Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Fungal Genet Biol ; 170: 103864, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38199492

RESUMEN

Methyl jasmonate (MeJA)-regulated postharvest quality retention of Agaricus bisporus fruiting bodies is associated with arginine catabolism. However, the mechanism of MeJA-regulated arginine catabolism in edible mushrooms is still unclear. This study aimed to investigate the regulatory modes of MeJA on the expression of arginine catabolism-related genes and proteins in intact and different tissues of A. bisporus mushrooms during storage. Results showed that exogenous MeJA treatment activated endogenous JA biosynthesis in A. bisporus mushrooms, and differentially and tissue-specifically regulated the expression of arginine catabolism-related genes (AbARG, AbODC, AbSPE-SDH, AbSPDS, AbSAMDC, and AbASL) and proteins (AbARG, AbSPE-SDH, AbASL, and AbASS). MeJA caused no significant change in AbASS expression but resulted in a dramatic increase in AbASS protein level. Neither the expression of the AbSAMS gene nor the AbSAMS protein was conspicuously altered upon MeJA treatment. Additionally, MeJA reduced the contents of arginine and ornithine and induced the accumulation of free putrescine and spermidine, which was closely correlated with MeJA-regulated arginine catabolism-related genes and proteins. Hence, the results suggested that the differential and tissue-specific regulation of arginine catabolism-related genes and proteins by MeJA contributed to their selective involvement in the postharvest continuing development and quality retention of button mushrooms.


Asunto(s)
Agaricus , Agaricus/genética , Acetatos/farmacología , Ciclopentanos/farmacología , Oxilipinas/farmacología
2.
Plant Dis ; 108(2): 473-485, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37669175

RESUMEN

Agaricus bisporus (Lange) Imbach is the most widely cultivated mushroom in the world. A. bisporus wet bubble disease is one of the most severe diseases of white button mushrooms and is caused by the fungal pathogen Hypomyces perniciosus. The pathogen causes a drastic reduction in mushroom yield because of malformation and deterioration of the basidiomes. However, the mechanism of the button mushroom's malformation development after infection with H. perniciosus remains obscure. Therefore, to reveal the mechanism of A. bisporus malformation caused by H. perniciosus, the interaction between the pathogen and host was investigated in this study using histopathological, physiological, and transcriptomic analyses. Results showed that irrespective of the growth stages of A. bisporus basidiomes infected with H. perniciosus, the host's malformed basidiomes and enlarged mycelia and basidia indicated that the earlier the infection with H. perniciosus, the more the malformation of the basidiomes. Analyzing physiological and transcriptomic results in tandem, we concluded that H. perniciosus causes malformation development of A. bisporus mainly by affecting the metabolism level of phytohormones (N6-isopentenyladenosine, cis-zeatin, and N6-[delta 2-isopentenyl]-adenine) of the host's fruiting bodies rather than using toxins. Our findings revealed the mechanism of the button mushroom's malformation development after infection with H. perniciosus, providing a reference for developing realistic approaches to control mushroom diseases. Our results further clarified the interaction between A. bisporus and H. perniciosus and identified the candidate genes for A. bisporus wet bubble disease resistance breeding. Additionally, our work provides a valuable theoretical basis and technical support for studying the interaction between other pathogenic fungi and their fungal hosts.


Asunto(s)
Agaricus , Hypocreales , Transcriptoma , Fitomejoramiento , Agaricus/genética , Agaricus/metabolismo , Hypocreales/genética
3.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38279283

RESUMEN

Mushrooms are a nutritionally rich and sustainably-produced food with a growing global market. Agaricus bisporus accounts for 11% of the total world mushroom production and it is the dominant species cultivated in Europe. It faces threats from pathogens that cause important production losses, including the mycoparasite Lecanicillium fungicola, the causative agent of dry bubble disease. Through quantitative real-time polymerase chain reaction (qRT-PCR), we determine the impact of L. fungicola infection on the transcription patterns of A. bisporus genes involved in key cellular processes. Notably, genes related to cell division, fruiting body development, and apoptosis exhibit dynamic transcriptional changes in response to infection. Furthermore, A. bisporus infected with L. fungicola were found to accumulate increased levels of reactive oxygen species (ROS). Interestingly, the transcription levels of genes involved in the production and scavenging mechanisms of ROS were also increased, suggesting the involvement of changes to ROS homeostasis in response to L. fungicola infection. These findings identify potential links between enhanced cell proliferation, impaired fruiting body development, and ROS-mediated defence strategies during the A. bisporus (host)-L. fungicola (pathogen) interaction, and offer avenues for innovative disease control strategies and improved understanding of fungal pathogenesis.


Asunto(s)
Agaricus , Hypocreales , Especies Reactivas de Oxígeno , Agaricus/genética , Hypocreales/fisiología
4.
BMC Genomics ; 24(1): 182, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020265

RESUMEN

Agaricus bisporus is the most widely cultivated edible mushroom in the world with a only around three hundred years known history of cultivation. Therefore, it represents an ideal organism not only to investigate the natural evolutionary history but also the understanding on the evolution going back to the early era of domestication. In this study, we generated the mitochondrial genome sequences of 352 A. bisporus strains and 9 strains from 4 closely related species around the world. The population mitogenomic study revealed all A. bisporus strains can be divided into seven clades, and all domesticated cultivars present only in two of those clades. The molecular dating analysis showed this species origin in Europe on 4.6 Ma and we proposed the main dispersal routes. The detailed mitogenome structure studies showed that the insertion of the plasmid-derived dpo gene caused a long fragment (MIR) inversion, and the distributions of the fragments of dpo gene were strictly in correspondence with these seven clades. Our studies also showed A. bisporus population contains 30 intron distribution patterns (IDPs), while all cultivars contain only two IDPs, which clearly exhibit intron loss compared to the others. Either the loss occurred before or after domestication, that could suggest that the change facilitates their adaptation to the cultivated environment.


Asunto(s)
Agaricus , Genoma Mitocondrial , Agaricus/genética , Europa (Continente)
5.
Food Microbiol ; 114: 104307, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37290864

RESUMEN

Button mushrooms (Agaricus bisporus), are one of the most widely consumed mushrooms in the world. However, changes within its microbial community as it relates to the use of different raw materials and cultivation methods, as well as potential points of microbial contamination throughout the production process have not been investigated extensively. In the present study, button mushroom cultivation was investigated in each of the four stages (raw materials, composting (phase I, Ⅱ, and Ⅲ), casing, and harvesting), and samples (n = 186) from mushrooms and their related environments were collected from four distinct mushroom-growing farms (A-D) in Korea. Shifts within the bacterial consortium during mushroom production were characterized with 16 S rRNA amplicon sequencing. The succession of bacterial communities on each farm was dependent on the raw material incorporated, aeration, and the farm environment. The dominant phyla of the compost stack at the four farms were Pseudomonadota (56.7%) in farm A, Pseudomonadota (43.3%) in farm B, Bacteroidota (46.0%) in farm C, and Bacillota (62.8%) in farm D. During the Phase Ⅰ, highly heat-resistant microbes, such as those from the phylum Deinococcota (0.6-65.5%) and the families Bacillaceae (1.7-36.3%), Thermaceae (0.1-65.5%), and Limnochordaceae (0.3-30.5%) greatly proliferated. The microbial diversity within compost samples exhibited a marked decline as a result of the proliferation of thermophilic bacteria. In the spawning step, there were considerable increases in Xanthomonadaceae in the pasteurized composts of farms C and D - both of which employed an aeration system. In the harvesting phase, beta diversity correlated strongly between the casing soil layer and pre-harvest mushrooms, as well as between gloves and packaged mushrooms. The results suggest that gloves may be a major source of cross-contamination for packaged mushrooms, highlighting the need for enhanced hygienic practices during the harvesting phase to ensure product safety. These findings contribute to the current understanding of the influence of environmental and adjacent microbiomes on mushroom products to benefit the mushroom industry and relevant stakeholders by ensuring quality production.


Asunto(s)
Agaricus , Microbiota , Humanos , Agaricus/genética , Microbiota/genética , Bacterias/genética , Secuenciación de Nucleótidos de Alto Rendimiento
6.
BMC Genomics ; 23(1): 442, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35701764

RESUMEN

The cultivation of edible mushroom is an emerging sector with a potential yet to be discovered. Unlike plants, it is a less developed agriculture where many studies are lacking to optimize the cultivation. In this work we have employed high-throughput techniques by next generation sequencing to screen the microbial structure of casing soil employed in mushroom cultivation (Agaricus bisporus) while sequencing V3-V4 of the 16S rRNA gene for bacteria and the ITS2 region of rRNA for. In addition, the microbiota dynamics and evolution (bacterial and fungal communities) in peat-based casing along the process of incubation of A. bisporus have been studied, while comparing the effect of fungicide treatment (chlorothalonil and metrafenone). Statistically significant changes in populations of bacteria and fungi were observed. Microbial composition differed significantly based on incubation day, changing radically from the original communities in the raw material to a specific microbial composition driven by the A. bisporus mycelium growth. Chlorothalonil treatment seems to delay casing colonization by A. bisporus. Proteobacteria and Bacteroidota appeared as the most dominant bacterial phyla. We observed a great change in the structure of the bacteria populations between day 0 and the following days. Fungi populations changed more gradually, with A. bisporus displacing the rest of the species as the cultivation cycle progresses. A better understanding of the microbial communities in the casing will hopefully allow us to increase the biological efficiency of the crop.


Asunto(s)
Agaricus , Fungicidas Industriales , Agaricus/genética , Bacterias/genética , Hongos/genética , Fungicidas Industriales/farmacología , ARN Ribosómico 16S/genética , Suelo
7.
Microb Ecol ; 84(1): 20-32, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34383127

RESUMEN

Different from other fungal species that can be largely cultivated in 'axenic conditions' using plant material (e.g., species of Lentinula and Pleurotus in 'sterile' straw-based substrate), the commercial Agaricus bisporus cultivation system relies heavily on ecological relationships with a broad range of microorganisms present in the system (compost and casing). Since the A. bisporus cultivation system consists of a microbial manipulation process, it is important to know the microbial community dynamics during the entire cultivation cycle to design further studies and/or crop management strategies to optimize this system. To capture the bacterial community 'flow' from compost raw materials to the casing to the formation and maturation of mushroom caps, community snapshots were generated by direct DNA recovery (amplicon sequencing). The 'bacterial community flow' revealed that compost, casing and mushrooms represent different niches for bacteria present in the cultivation system, but at the same time, a bacterial exchange between microenvironments can occur for a portion of the community. Within each microenvironment, compost showed intense bacterial populational dynamics, probably due to the environmental changes imposed by composting conditions. In casing, the colonization of A. bisporus appeared, to reshape the native bacterial community which later, with some other members present in compost, becomes the core community in mushroom caps. The current bacterial survey along with previous results provides more cues of specific bacteria groups that can be in association with A. bisporus development and health.


Asunto(s)
Agaricus , Compostaje , Microbiota , Agaricus/genética , Bacterias/genética
8.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35563314

RESUMEN

Although genomes from many edible mushrooms are sequenced, studies on fungal micro RNAs (miRNAs) are scarce. Most of the bioinformatic tools are designed for plants or animals, but the processing and expression of fungal miRNAs share similarities and differences with both kingdoms. Moreover, since mushroom species such as Agaricus bisporus (A. bisporus, white button mushroom) are frequently consumed as food, controversial discussions are still evaluating whether their miRNAs might or might not be assimilated, perhaps within extracellular vesicles (i.e., exosomes). Therefore, the A. bisporus RNA-seq was studied in order to identify potential de novo miRNA-like small RNAs (milRNAs) that might allow their later detection in diet. Results pointed to 1 already known and 37 de novo milRNAs. Three milRNAs were selected for RT-qPCR experiments. Precursors and mature milRNAs were found in the edible parts (caps and stipes), validating the predictions carried out in silico. When their potential gene targets were investigated, results pointed that most were involved in primary and secondary metabolic regulation. However, when the human transcriptome is used as the target, the results suggest that they might interfere with important biological processes related with cancer, infection and neurodegenerative diseases.


Asunto(s)
Agaricus , MicroARNs , Agaricus/genética , Biología Computacional/métodos , MicroARNs/genética , ARN de Hongos , RNA-Seq
9.
Proc Natl Acad Sci U S A ; 115(17): 4429-4434, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29643074

RESUMEN

Many fungi are polykaryotic, containing multiple nuclei per cell. In the case of heterokaryons, there are different nuclear types within a single cell. It is unknown what the different nuclear types contribute in terms of mRNA expression levels in fungal heterokaryons. Each cell of the mushroom Agaricus bisporus contains two to 25 nuclei of two nuclear types originating from two parental strains. Using RNA-sequencing data, we assess the differential mRNA contribution of individual nuclear types and its functional impact. We studied differential expression between genes of the two nuclear types, P1 and P2, throughout mushroom development in various tissue types. P1 and P2 produced specific mRNA profiles that changed through mushroom development. Differential regulation occurred at the gene level, rather than at the locus, chromosomal, or nuclear level. P1 dominated mRNA production throughout development, and P2 showed more differentially up-regulated genes in important functional groups. In the vegetative mycelium, P2 up-regulated almost threefold more metabolism genes and carbohydrate active enzymes (cazymes) than P1, suggesting phenotypic differences in growth. We identified widespread transcriptomic variation between the nuclear types of A. bisporus Our method enables studying nucleus-specific expression, which likely influences the phenotype of a fungus in a polykaryotic stage. Our findings have a wider impact to better understand gene regulation in fungi in a heterokaryotic state. This work provides insight into the transcriptomic variation introduced by genomic nuclear separation.


Asunto(s)
Agaricus/metabolismo , Núcleo Celular/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , ARN de Hongos/biosíntesis , ARN Mensajero/biosíntesis , Regulación hacia Arriba/fisiología , Agaricus/genética , Núcleo Celular/genética , ARN de Hongos/genética , ARN Mensajero/genética , Transcriptoma/fisiología
10.
Plant Dis ; 105(12): 3967-3977, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34261355

RESUMEN

White button mushroom, Agaricus bisporus (Lange) Imbach, is the most extensively cultivated and edible mushroom worldwide. The production of A. bisporus is commonly affected by wet bubble disease (WBD), imposing a significant economic burden in China. Although studies have shown that this disease is caused by fungi of the Mycogone genus, the pathogen has not been fully characterized. In this study, 802 samples of diseased fruiting bodies of A. bisporus were collected from nine major mushroom-cultivating provinces in China, yielding a total of 586 Mycogone isolates. The morphologic characteristics of these isolates were observed and compared, and multilocus phylogenetic analyses (internal transcribed spacer [ITS], ACT, TEF1-α, TUB, RPB2, and large ribosomal subunit [LSU]) were performed on the selected representative isolates. Three Mycogone species were identified: a new species, M. xinjiangensis; M. perniciosa; and M. rosea. Mycogone rosea was the first ever reported in China. Furthermore, M. rosea was found to be the most prevalent species (54.95% of all isolates) in all the sampled areas, except in Hubei and Xinjiang, followed by M. perniciosa (39.93%) and M. xinjiangensis (5.12%). Pathogenicity tests on the fruiting body and mushroom bed substantiated Koch's postulates by the development of mildly different symptoms after inoculation with each species. This study, therefore, enhances our knowledge of the species associated with WBD in A. bisporus and provides useful insights for preventing WBD and allied diseases.


Asunto(s)
Agaricus , Ascomicetos , Agaricus/genética , China , Filogenia
11.
Bioprocess Biosyst Eng ; 44(11): 2303-2313, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34296328

RESUMEN

Agaricus bitorquis (Quél.) Sacc. Chaidam (ABSC) is a wild edible fungus uniquely found in the Tibet Plateau. ABSC is rich in polysaccharides that are considered biologically active. This study aimed to determine the feasibility of enhancing exopolysaccharide (EPS) production by ABSC in shake flask culture by supplementing the fermentation medium with anthocyanin extract. Different concentrations of Lycium ruthenicum Murr. (LRM) anthocyanin crude extract were tested on ABSC fermentation. The activity of phosphoglucose isomerase (PGI), phosphoglucose mutase (PGM), and phosphomannose isomerase (PMI), enzymes presumably involved in EPS synthesis by ABSC, was determined. ABSC transcriptomic profile in response to the presence of anthocyanins during fermentation was also investigated. LRM anthocyanin crude extract (0.06 mg/mL) was most effective in increasing EPS content and mycelial biomass (by 208.10% and 105.30%, respectively, P < 0.01). The activity of PGI, PGM, and PMI was increased in a medium where LRM anthocyanin extract and its main components (proanthocyanidins and petunia anthocyanin) were added. RNA-Seq analysis showed that 349 genes of ABSC were differentially expressed during fermentation in the medium containing anthocyanin extract of LRM; 93 genes were up-regulated and 256 genes down-regulated. From gene ontology enrichment analysis, differentially expressed genes were mostly assigned to carbohydrate metabolism and signal transduction categories. Collectively, LRM anthocyanins extract positively affected EPS production and mycelial biomass during ABSC fermentation. Our study provides a novel strategy for improving EPS production and mycelial growth during ABSC liquid submerged fermentation.


Asunto(s)
Agaricus/metabolismo , Fermentación , Polisacáridos Fúngicos/biosíntesis , Lycium/metabolismo , Extractos Vegetales/metabolismo , Agaricus/genética , Agaricus/crecimiento & desarrollo , Medios de Cultivo , Microscopía Electrónica de Rastreo , ARN de Hongos/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma
12.
BMC Genomics ; 21(1): 505, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32698767

RESUMEN

BACKGROUND: Bacterial blotch is a group of economically important diseases affecting the cultivation of common button mushroom, Agaricus bisporus. Despite being studied for more than a century, the identity and nomenclature of blotch-causing Pseudomonas species is still unclear. This study aims to molecularly characterize the phylogenetic and phenotypic diversity of blotch pathogens in Western Europe. METHODS: In this study, blotched mushrooms were sampled from farms across the Netherlands, United Kingdom and Belgium. Bacteria were isolated from symptomatic cap tissue and tested in pathogenicity assays on fresh caps and in pots. Whole genome sequences of pathogenic and non-pathogenic isolates were used to establish phylogeny via multi-locus sequence alignment (MLSA), average nucleotide identity (ANI) and in-silico DNA:DNA hybridization (DDH) analyses. RESULTS: The known pathogens "Pseudomonas gingeri", P. tolaasii, "P. reactans" and P. costantinii were recovered from blotched mushroom caps. Seven novel pathogens were also identified, namely, P. yamanorum, P. edaphica, P. salomonii and strains that clustered with Pseudomonas sp. NC02 in one genomic species, and three non-pseudomonads, i.e. Serratia liquefaciens, S. proteamaculans and a Pantoea sp. Insights on the pathogenicity and symptom severity of these blotch pathogens were also generated. CONCLUSION: A detailed overview of genetic and regional diversity and the virulence of blotch pathogens in Western Europe, was obtained via the phylogenetic and phenotypic analyses. This information has implications in the study of symptomatic disease expression, development of diagnostic tools and design of localized strategies for disease management.


Asunto(s)
Agaricus , Agaricus/genética , Bélgica , Europa (Continente) , Filogenia , Pseudomonas/genética , Reino Unido
13.
Biochem Biophys Res Commun ; 527(4): 1027-1032, 2020 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-32439171

RESUMEN

Agaricus bisporus mannose-binding protein (Abmb) was discovered as part of the mushroom tyrosinase (PPO3) complex, but its function in the mushroom has remained obscure. The protein has a ß-trefoil structure that is common for Ricin-B-like lectins. Indeed, its closest structural homologs are the hemagglutinin components of botulinum toxin (HA-33) and the Ricin-B-like lectin from Clitocybe nebularis (CNL), both of which bind galactose, and actinohivin, a recently discovered mannose-binding lectin from actinomycetes. Here we show that Abmb is evolutionarily related to them, which are lectins with a ß-trefoil fold. We also show for the first time that Abmb can exhibit typical lectin agglutination activity but only when in the complex with mushroom tyrosinase. This is unexpected and unique because the two proteins are not evolutionarily related and have different activities. Lectin and tyrosinase major role in defense mechanism as well as Abmb and PPO3 gene regulation during the early stages of the development of mushroom fruiting bodies suggested that Abmb has likely a function in defense against bacterial infection and/or insect-induced damage.


Asunto(s)
Agaricus/química , Proteínas Fúngicas/química , Lectinas/química , Lectina de Unión a Manosa/química , Agaricus/genética , Secuencia de Aminoácidos , Proteínas Fúngicas/genética , Lectinas/genética , Lectina de Unión a Manosa/genética , Modelos Moleculares , Filogenia , Conformación Proteica en Lámina beta
14.
Molecules ; 25(13)2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610638

RESUMEN

The button mushroom Agaricus bisporus is an economically important crop worldwide. Many aspects of its cultivation are well known, except for the precise biological triggers for its fructification. By and large, for most basidiomycete species, nutrient availability, light and a drop in temperature are critical factors for fructification. A. bisporus deviates from this pattern in the sense that it does not require light for fructification. Furthermore its fructification seems to be inhibited by a self-generated factor which needs to be removed by microorganisms in order to initiate fruiting. This review explores what is known about the morphogenesis of fruiting initiation in A. bisporus, the microflora, the self-inhibitors for fruiting initiation and transcription factors involved. This information is subsequently contrasted with an overall model of the regulatory system involved in the initiation of the formation of primordia in basidiomycetes. The comparison reveals a number of the blank spots in our understanding of the fruiting process in A. bisporus.


Asunto(s)
Agaricus/crecimiento & desarrollo , Agaricus/genética , Agaricus/metabolismo , Agaricus/química , Producción de Cultivos/métodos , Humanos , Temperatura , Factores de Transcripción/genética
15.
Molecules ; 25(10)2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32443732

RESUMEN

The mushroom Agaricus bisporus secretes biologically active compounds and proteins with benefits for human health. Most reported proteins from A. bisporus are tyrosinases and lectins. Lectins are of therapeutic or pharmaceutical interest. To date, only limited information is available on A. bisporus lectins and lectin-like proteins. No therapeutic products derived from A. bisporus lectin (ABL) are available on the market despite its extensive exploration. Recently, A. bisporus mannose-binding protein (Abmb) was discovered. Its discovery enriches the information and increases the interest in proteins with therapeutic potential from this mushroom. Furthermore, the A. bisporus genome reveals the possible occurrence of other lectins in this mushroom that may also have therapeutic potential. Most of these putative lectins belong to the same lectin groups as ABL and Abmb. Their relationship is discussed. Particular attention is addressed to ABL and Abmb, which have been explored for their potential in medicinal or pharmaceutical applications. ABL and Abmb have anti-proliferative activities toward cancer cells and a stimulatory effect on the immune system. Possible scenarios for their use in therapy and modification are also presented.


Asunto(s)
Agaricus/química , Lectinas/genética , Lectina de Unión a Manosa/genética , Monofenol Monooxigenasa/genética , Agaricus/genética , Genoma Fúngico/genética , Humanos , Lectinas/uso terapéutico , Lectina de Unión a Manosa/química , Lectina de Unión a Manosa/uso terapéutico , Monofenol Monooxigenasa/química
16.
Molecules ; 25(17)2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854275

RESUMEN

Fungi contain many plant-nitrilase (NLase) homologues according to database searches. In this study, enzymes NitTv1 from Trametes versicolor and NitAb from Agaricus bisporus were purified and characterized as the representatives of this type of fungal NLase. Both enzymes were slightly more similar to NIT4 type than to NIT1/NIT2/NIT3 type of plant NLases in terms of their amino acid sequences. Expression of the synthetic genes in Escherichia coli Origami B (DE3) was induced with 0.02 mM isopropyl ß-D-1-thiogalactopyranoside at 20 °C. Purification of NitTv1 and NitAb by cobalt affinity chromatography gave ca. 6.6 mg and 9.6 mg of protein per 100 mL of culture medium, respectively. Their activities were determined with 25 mM of nitriles in 50 mM Tris/HCl buffer, pH 8.0, at 30 °C. NitTv1 and NitAb transformed ß-cyano-L-alanine (ß-CA) with the highest specific activities (ca. 132 and 40 U mg-1, respectively) similar to plant NLase NIT4. ß-CA was transformed into Asn and Asp as in NIT4 but at lower Asn:Asp ratios. The fungal NLases also exhibited significant activities for (aryl)aliphatic nitriles such as 3-phenylpropionitrile, cinnamonitrile and fumaronitrile (substrates of NLase NIT1). NitTv1 was more stable than NitAb (at pH 5-9 vs. pH 5-7). These NLases may participate in plant-fungus interactions by detoxifying plant nitriles and/or producing plant hormones. Their homology models elucidated the molecular interactions with various nitriles in their active sites.


Asunto(s)
Agaricus , Aminohidrolasas , Proteínas Fúngicas , Filogenia , Agaricus/enzimología , Agaricus/genética , Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Asparagina/genética , Asparagina/metabolismo , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Polyporaceae/enzimología , Polyporaceae/genética
17.
World J Microbiol Biotechnol ; 35(11): 163, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31637600

RESUMEN

To simplify industrial mushroom cultivation, we introduced a bacterial Pseudomonas sp. UW4 acdS gene, encoding 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (AcdS), into fungus Agaricus bisporus. Transformant A. bisporus-acdS14 cased with sterilized-vermiculite generated primordia 5 days sooner than wild-type strain, confirming the specific role of the AcdS enzyme. Being consistent with the AcdS enzyme activity increased by 84%, the mycelium growth rate was increased by 25%; but, the ACC and ethylene concentrations were reduced by 71% and 36%, respectively, in the A. bisporus-acdS14 transformant. And the bacterium P. sp. UW4 attachment on the mycelium of the A. bisporus-acdS14 transformant was drastically reduced. We conclude that the heterogeneously expressed bacterial acdS gene degrades ACC and reduces ethylene-synthesis, eliminating ethylene inhibition on the mycelium growth and primordium formation in A. bisporus. Our results provide new insights into the mechanism underlying casing soil bacterium, and help formulate a casing-less cultivation for the next-generation mushroom industry.


Asunto(s)
Agaricus/crecimiento & desarrollo , Agaricus/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Pseudomonas/enzimología , Pseudomonas/genética , Aminoácidos Cíclicos/metabolismo , Liasas de Carbono-Carbono/genética , Liasas de Carbono-Carbono/metabolismo , Clonación Molecular , Etilenos/metabolismo , Regulación Fúngica de la Expresión Génica , Micelio/crecimiento & desarrollo , Suelo , Transformación Genética
19.
Appl Microbiol Biotechnol ; 101(5): 1819-1829, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28130632

RESUMEN

True breeding of button mushrooms has hardly been done in the last decades, despite this species being one of the most cultivated mushrooms worldwide. Research done in the last 20 years has identified and characterised new germplasm and improved our understanding of the genetic base for some traits. A substantial collection of wild-collected strains is now available and partly characterised for a number of important traits such as disease resistance and yield. Most of the variations found in a number of important agronomic traits have a considerable heritability and are thus useful for breeding. Genetic marker technology has also developed considerably for this mushrooms in the last decade and used to identify quantitative trait loci (QTL) for important agronomic traits. This progress has, except for one example, not resulted so far into new commercially varieties. One of the reasons lies in the typical life cycle of the button mushroom Agaricus bisporus var. bisporus which hampers breeding. Joint investment is needed to solve technical problems in breeding. Special attention is needed for the protection of new varieties. Due to its typical life cycle, it is very easy to generate so called "look-a-likes" from protected cultivars by screening fertile single spore cultures. A consensus has been reached within the mushroom (breeding) industry to consider this method as the generation of essentially derived varieties as defined in plant breeding.


Asunto(s)
Agaricus/crecimiento & desarrollo , Agaricus/genética , Cruzamientos Genéticos , Marcadores Genéticos/genética , Sitios de Carácter Cuantitativo
20.
Appl Microbiol Biotechnol ; 101(11): 4363-4369, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28466110

RESUMEN

The white button mushroom Agaricus bisporus is economically the most important commercially produced edible fungus. It is grown on carbon- and nitrogen-rich substrates, such as composted cereal straw and animal manure. The commercial mushroom production process is usually performed in buildings or tunnels under highly controlled environmental conditions. In nature, the basidiomycete A. bisporus has a significant impact on the carbon cycle in terrestrial ecosystems as a saprotrophic decayer of leaf litter. In this mini-review, the fate of the compost plant cell wall structures, xylan, cellulose and lignin, is discussed. A comparison is made from the structural changes observed to the occurrence and function of enzymes for lignocellulose degradation present, with a special focus on the extracellular enzymes produced by A. bisporus. In addition, recent advancements in whole genome level molecular studies in various growth stages of A. bisporus in compost are reviewed.


Asunto(s)
Agaricus/enzimología , Celulosa/metabolismo , Lignina/metabolismo , Xilanos/metabolismo , Agaricus/genética , Agaricus/crecimiento & desarrollo , Animales , Carbono/metabolismo , Ciclo del Carbono , Genoma Fúngico , Micelio/crecimiento & desarrollo , Nitrógeno/metabolismo , Suelo , Xilanos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA