/genética , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Miocitos Cardíacos/fisiología , Uniones Comunicantes , Adenoviridae/genética , Muerte Súbita CardíacaRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 20191,2 and is responsible for the coronavirus disease 2019 (COVID-19) pandemic3. Vaccines are an essential countermeasure and are urgently needed to control the pandemic4. Here we show that the adenovirus-vector-based vaccine ChAdOx1 nCoV-19, which encodes the spike protein of SARS-CoV-2, is immunogenic in mice and elicites a robust humoral and cell-mediated response. This response was predominantly mediated by type-1 T helper cells, as demonstrated by the profiling of the IgG subclass and the expression of cytokines. Vaccination with ChAdOx1 nCoV-19 (using either a prime-only or a prime-boost regimen) induced a balanced humoral and cellular immune response of type-1 and type-2 T helper cells in rhesus macaques. We observed a significantly reduced viral load in the bronchoalveolar lavage fluid and lower respiratory tract tissue of vaccinated rhesus macaques that were challenged with SARS-CoV-2 compared with control animals, and no pneumonia was observed in vaccinated SARS-CoV-2-infected animals. However, there was no difference in nasal shedding between vaccinated and control SARS-CoV-2-infected macaques. Notably, we found no evidence of immune-enhanced disease after viral challenge in vaccinated SARS-CoV-2-infected animals. The safety, immunogenicity and efficacy profiles of ChAdOx1 nCoV-19 against symptomatic PCR-positive COVID-19 disease will now be assessed in randomized controlled clinical trials in humans.
Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Modelos Animales de Enfermedad , Macaca mulatta , Pandemias/prevención & control , Neumonía Viral/prevención & control , Vacunas Virales/inmunología , Adenoviridae/genética , Animales , Líquido del Lavado Bronquioalveolar , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/virología , Citocinas/inmunología , Femenino , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulina G/inmunología , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Macaca mulatta/inmunología , Macaca mulatta/virología , Masculino , Ratones , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células TH1/inmunología , Vacunación , Carga Viral , Vacunas Virales/administración & dosificación , Vacunas Virales/genéticaRESUMEN
A fundamental challenge for cystic fibrosis (CF) gene therapy is ensuring sufficient transduction of airway epithelia to achieve therapeutic correction. Hypertonic saline (HTS) is frequently administered to people with CF to enhance mucus clearance. HTS transiently disrupts epithelial cell tight junctions, but its ability to improve gene transfer has not been investigated. Here, we asked if increasing the concentration of NaCl enhances the transduction efficiency of three gene therapy vectors: adenovirus, AAV, and lentiviral vectors. Vectors formulated with 3-7% NaCl exhibited markedly increased transduction for all three platforms, leading to anion channel correction in primary cultures of human CF epithelial cells and enhanced gene transfer in mouse and pig airways in vivo. The mechanism of transduction enhancement involved tonicity but not osmolarity or pH. Formulating vectors with a high ionic strength solution is a simple strategy to greatly enhance efficacy and immediately improve preclinical or clinical applications.
Asunto(s)
Fibrosis Quística , Terapia Genética , Vectores Genéticos , Transducción Genética , Animales , Humanos , Vectores Genéticos/genética , Vectores Genéticos/química , Ratones , Fibrosis Quística/genética , Fibrosis Quística/terapia , Concentración Osmolar , Porcinos , Terapia Genética/métodos , Adenoviridae/genética , Dependovirus/genética , Lentivirus/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Mucosa Respiratoria/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Técnicas de Transferencia de Gen , Solución Salina HipertónicaRESUMEN
The multifunctional adenovirus E1B-55K oncoprotein can induce cell transformation in conjunction with adenovirus E1A gene products. Previous data from transient expression studies and in vitro experiments suggest that these growth-promoting activities correlate with E1B-55K-mediated transcriptional repression of p53-targeted genes. Here, we analyzed genome-wide occupancies and transcriptional consequences of species C5 and A12 E1B-55Ks in transformed mammalian cells by combinatory ChIP and RNA-seq analyses. E1B-55K-mediated repression correlates with tethering of the viral oncoprotein to p53-dependent promoters via DNA-bound p53. Moreover, we found that E1B-55K also interacts with and represses transcription of numerous p53-independent genes through interactions with transcription factors that play central roles in cancer and stress signaling. Our results demonstrate that E1B-55K oncoproteins function as promiscuous transcriptional repressors of both p53-dependent and -independent genes and further support the model that manipulation of cellular transcription is central to adenovirus-induced cell transformation and oncogenesis.
Asunto(s)
Adenovirus Humanos , Proteínas Oncogénicas Virales , Animales , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Adenovirus Humanos/genética , Adenovirus Humanos/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas E1B de Adenovirus/genética , Proteínas E1B de Adenovirus/metabolismo , Transformación Celular Neoplásica/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Proteínas Oncogénicas Virales/metabolismo , ADN , Mamíferos/genéticaRESUMEN
BACKGROUND: Pediatric patients with diffuse intrinsic pontine glioma (DIPG) have a poor prognosis, with a median survival of less than 1 year. Oncolytic viral therapy has been evaluated in patients with pediatric gliomas elsewhere in the brain, but data regarding oncolytic viral therapy in patients with DIPG are lacking. METHODS: We conducted a single-center, dose-escalation study of DNX-2401, an oncolytic adenovirus that selectively replicates in tumor cells, in patients with newly diagnosed DIPG. The patients received a single virus infusion through a catheter placed in the cerebellar peduncle, followed by radiotherapy. The primary objective was to assess the safety and adverse-event profile of DNX-2401. The secondary objectives were to evaluate the effect of DNX-2401 on overall survival and quality of life, to determine the percentage of patients who have an objective response, and to collect tumor-biopsy and peripheral-blood samples for correlative studies of the molecular features of DIPG and antitumor immune responses. RESULTS: A total of 12 patients, 3 to 18 years of age, with newly diagnosed DIPG received 1×1010 (the first 4 patients) or 5×1010 (the subsequent 8 patients) viral particles of DNX-2401, and 11 received subsequent radiotherapy. Adverse events among the patients included headache, nausea, vomiting, and fatigue. Hemiparesis and tetraparesis developed in 1 patient each. Over a median follow-up of 17.8 months (range, 5.9 to 33.5), a reduction in tumor size, as assessed on magnetic resonance imaging, was reported in 9 patients, a partial response in 3 patients, and stable disease in 8 patients. The median survival was 17.8 months. Two patients were alive at the time of preparation of the current report, 1 of whom was free of tumor progression at 38 months. Examination of a tumor sample obtained during autopsy from 1 patient and peripheral-blood studies revealed alteration of the tumor microenvironment and T-cell repertoire. CONCLUSIONS: Intratumoral infusion of oncolytic virus DNX-2401 followed by radiotherapy in pediatric patients with DIPG resulted in changes in T-cell activity and a reduction in or stabilization of tumor size in some patients but was associated with adverse events. (Funded by the European Research Council under the European Union's Horizon 2020 Research and Innovation Program and others; EudraCT number, 2016-001577-33; ClinicalTrials.gov number, NCT03178032.).
Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Viroterapia Oncolítica , Virus Oncolíticos , Adenoviridae , Adolescente , Astrocitoma/radioterapia , Astrocitoma/terapia , Neoplasias del Tronco Encefálico/mortalidad , Neoplasias del Tronco Encefálico/patología , Neoplasias del Tronco Encefálico/radioterapia , Neoplasias del Tronco Encefálico/terapia , Niño , Preescolar , Glioma Pontino Intrínseco Difuso/mortalidad , Glioma Pontino Intrínseco Difuso/radioterapia , Glioma Pontino Intrínseco Difuso/terapia , Glioma/radioterapia , Glioma/terapia , Humanos , Infusiones Intralesiones , Viroterapia Oncolítica/efectos adversos , Viroterapia Oncolítica/métodos , Calidad de Vida , Microambiente TumoralRESUMEN
Adenoviruses are a group of double-stranded DNA viruses that can mainly cause respiratory, gastrointestinal, and eye infections in humans. In addition, adenoviruses are employed as vector vaccines for combatting viral infections, including SARS-CoV-2, and serve as excellent gene therapy vectors. These viruses have the ability to modulate the host cell machinery to their advantage and trigger significant restructuring of the nuclei of infected cells through the activity of viral proteins. One of those, the adenovirus DNA-binding protein (DBP), is a multifunctional non-structural protein that is integral to the reorganization processes. DBP is encoded in the E2A transcriptional unit and is highly abundant in infected cells. Its activity is unequivocally linked to the formation, structure, and integrity of virus-induced replication compartments, molecular hubs for the regulation of viral processes, and control of the infected cell. DBP also plays key roles in viral DNA replication, transcription, viral gene expression, and even host range specificity. Notably, post-translational modifications of DBP, such as SUMOylation and extensive phosphorylation, regulate its biological functions. DBP was first investigated in the 1970s, pioneering research on viral DNA-binding proteins. In this literature review, we provide an overview of DBP and specifically summarize key findings related to its complex structure, diverse functions, and significant role in the context of viral replication. Finally, we address novel insights and perspectives for future research.