Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.916
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(20): 5620-5637.e10, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39276773

RESUMEN

Numerous eukaryotic toxins that accumulate in geophytic plants are valuable in the clinic, yet their biosynthetic pathways have remained elusive. A notable example is the >150 Amaryllidaceae alkaloids (AmAs), including galantamine, an FDA-approved treatment for Alzheimer's disease. We show that while AmAs accumulate to high levels in many daffodil tissues, biosynthesis is localized to nascent, growing tissue at the leaf base. A similar trend is found in the production of steroidal alkaloids (e.g., cyclopamine) in corn lily. This model of active biosynthesis enabled the elucidation of a complete set of biosynthetic genes that can be used to produce AmAs. Taken together, our work sheds light on the developmental and enzymatic logic of diverse alkaloid biosynthesis in daffodils. More broadly, it suggests a paradigm for biosynthesis regulation in monocot geophytes, where plants are protected from herbivory through active charging of newly formed cells with eukaryotic toxins that persist as above-ground tissue develops.


Asunto(s)
Vías Biosintéticas , Alcaloides/biosíntesis , Alcaloides/metabolismo , Hojas de la Planta/metabolismo , Amaryllidaceae/metabolismo , Amaryllidaceae/genética , Toxinas Biológicas/metabolismo , Toxinas Biológicas/biosíntesis
2.
Nature ; 624(7990): 182-191, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37938780

RESUMEN

Plants synthesize numerous alkaloids that mimic animal neurotransmitters1. The diversity of alkaloid structures is achieved through the generation and tailoring of unique carbon scaffolds2,3, yet many neuroactive alkaloids belong to a scaffold class for which no biosynthetic route or enzyme catalyst is known. By studying highly coordinated, tissue-specific gene expression in plants that produce neuroactive Lycopodium alkaloids4, we identified an unexpected enzyme class for alkaloid biosynthesis: neofunctionalized α-carbonic anhydrases (CAHs). We show that three CAH-like (CAL) proteins are required in the biosynthetic route to a key precursor of the Lycopodium alkaloids by catalysing a stereospecific Mannich-like condensation and subsequent bicyclic scaffold generation. Also, we describe a series of scaffold tailoring steps that generate the optimized acetylcholinesterase inhibition activity of huperzine A5. Our findings suggest a broader involvement of CAH-like enzymes in specialized metabolism and demonstrate how successive scaffold tailoring can drive potency against a neurological protein target.


Asunto(s)
Alcaloides , Anhidrasas Carbónicas , Modelos Neurológicos , Plantas , Animales , Acetilcolinesterasa/metabolismo , Alcaloides/biosíntesis , Alcaloides/síntesis química , Alcaloides/metabolismo , Alcaloides/farmacología , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Regulación de la Expresión Génica de las Plantas , Neurotransmisores/metabolismo , Plantas/enzimología , Plantas/genética , Plantas/metabolismo , Sesquiterpenos/síntesis química , Sesquiterpenos/química , Sesquiterpenos/farmacología , Lycopodium/química , Lycopodium/metabolismo
3.
Nature ; 606(7916): 917-921, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35551513

RESUMEN

Ingestion of alkaloid metabolites from the bark of Galbulimima (GB) sp. leads to psychotropic and excitatory effects in humans1-4. Limited, variable supply of GB alkaloids5, however, has impeded their biological exploration and clinical development6. Here we report a solution to the supply of GB18, a structural outlier and putative psychotropic principle of Galbulimima bark. Efficient access to its challenging tetrahedral attached-ring motif required the development of a ligand-controlled endo-selective cross-electrophile coupling and a diastereoselective hydrogenation of a rotationally dynamic pyridine. Reliable, gram-scale access to GB18 enabled its assignment as a potent antagonist of κ- and µ-opioid receptors-the first new targets in 35 years-and lays the foundation to navigate and understand the biological activity of Galbulimima metabolites.


Asunto(s)
Alcaloides , Magnoliopsida , Alcaloides/síntesis química , Alcaloides/farmacología , Técnicas de Química Sintética , Humanos , Hidrogenación , Ligandos , Magnoliopsida/química , Corteza de la Planta/química , Piridinas , Receptores Opioides kappa/antagonistas & inhibidores , Receptores Opioides mu/antagonistas & inhibidores
4.
Nature ; 585(7826): 614-619, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32879484

RESUMEN

Tropane alkaloids from nightshade plants are neurotransmitter inhibitors that are used for treating neuromuscular disorders and are classified as essential medicines by the World Health Organization1,2. Challenges in global supplies have resulted in frequent shortages of these drugs3,4. Further vulnerabilities in supply chains have been revealed by events such as the Australian wildfires5 and the COVID-19 pandemic6. Rapidly deployable production strategies that are robust to environmental and socioeconomic upheaval7,8 are needed. Here we engineered baker's yeast to produce the medicinal alkaloids hyoscyamine and scopolamine, starting from simple sugars and amino acids. We combined functional genomics to identify a missing pathway enzyme, protein engineering to enable the functional expression of an acyltransferase via trafficking to the vacuole, heterologous transporters to facilitate intracellular routing, and strain optimization to improve titres. Our integrated system positions more than twenty proteins adapted from yeast, bacteria, plants and animals across six sub-cellular locations to recapitulate the spatial organization of tropane alkaloid biosynthesis in plants. Microbial biosynthesis platforms can facilitate the discovery of tropane alkaloid derivatives as new therapeutic agents for neurological disease and, once scaled, enable robust and agile supply of these essential medicines.


Asunto(s)
Alcaloides/biosíntesis , Alcaloides/provisión & distribución , Hiosciamina/biosíntesis , Saccharomyces cerevisiae/metabolismo , Escopolamina/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Atropa belladonna/enzimología , Derivados de Atropina/metabolismo , Transporte Biológico , Datura/enzimología , Glucósidos/biosíntesis , Glucósidos/metabolismo , Hiosciamina/provisión & distribución , Lactatos/metabolismo , Ligasas/genética , Ligasas/metabolismo , Modelos Moleculares , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Ingeniería de Proteínas , Saccharomyces cerevisiae/genética , Escopolamina/provisión & distribución , Vacuolas/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(1): e2209339120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36577068

RESUMEN

Cephalotaxines harbor great medical potential, but their natural source, the endemic conifer Cephalotaxus is highly endangered, creating a conflict between biotechnological valorization and preservation of biodiversity. Here, we construct the whole biosynthetic pathway to the 1-phenethylisoquinoline scaffold, as first committed compound for phenylethylisoquinoline alkaloids (PIAs), combining metabolic modeling, and transcriptome mining of Cephalotaxus hainanensis to infer the biosynthesis for PIA precursor. We identify a novel protein, ChPSS, driving the Pictet-Spengler condensation and show that this enzyme represents the branching point where PIA biosynthesis diverges from the concurrent benzylisoquinoline-alkaloids pathway. We also pinpoint ChDBR as crucial step to form 4-hydroxydihydrocinnamaldehyde diverging from lignin biosynthesis. The elucidation of the early PIA pathway represents an important step toward microbe-based production of these pharmaceutically important alkaloids resolving the conflict between biotechnology and preservation of biodiversity.


Asunto(s)
Alcaloides , Bencilisoquinolinas , Cephalotaxus , Cephalotaxus/genética , Biotecnología
6.
Proc Natl Acad Sci U S A ; 120(30): e2303327120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37467272

RESUMEN

Diverse ß-carboline (ßC) alkaloids are produced by microbes, plants, and animals with myriad bioactivities and drug potentials. However, the biosynthetic mechanism of ßCs remains largely elusive, especially regarding the hydroxyl and glucosyl modifications of ßCs. Here, we report the presence of the bacterial-like Pictet-Spenglerase gene Fcs1 in the entomopathogenic Beauveria fungi that can catalyze the biosynthesis of the ßC skeleton. The overexpression of Fcs1 in Beauveria bassiana led to the identification of six ßC methyl glycosides, termed bassicarbosides (BCSs) A-F. We verified that the cytochrome P450 (CYP) genes adjacent to Fcs1 cannot oxidize ßCs. Alternatively, the separated CYP684B2 family gene Fcs2 was identified to catalyze ßC hydroxylation together with its cofactor gene Fcs3. The functional homologue of Fcs2 is only present in the Fcs1-containing fungi and highly similar to the Fcs1-connected yet nonfunctional CYP. Both evolved quicker than those from fungi without Fcs1 homologues. Finally, the paired methyl/glucosyl transferase genes were verified to mediate the production of BCSs from hydroxy-ßCs. All these functionally verified genes are located on different chromosomes of Beauveria, which is in contrast to the typical content-clustered feature of fungal biosynthetic gene clusters (BGCs). We also found that the production of BCSs selectively contributed to fungal infection of different insect species. Our findings shed light on the biosynthetic mechanism of ßC glycosides, including the identification of a ßC hydroxylase. The results of this study also propose an evolving process of fungal BGC formation following the horizontal transfer of a bacterial gene to fungi.


Asunto(s)
Alcaloides , Beauveria , Animales , Carbolinas , Sistema Enzimático del Citocromo P-450/genética , Familia de Multigenes , Hongos/genética , Beauveria/genética
7.
Proc Natl Acad Sci U S A ; 120(22): e2302251120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216531

RESUMEN

In coevolution between plants and insects, reciprocal selection often leads to phenotype matching between chemical defense and herbivore offense. Nonetheless, it is not well understood whether distinct plant parts are differentially defended and how herbivores adapted to those parts cope with tissue-specific defense. Milkweed plants produce a diversity of cardenolide toxins and specialist herbivores have substitutions in their target enzyme (Na+/K+-ATPase), each playing a central role in milkweed-insect coevolution. The four-eyed milkweed beetle (Tetraopes tetrophthalmus) is an abundant toxin-sequestering herbivore that feeds exclusively on milkweed roots as larvae and less so on milkweed leaves as adults. Accordingly, we tested the tolerance of this beetle's Na+/K+-ATPase to cardenolide extracts from roots versus leaves of its main host (Asclepias syriaca), along with sequestered cardenolides from beetle tissues. We additionally purified and tested the inhibitory activity of dominant cardenolides from roots (syrioside) and leaves (glycosylated aspecioside). Tetraopes' enzyme was threefold more tolerant of root extracts and syrioside than leaf cardenolides. Nonetheless, beetle-sequestered cardenolides were more potent than those in roots, suggesting selective uptake or dependence on compartmentalization of toxins away from the beetle's enzymatic target. Because Tetraopes has two functionally validated amino acid substitutions in its Na+/K+-ATPase compared to the ancestral form in other insects, we compared its cardenolide tolerance to that of wild-type Drosophila and CRISPR-edited Drosophila with Tetraopes' Na+/K+-ATPase genotype. Those two amino acid substitutions accounted for >50% of Tetraopes' enhanced enzymatic tolerance of cardenolides. Thus, milkweed's tissue-specific expression of root toxins is matched by physiological adaptations in its specialist root herbivore.


Asunto(s)
Alcaloides , Asclepias , Escarabajos , Animales , Herbivoria , Adaptación Fisiológica , Escarabajos/fisiología , Cardenólidos/química , Asclepias/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Drosophila/metabolismo
8.
Plant J ; 118(5): 1439-1454, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38379355

RESUMEN

Aporphine alkaloids are a large group of natural compounds with extensive pharmaceutical application prospects. The biosynthesis of aporphine alkaloids has been paid attentions in the past decades. Here, we determined the contents of four 1-benzylisoquinoline alkaloids and five aporphine alkaloids in root, stem, leaf, and flower of Aristolochia contorta Bunge, which belongs to magnoliids. Two CYP80 enzymes were identified and characterized from A. contorta. Both of them catalyze the unusual C-C phenol coupling reactions and directly form the aporphine alkaloid skeleton. AcCYP80G7 catalyzed the formation of hexacyclic aporphine corytuberine. AcCYP80Q8 catalyzed the formation of pentacyclic proaporphine glaziovine. Kingdom-wide phylogenetic analysis of the CYP80 family suggested that CYP80 first appeared in Nymphaeales. The functional divergence of hydroxylation and C-C (or C-O) phenol coupling preceded the divergence of magnoliids and eudicots. Probable crucial residues of AcCYP80Q8 were selected through sequence alignment and molecular docking. Site-directed mutagenesis revealed two crucial residues E284 and Y106 for the catalytic reaction. Identification and characterization of two aporphine skeleton-forming enzymes provide insights into the biosynthesis of aporphine alkaloids.


Asunto(s)
Alcaloides , Aporfinas , Aristolochia , Sistema Enzimático del Citocromo P-450 , Filogenia , Proteínas de Plantas , Aporfinas/metabolismo , Aristolochia/enzimología , Aristolochia/metabolismo , Aristolochia/genética , Aristolochia/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Alcaloides/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/enzimología , Raíces de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Flores/enzimología , Flores/genética , Flores/metabolismo , Tallos de la Planta/metabolismo , Tallos de la Planta/enzimología , Tallos de la Planta/genética
9.
J Virol ; 98(8): e0032724, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39082785

RESUMEN

African swine fever (ASF), caused by the African swine fever virus (ASFV), is a highly infectious disease afflicting domestic pigs and wild boars. It exhibits an alarming acute infection fatality rate of up to 100%. Regrettably, no commercial vaccines or specific drugs for combating this disease are currently available. This study evaluated the anti-ASFV activities in porcine alveolar macrophages, 3D4/21 cells, and PK-15 cells of four bis-benzylisoquinoline alkaloids (BBAs): cepharanthine (CEP), tetrandrine, fangchinoline, and iso-tetrandrine. Furthermore, we demonstrated that CEP, which exhibited the highest selectivity index (SI = 81.31), alkalized late endosomes/lysosomes, hindered ASFV endosomal transport, disrupted virus uncoating signals, and thereby inhibited ASFV internalization. Additionally, CEP disrupted ASFV DNA synthesis, leading to the inhibition of viral replication. Moreover, berbamine was labeled with NBD to synthesize a fluorescent probe to study the cellular location of these BBAs. By co-staining with Lyso-Tracker and lysosome-associated membrane protein 1, we demonstrated that BBAs target the endolysosomal compartments for the first time. Our data together indicated that BBAs are a class of natural products with significant inhibitory effects against ASFV infection. These findings suggest their potential efficacy as agents for the prevention and control of ASF, offering valuable references for the identification of potential drug targets.IMPORTANCEThe urgency and severity of African swine fever (ASF) underscore the critical need for effective interventions against this highly infectious disease, which poses a grave threat to domestic pigs and wild boars. Our study reveals the potent anti-African swine fever virus (ASFV) efficacy of bis-benzylisoquinoline alkaloids (BBAs), particularly evident in the absence of progeny virus production under a 5 µM concentration treatment. The structural similarity among cepharanthine, tetrandrine, fangchinoline, and iso-tetrandrine, coupled with their analogous inhibitory stages and comparable selectivity indexes, strongly suggests a shared antiviral mechanism within this drug category. Further investigation revealed that BBAs localize to lysosomes and inhibit the internalization and replication of ASFV by disrupting the endosomal/lysosomal function. These collective results have profound implications for ASF prevention and control, suggesting the potential of the investigated agents as prophylactic and therapeutic measures. Furthermore, our study offers crucial insights into identifying drug targets and laying the groundwork for innovative interventions.


Asunto(s)
Virus de la Fiebre Porcina Africana , Antivirales , Bencilisoquinolinas , Endosomas , Lisosomas , Internalización del Virus , Replicación Viral , Animales , Virus de la Fiebre Porcina Africana/efectos de los fármacos , Virus de la Fiebre Porcina Africana/fisiología , Internalización del Virus/efectos de los fármacos , Bencilisoquinolinas/farmacología , Replicación Viral/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/virología , Porcinos , Endosomas/metabolismo , Endosomas/efectos de los fármacos , Endosomas/virología , Antivirales/farmacología , Línea Celular , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/tratamiento farmacológico , Fiebre Porcina Africana/metabolismo , Guanina/análogos & derivados , Guanina/farmacología , Alcaloides/farmacología , Macrófagos Alveolares/virología , Macrófagos Alveolares/efectos de los fármacos , Benzodioxoles
10.
Plant Physiol ; 195(3): 2213-2233, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38466200

RESUMEN

Rho of Plant (ROP) GTPases function as molecular switches that control signaling processes essential for growth, development, and defense. However, their role in specialized metabolism is poorly understood. Previously, we demonstrated that inhibition of protein geranylgeranyl transferase (PGGT-I) negatively impacts the biosynthesis of monoterpene indole alkaloids (MIA) in Madagascar periwinkle (Catharanthus roseus), indicating the involvement of prenylated proteins in signaling. Here, we show through biochemical, molecular, and in planta approaches that specific geranylgeranylated ROPs modulate C. roseus MIA biosynthesis. Among the six C. roseus ROP GTPases (CrROPs), only CrROP3 and CrROP5, having a C-terminal CSIL motif, were specifically prenylated by PGGT-I. Additionally, their transcripts showed higher expression in most parts than other CrROPs. Protein-protein interaction studies revealed that CrROP3 and CrROP5, but not ΔCrROP3, ΔCrROP5, and CrROP2 lacking the CSIL motif, interacted with CrPGGT-I. Further, CrROP3 and CrROP5 exhibited nuclear localization, whereas CrROP2 was localized to the plasma membrane. In planta functional studies revealed that silencing of CrROP3 and CrROP5 negatively affected MIA biosynthesis, while their overexpression upregulated MIA formation. In contrast, silencing and overexpression of CrROP2 had no effect on MIA biosynthesis. Moreover, overexpression of ΔCrROP3 and ΔCrROP5 mutants devoid of sequence coding for the CSIL motif failed to enhance MIA biosynthesis. These results implicate that CrROP3 and CrROP5 have a positive regulatory role on MIA biosynthesis and thus shed light on how geranylgeranylated ROP GTPases mediate the modulation of specialized metabolism in C. roseus.


Asunto(s)
Catharanthus , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Catharanthus/genética , Catharanthus/metabolismo , Catharanthus/enzimología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Prenilación de Proteína , Secuencias de Aminoácidos , Alcaloides/metabolismo , Alcaloides/biosíntesis
11.
Plant Physiol ; 196(2): 1426-1443, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39067057

RESUMEN

Tomato (Solanum lycopersicum L.) is rich in nutrients and has been an important target for enhancing the accumulation of various metabolites. Tomato also contains cholesterol-derived molecules, steroidal glycoalkaloids (SGAs), which contribute to pathogen defense but are toxic to humans and considered antinutritional compounds. Previous studies suggest the role of various transcription factors in SGA biosynthesis; however, the role of light and associated regulatory factors has not been studied in tomatoes. Here, we demonstrated that SGA biosynthesis is regulated by light through the ELONGATED HYPOCOTYL 5 homolog, SlHY5, by binding to light-responsive G-boxes present in the promoters of structural and regulatory genes. SlHY5 complemented Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) hy5 mutants at molecular, morphological, and biochemical levels. CRISPR/Cas9-based knockout tomato plants, SlHY5CR, showed downregulation of SGA and phenylpropanoid pathway genes, leading to a significant reduction in SGA (α-tomatine and dehydrotomatine) and flavonol contents, whereas plants overexpressing SlHY5 (SlHY5OX) showed the opposite effect. Enhanced SGA and flavonol levels in SlHY5OX lines provided tolerance against Alternaria solani fungus, while SlHY5CR lines were susceptible to the pathogen. This study advances our understanding of the HY5-dependent light-regulated biosynthesis of SGAs and flavonoids and their role in biotic stress in tomatoes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Alcaloides/metabolismo , Alcaloides/biosíntesis , Arabidopsis/genética , Arabidopsis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiología , Alternaria/fisiología , Tomatina/análogos & derivados , Tomatina/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantas Modificadas Genéticamente , Luz
12.
Acc Chem Res ; 57(13): 1870-1884, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38874438

RESUMEN

ConspectusThe bis-tetrahydroisoquinoline (bis-THIQ) natural products represent a medicinally important class of isoquinoline alkaloids that exhibit broad biological activities with particularly potent antitumor properties, as exemplified by the two U.S. FDA approved molecules trabectidin and lurbinectedin. Accordingly, other members within the bis-THIQ family have emerged as prime targets for synthetic chemists, aiming to innovate an orthogonal chemical production of these compounds. With the ability of these complementary strategies to reliably and predictably manipulate molecular structures with atomic precision, this should allow the preparation of synthetic derivatives not existing in nature as new drug leads in the development of novel medicines with desired biological functions.Beyond the biological perspective, bis-THIQ natural products also possess intricate and unique structures, serving as a source of intellectual stimulation for synthetic organic chemists. Within our laboratory, we have developed an integrated program that combines reaction development and target-directed synthesis, leveraging the architecturally complex molecular framework of bis-THIQ natural products as a driving force for the advancement of novel reaction methodologies. In this Account, we unveil our synthetic efforts in a comprehensive story, describing how our synthetic strategy toward bis-THIQ natural products, specifically jorunnamycin A and jorumycin, has evolved over the course of our studies through our key transformations comprising (a) the direct functionalization of isoquinoline N-oxide to prepare the bis-isoquinoline (bis-IQ) intermediate, (b) the diastereoselective and enantioselective isoquinoline hydrogenation to forge the pentacyclic skeleton of the natural product, and (c) the late-stage oxygenation chemistry to adjust the oxidation states of the A- and E-rings. First, we detail our plan in utilizing the aryne annulation strategy to prepare isoquinoline fragments for the bis-THIQ molecules. Faced with unpromising results in the direct C-H functionalization of isoquinoline N-oxide, we lay out in this Account our rationale behind the design of each isoquinoline coupling partner to overcome these challenges. Additionally, we reveal the inspiration for our hydrogenation system, the setup of our pseudo-high-throughput screening, and the extension of the developed hydrogenation protocols to other simplified isoquinolines.In the context of non-natural bis-THIQ molecules, we have successfully adapted this tandem coupling/hydrogenation approach in the preparation of perfluorinated bis-THIQs, representing the first set of electron-deficient non-natural analogues. Finally, we include our unsuccessful late-stage oxygenation attempts prior to the discovery of the Pd-catalyzed C-O cross-coupling reaction. With this full disclosure of the chemistry developed for the syntheses of bis-THIQs, we hope our orthogonal synthetic tactics will provide useful information and serve as an inspiration for the future development of bis-THIQ pharmaceuticals.


Asunto(s)
Tetrahidroisoquinolinas , Tetrahidroisoquinolinas/química , Tetrahidroisoquinolinas/síntesis química , Alcaloides/química , Alcaloides/síntesis química , Productos Biológicos/química , Productos Biológicos/síntesis química
13.
Chem Rev ; 123(15): 9447-9496, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37429001

RESUMEN

The tetrahydroisoquinoline (THIQ) natural products constitute one of the largest families of alkaloids and exhibit a wide range of structural diversity and biological activity. Ranging from simple THIQ natural products to complex trisTHIQ alkaloids such as the ecteinascidins, the chemical syntheses of these alkaloids and their analogs have been thoroughly investigated due to their intricate structural features and functionalities, as well as their high therapeutic potential. This review describes the general structure and biosynthesis of each family of THIQ alkaloids as well as recent advancements of the total synthesis of these natural products from 2002 to 2020. Recent chemical syntheses that have emerged harnessing novel, creative synthetic design, and modern chemical methodology will be highlighted. This review will hopefully serve as a guide for the unique strategies and tools used in the total synthesis of THIQ alkaloids, as well as address the longstanding challenges in their chemical and biosynthesis.


Asunto(s)
Alcaloides , Productos Biológicos , Tetrahidroisoquinolinas , Alcaloides/química , Tetrahidroisoquinolinas/química , Productos Biológicos/química
14.
Genomics ; 116(5): 110881, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38906513

RESUMEN

Alkaloids are the main medicinal components in Houttuynia cordata. In this study, two accessions 6# and 7# of H. cordata underwent thorough metabolomic analyses to identify and quantify alkaloid phytometabolites. It turned out that the alkaloid types were largely similar between 6# and 7#, and the identified 81 alkaloids could be divided into nine structural classes. However, the content of alkaloids in the two accessions was quite different. According to transcriptome data, a total of 114 differentially expressed genes related to alkaloid metabolism were screened. The alkaloid synthesis pathway of the two varieties was mainly different in the isoquinoline alkaloid biosynthesis and indole alkaloid biosynthesis; four genes A22110063c_transcript_59323, A22110063c_transcript_60118, A22110063c_transcript_51672 and A22110063c_transcript_48784 were highly expressed in 7#, which could be key candidate genes of alkaloid metabolism and warrant further analysis. These results provide a reference for the medicinal application of H. cordata and breeding alkaloid rich varieties.


Asunto(s)
Alcaloides , Houttuynia , Metaboloma , Transcriptoma , Houttuynia/metabolismo , Houttuynia/genética , Alcaloides/metabolismo , Regulación de la Expresión Génica de las Plantas
15.
J Cell Mol Med ; 28(18): e70116, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39340487

RESUMEN

Global impact of viral diseases specially Monkeypox (mpox) and Marburg virus, emphasizing the urgent need for effective drug interventions. Oxymatrine is an alkaloid which has been selected and modified using various functional groups to enhance its efficacy. The modifications were evaluated using various computatioanal analysis such as pass prediction, molecular docking, ADMET, and molecular dynamic simulation. Mpox and Marburg virus were chosen as target diseases based on their maximum pass prediction spectrum against viral disease. After that, molecular docking, dynamic simulation, DFT, calculation and ADMET prediction were determined. The main objective of this study was to enhance the efficacy of oxymatrine derivatives through functional group modifications and computational analyses to develop effective drug candidates against mpox and Marburg viruses. The calculated binding affinities indicated strong interactions against both mpox virus and Marburg virus. After that, the molecular dynamic simulation was conducted at 100 ns, which confirmed the stability of the binding interactions between the modified oxymatrine derivatives and target proteins. Then, the modified oxymatrine derivatives conducted theoretical ADMET profiling, which demonstrated their potential for effective drug development. Moreover, HOMO-LUMO calculation was performed to understand the chemical reactivity and physicochemical properties of compounds. This computational analysis indicated that modified oxymatrine derivatives for the treatment of mpox and Marburg virus suggested effective drug candidates based on their binding affinity, drug-like properties, stability and chemical reactivity. However, further experimental validation is necessary to confirm their clinical value and efficacy as therapeutic candidates.


Asunto(s)
Alcaloides , Antivirales , Diseño de Fármacos , Marburgvirus , Monkeypox virus , Quinolizinas , Alcaloides/química , Alcaloides/farmacología , Antivirales/farmacología , Antivirales/química , Marburgvirus/efectos de los fármacos , Matrinas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Quinolizinas/química , Quinolizinas/farmacología , Monkeypox virus/efectos de los fármacos
16.
J Physiol ; 602(12): 2807-2822, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762879

RESUMEN

Piperine has been shown to bind to myosin and shift the distribution of conformational states of myosin molecules from the super-relaxed state to the disordered relaxed state. However, little is known about the implications for muscle force production and potential underlying mechanisms. Muscle contractility experiments were performed using isolated muscles and single fibres from rats and mice. The dose-response effect of piperine on muscle force was assessed at several stimulation frequencies. The potentiation of muscle force was also tested in muscles fatigued by eccentric contractions. Potential mechanisms of force potentiation were assessed by measuring Ca2+ levels during stimulation in enzymatically dissociated muscle fibres, while myofibrillar Ca2+ sensitivity was assessed in chemically skinned muscle fibres. Piperine caused a dose-dependent increase in low-frequency force with no effect on high-frequency force in both slow- and fast-twitch muscle, with similar relative increases in twitch force, rate of force development and relaxation rate. The potentiating effect of piperine on low-frequency force was reversible, and piperine partially recovered low-frequency force in fatigued muscle. Piperine had no effect on myoplasmic free [Ca2+] levels in mouse muscle fibres, whereas piperine substantially augmented the force response to submaximal levels of [Ca2+] in rat MyHCII fibres and MyHCI fibres along with a minor increase in maximum Ca2+-activated force. Piperine enhances low-frequency force production in both fast- and slow-twitch muscle. The effects are reversible and can counteract muscle fatigue. The primary underlying mechanism appears to be an increase in Ca2+ sensitivity. KEY POINTS: Piperine is a plant alkaloid derived from black pepper. It is known to bind to skeletal muscle myosin and enhance resting ATP turnover but its effects on contractility are not well known. We showed for the first time a piperine-induced force potentiation that was pronounced during low-frequency electrical stimulation of isolated muscles. The effect of piperine was observed in both slow and fast muscle types, was reversible, and could counteract the force decrements observed after fatiguing muscle contractions. Piperine treatment caused an increase in myofibrillar Ca2+ sensitivity in chemically skinned muscle fibres, while we observed no effect on intracellular Ca2+ concentrations during electrical stimulation in enzymatically dissociated muscle fibres.


Asunto(s)
Alcaloides , Benzodioxoles , Calcio , Contracción Muscular , Fibras Musculares de Contracción Rápida , Fibras Musculares de Contracción Lenta , Piperidinas , Alcamidas Poliinsaturadas , Animales , Alcamidas Poliinsaturadas/farmacología , Benzodioxoles/farmacología , Piperidinas/farmacología , Alcaloides/farmacología , Ratones , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fibras Musculares de Contracción Rápida/fisiología , Ratas , Contracción Muscular/efectos de los fármacos , Masculino , Calcio/metabolismo , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Fibras Musculares de Contracción Lenta/fisiología , Fatiga Muscular/efectos de los fármacos , Fatiga Muscular/fisiología , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Relación Dosis-Respuesta a Droga
17.
BMC Genomics ; 25(1): 418, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679745

RESUMEN

BACKGROUND: Plant specialized (or secondary) metabolites (PSM), also known as phytochemicals, natural products, or plant constituents, play essential roles in interactions between plants and environment. Although many research efforts have focused on discovering novel metabolites and their biosynthetic genes, the resolution of metabolic pathways and identified biosynthetic genes was limited by rudimentary analysis approaches and enormous number of candidate genes. RESULTS: Here we integrated state-of-the-art automated machine learning (ML) frame AutoGluon-Tabular and multi-omics data from Arabidopsis to predict genes encoding enzymes involved in biosynthesis of plant specialized metabolite (PSM), focusing on the three main PSM categories: terpenoids, alkaloids, and phenolics. We found that the related features of genomics and proteomics were the top two crucial categories of features contributing to the model performance. Using only these key features, we built a new model in Arabidopsis, which performed better than models built with more features including those related with transcriptomics and epigenomics. Finally, the built models were validated in maize and tomato, and models tested for maize and trained with data from two other species exhibited either equivalent or superior performance to intraspecies predictions. CONCLUSIONS: Our external validation results in grape and poppy on the one hand implied the applicability of our model to the other species, and on the other hand showed enormous potential to improve the prediction of enzymes synthesizing PSM with the inclusion of valid data from a wider range of species.


Asunto(s)
Arabidopsis , Genómica , Aprendizaje Automático , Arabidopsis/genética , Arabidopsis/metabolismo , Genómica/métodos , Alcaloides/biosíntesis , Alcaloides/metabolismo , Terpenos/metabolismo , Proteómica/métodos , Metabolómica/métodos , Genes de Plantas , Plantas/genética , Plantas/metabolismo , Fenoles/metabolismo , Multiómica
18.
Plant Mol Biol ; 114(2): 23, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453737

RESUMEN

Benzylisoquinoline alkaloids (BIAs) represent a significant class of secondary metabolites with crucial roles in plant physiology and substantial potential for clinical applications. CYP82 genes are involved in the formation and modification of various BIA skeletons, contributing to the structural diversity of compounds. In this study, Corydalis yanhusuo, a traditional Chinese medicine rich in BIAs, was investigated to identify the catalytic function of CYP82s during BIA formation. Specifically, 20 CyCYP82-encoding genes were cloned, and their functions were identified in vitro. Ten of these CyCYP82s were observed to catalyze hydroxylation, leading to the formation of protopine and benzophenanthridine scaffolds. Furthermore, the correlation between BIA accumulation and the expression of CyCYP82s in different tissues of C. yanhusuo was assessed their. The identification and characterization of CyCYP82s provide novel genetic elements that can advance the synthetic biology of BIA compounds such as protopine and benzophenanthridine, and offer insights into the biosynthesis of BIAs with diverse structures in C. yanhusuo.


Asunto(s)
Alcaloides , Bencilisoquinolinas , Corydalis , Benzofenantridinas , Corydalis/genética , Corydalis/química , Corydalis/metabolismo , Alcaloides/metabolismo , Extractos Vegetales/química
19.
J Am Chem Soc ; 146(33): 23574-23581, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39132870

RESUMEN

We describe the unified enantioselective total synthesis of the polycyclotryptamine natural products (+)-quadrigemine H, (+)-isopsychotridine C, (+)-oleoidine, and (+)-caledonine. Inspired by our hypothesis for the biogenesis of these alkaloids via an iterative concatenative addition of homochiral cyclotryptamines to a meso-chimonanthine headcap, we leverage the modular, diazene-directed assembly of stereodefined cyclotryptamines to introduce successive C3a-C7' quaternary stereocenters on a heterodimeric meso-chimonanthine surrogate with full stereochemical control at each quaternary linkage. We developed a new strategy for iterative aryl-alkyl diazene synthesis using increasingly complex oligomeric hydrazide nucleophiles and a bifunctional cyclotryptamine bearing a C3a leaving group and a pendant C7 pronucleophile. The utility of this strategy is demonstrated by the first total synthesis of heptamer (+)-caledonine and hexamer (+)-oleoidine. Enabled by our completely stereoselective total syntheses and expanded characterization data sets, we provide the first complete stereochemical assignment of pentamer (+)-isopsychotridine C, provide evidence that it is identical to the alkaloid known as (+)-isopsychotridine B, and report that tetramer (+)-quadrigemine H is identical to the alkaloid called (+)-quadrigemine I, resolving longstanding questions about the structures of the highest-order [n + 1] oligocyclotryptamine alkaloids.


Asunto(s)
Alcaloides , Estereoisomerismo , Alcaloides/síntesis química , Alcaloides/química , Triptaminas/química , Triptaminas/síntesis química , Estructura Molecular , Productos Biológicos/síntesis química , Productos Biológicos/química
20.
J Am Chem Soc ; 146(34): 23933-23942, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39140852

RESUMEN

Nature uses compact but functionalized biosynthetic fragments as building blocks to generate complex natural products. To leverage this strategy for the discovery of natural products with new scaffolds, we performed genome mining to identify biosynthetic gene clusters (BGCs) in fungi that embed genes that can synthesize targeted fragments. The three-enzyme pathway that biosynthesizes the strained dityrosine cyclophane in the herquline A pathway was used to identify a large number of potential BGCs that may use the cyclophane as a fragment. Characterization of a conserved BGC from fungal strains led to the isolation of octacyclin A, an octacyclic natural product with an unprecedented structure, including two hetero-[3.3.1]bicycles and a combination of fused, bridged, and macrocyclic rings. Biosynthetic steps leading to octacyclin A were fully elucidated using pathway reconstitution and enzymatic assays, unveiling intriguing chemical logic and new enzymatic reactions in building the octacyclic core. Our work demonstrates the potential utility of fragment-guided genome mining in expanding natural product chemical space.


Asunto(s)
Alcaloides , Familia de Multigenes , Alcaloides/química , Hongos/genética , Hongos/química , Genoma Fúngico , Productos Biológicos/química , Productos Biológicos/metabolismo , Ciclofanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA