Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.401
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 167(2): 433-443.e14, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27667685

RESUMEN

While a third of the world carries the burden of tuberculosis, disease control has been hindered by a lack of tools, including a rapid, point-of-care diagnostic and a protective vaccine. In many infectious diseases, antibodies (Abs) are powerful biomarkers and important immune mediators. However, in Mycobacterium tuberculosis (Mtb) infection, a discriminatory or protective role for humoral immunity remains unclear. Using an unbiased antibody profiling approach, we show that individuals with latent tuberculosis infection (Ltb) and active tuberculosis disease (Atb) have distinct Mtb-specific humoral responses, such that Ltb infection is associated with unique Ab Fc functional profiles, selective binding to FcγRIII, and distinct Ab glycosylation patterns. Moreover, compared to Abs from Atb, Abs from Ltb drove enhanced phagolysosomal maturation, inflammasome activation, and, most importantly, macrophage killing of intracellular Mtb. Combined, these data point to a potential role for Fc-mediated Ab effector functions, tuned via differential glycosylation, in Mtb control.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Humoral , Tuberculosis Latente/inmunología , Mycobacterium tuberculosis/inmunología , Adulto , Femenino , Glicosilación , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Activación de Macrófagos , Masculino , Persona de Mediana Edad , Polisacáridos/inmunología , Análisis por Matrices de Proteínas , Receptores de IgG/inmunología , Adulto Joven
2.
Mol Cell ; 73(5): 1075-1082.e4, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849388

RESUMEN

High-throughput DNA sequencing techniques have enabled diverse approaches for linking DNA sequence to biochemical function. In contrast, assays of protein function have substantial limitations in terms of throughput, automation, and widespread availability. We have adapted an Illumina high-throughput sequencing chip to display an immense diversity of ribosomally translated proteins and peptides and then carried out fluorescence-based functional assays directly on this flow cell, demonstrating that a single, widely available high-throughput platform can perform both sequencing-by-synthesis and protein assays. We quantified the binding of the M2 anti-FLAG antibody to a library of 1.3 × 104 variant FLAG peptides, exploring non-additive effects of combinations of mutations and discovering a "superFLAG" epitope variant. We also measured the enzymatic activity of 1.56 × 105 molecular variants of full-length human O6-alkylguanine-DNA alkyltransferase (SNAP-tag). This comprehensive corpus of catalytic rates revealed amino acid interaction networks and cooperativity, linked positive cooperativity to structural proximity, and revealed ubiquitous positively cooperative interactions with histidine residues.


Asunto(s)
Anticuerpos/metabolismo , Análisis Mutacional de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Oligopéptidos/metabolismo , Análisis por Matrices de Proteínas/métodos , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Automatización de Laboratorios , Sitios de Unión de Anticuerpos , Catálisis , Análisis Mutacional de ADN/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Cinética , Mutación , O(6)-Metilguanina-ADN Metiltransferasa/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Oligopéptidos/genética , Análisis por Matrices de Proteínas/instrumentación , Unión Proteica , Ingeniería de Proteínas , Flujo de Trabajo
3.
Genes Dev ; 33(23-24): 1702-1717, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31699778

RESUMEN

The establishment of polyubiquitin conjugates with distinct linkages play important roles in the DNA damage response. Much remains unknown about the regulation of linkage-specific ubiquitin signaling at sites of DNA damage. Here we reveal that Cezanne (also known as Otud7B) deubiquitinating enzyme promotes the recruitment of Rap80/BRCA1-A complex by binding to Lys63-polyubiquitin and targeting Lys11-polyubiquitin. Using a ubiquitin binding domain protein array screen, we identify that the UBA domains of Cezanne and Cezanne2 (also known as Otud7A) selectively bind to Lys63-linked polyubiquitin. Increased Lys11-linkage ubiquitination due to lack of Cezanne DUB activity compromises the recruitment of Rap80/BRCA1-A. Cezanne2 interacts with Cezanne, facilitating Cezanne in the recruitment of Rap80/BRCA1-A, Rad18, and 53BP1, in cellular resistance to ionizing radiation and DNA repair. Our work presents a model that Cezanne serves as a "reader" of the Lys63-linkage polyubiquitin at DNA damage sites and an "eraser" of the Lys11-linkage ubiquitination, indicating a crosstalk between linkage-specific ubiquitination at DNA damage sites.


Asunto(s)
Daño del ADN , Reparación del ADN/genética , Endopeptidasas/genética , Endopeptidasas/metabolismo , Poliubiquitina/metabolismo , Transducción de Señal/fisiología , Línea Celular Tumoral , Daño del ADN/efectos de la radiación , Proteínas de Unión al ADN , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Chaperonas de Histonas , Humanos , Lisina/metabolismo , Proteínas Nucleares , Análisis por Matrices de Proteínas , Unión Proteica , Dominios Proteicos , Transporte de Proteínas/genética , Radiación Ionizante
4.
Nucleic Acids Res ; 52(9): 4818-4829, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38597656

RESUMEN

Protein binding microarrays (PBM), SELEX, RNAcompete and chromatin-immunoprecipitation have been intensively used to determine the specificity of nucleic acid binding proteins. While the specificity of proteins with pronounced sequence specificity is straightforward, the determination of the sequence specificity of proteins of modest sequence specificity is more difficult. In this work, an explorative data analysis workflow for nucleic acid binding data was developed that can be used by scientists that want to analyse their binding data. The workflow is based on a regressor realized in scikit-learn, the major machine learning module for the scripting language Python. The regressor is built on a thermodynamic model of nucleic acid binding and describes the sequence specificity with base- and position-specific energies. The regressor was used to determine the binding specificity of the T7 primase. For this, we reanalysed the binding data of the T7 primase obtained with a custom PBM. The binding specificity of the T7 primase agrees with the priming specificity (5'-GTC) and the template (5'-GGGTC) for the preferentially synthesized tetraribonucleotide primer (5'-pppACCC) but is more relaxed. The dominant contribution of two positions in the motif can be explained by the involvement of the initiating and elongating nucleotides for template binding.


Asunto(s)
Bacteriófago T7 , ADN Primasa , Bacteriófago T7/enzimología , Sitios de Unión , ADN Primasa/metabolismo , ADN Primasa/química , Análisis por Matrices de Proteínas/métodos , Unión Proteica , Termodinámica , Proteínas Virales/metabolismo , Proteínas Virales/química
5.
EMBO J ; 40(18): e107735, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34368969

RESUMEN

Microtubule depolymerases of the kinesin-13 family play important roles in various cellular processes and are frequently overexpressed in different cancer types. Despite the importance of their correct abundance, remarkably little is known about how their levels are regulated in cells. Using comprehensive screening on protein microarrays, we identified 161 candidate substrates of the multi-subunit ubiquitin E3 ligase SCFFbxw5 , including the kinesin-13 member Kif2c/MCAK. In vitro reconstitution assays demonstrate that MCAK and its closely related orthologs Kif2a and Kif2b become efficiently polyubiquitylated by neddylated SCFFbxw5 and Cdc34, without requiring preceding modifications. In cells, SCFFbxw5  targets MCAK for proteasomal degradation predominantly during G2 . While this seems largely dispensable for mitotic progression, loss of Fbxw5 leads to increased MCAK levels at basal bodies and impairs ciliogenesis in the following G1 /G0 , which can be rescued by concomitant knockdown of MCAK, Kif2a or Kif2b. We thus propose a novel regulatory event of ciliogenesis that begins already within the G2 phase of the preceding cell cycle.


Asunto(s)
Cilios/metabolismo , Proteínas F-Box/metabolismo , Cinesinas/metabolismo , Organogénesis , Ciclo Celular/genética , Humanos , Organogénesis/genética , Análisis por Matrices de Proteínas , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
6.
EMBO J ; 40(21): e107568, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34617299

RESUMEN

While aggregation-prone proteins are known to accelerate aging and cause age-related diseases, the cellular mechanisms that drive their cytotoxicity remain unresolved. The orthologous proteins MOAG-4, SERF1A, and SERF2 have recently been identified as cellular modifiers of such proteotoxicity. Using a peptide array screening approach on human amyloidogenic proteins, we found that SERF2 interacted with protein segments enriched in negatively charged and hydrophobic, aromatic amino acids. The absence of such segments, or the neutralization of the positive charge in SERF2, prevented these interactions and abolished the amyloid-promoting activity of SERF2. In protein aggregation models in the nematode worm Caenorhabditis elegans, protein aggregation and toxicity were suppressed by mutating the endogenous locus of MOAG-4 to neutralize charge. Our data indicate that MOAG-4 and SERF2 drive protein aggregation and toxicity by interactions with negatively charged segments in aggregation-prone proteins. Such charge interactions might accelerate primary nucleation of amyloid by initiating structural changes and by decreasing colloidal stability. Our study points at charge interactions between cellular modifiers and amyloidogenic proteins as potential targets for interventions to reduce age-related protein toxicity.


Asunto(s)
Amiloide/química , Proteínas Amiloidogénicas/química , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas del Tejido Nervioso/química , alfa-Sinucleína/química , Secuencia de Aminoácidos , Amiloide/genética , Amiloide/metabolismo , Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Péptidos/genética , Péptidos/metabolismo , Agregado de Proteínas , Análisis por Matrices de Proteínas , Unión Proteica , Transducción de Señal , Electricidad Estática , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
7.
Plant Physiol ; 195(1): 462-478, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38395446

RESUMEN

Grape (Vitis vinifera) is one of the most widely cultivated fruits globally, primarily used for processing and fresh consumption. Seedless grapes are favored by consumers for their convenience, making the study of seedlessness a subject of great interest to scientists. To identify regulators involved in this process in grape, a monoclonal antibody (mAb)-array-based proteomics approach, which contains 21,120 mAbs, was employed for screening proteins/antigens differentially accumulated in grape during development. Differences in antigen signals were detected between seeded and seedless grapes revealing the differential accumulation of 2,587 proteins. After immunoblotting validation, 71 antigens were further immunoprecipitated and identified by mass spectrometry (MS). An in planta protein-protein interaction (PPI) network of those differentially accumulated proteins was established using mAb antibody by immunoprecipitation (IP)-MS, which reveals the alteration of pathways related to carbon metabolism and glycolysis. To validate our result, a seedless-related protein, DUF642 domain-containing protein (VvDUF642), which is functionally uncharacterized in grapes, was ectopically overexpressed in tomato (Solanum lycopersicum "MicroTom") and led to a reduction in seed production. PPI network indicated that VvDUF642 interacts with pectin acetylesterase (VvPAE) in grapes, which was validated by BiFC and Co-IP. As anticipated, overexpression of VvPAE substantially reduced seed production in tomato. Moreover, S. lycopersicum colourless non-ripening expression was altered in VvDUF642- and VvPAE-overexpressing plants. Taken together, we provided a high-throughput method for the identification of proteins involved in the seed formation process. Among those, VvDUF642 and VvPAE are potential targets for breeding seedless grapes and other important fruits in the future.


Asunto(s)
Proteínas de Plantas , Proteoma , Semillas , Vitis , Vitis/metabolismo , Vitis/genética , Vitis/crecimiento & desarrollo , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteoma/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Anticuerpos Monoclonales/metabolismo , Proteómica/métodos , Regulación de la Expresión Génica de las Plantas , Mapas de Interacción de Proteínas , Análisis por Matrices de Proteínas/métodos
8.
Nature ; 569(7757): 503-508, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31068700

RESUMEN

Large panels of comprehensively characterized human cancer models, including the Cancer Cell Line Encyclopedia (CCLE), have provided a rigorous framework with which to study genetic variants, candidate targets, and small-molecule and biological therapeutics and to identify new marker-driven cancer dependencies. To improve our understanding of the molecular features that contribute to cancer phenotypes, including drug responses, here we have expanded the characterizations of cancer cell lines to include genetic, RNA splicing, DNA methylation, histone H3 modification, microRNA expression and reverse-phase protein array data for 1,072 cell lines from individuals of various lineages and ethnicities. Integration of these data with functional characterizations such as drug-sensitivity, short hairpin RNA knockdown and CRISPR-Cas9 knockout data reveals potential targets for cancer drugs and associated biomarkers. Together, this dataset and an accompanying public data portal provide a resource for the acceleration of cancer research using model cancer cell lines.


Asunto(s)
Línea Celular Tumoral , Neoplasias/genética , Neoplasias/patología , Antineoplásicos/farmacología , Biomarcadores de Tumor , Metilación de ADN , Resistencia a Antineoplásicos , Etnicidad/genética , Edición Génica , Histonas/metabolismo , Humanos , MicroARNs/genética , Terapia Molecular Dirigida , Neoplasias/metabolismo , Análisis por Matrices de Proteínas , Empalme del ARN
9.
Mol Cell Proteomics ; 22(4): 100507, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36787877

RESUMEN

In November 2022, 68% of the population received at least one dose of COVID-19 vaccines. Owing to the ongoing mutations, especially for the variants of concern (VOCs), it is important to monitor the humoral immune responses after different vaccination strategies. In this study, we developed a SARS-CoV-2 variant protein microarray that contained the spike proteins from the VOCs, e.g., alpha, beta, gamma, delta, and omicron, to quantify the binding antibody and surrogate neutralizing antibody. Plasmas were collected after two doses of matching AZD1222 (AZx2), two doses of matching mRNA-1273 (Mx2), or mixing AZD1222 and mRNA-1273 (AZ+M). The results showed a significant decrease of surrogate neutralizing antibodies against the receptor-binding domain in all VOCs in AZx2 and Mx2 but not AZ+M. A similar but minor reduction pattern of surrogate neutralizing antibodies against the extracellular domain was observed. While Mx2 exhibited a higher surrogate neutralizing level against all VOCs compared with AZx2, AZ+M showed an even higher surrogate neutralizing level in gamma and omicron compared with Mx2. It is worth noting that the binding antibody displayed a low correlation to the surrogate neutralizing antibody (R-square 0.130-0.382). This study delivers insights into humoral immunities, SARS-CoV-2 mutations, and mixing and matching vaccine strategies, which may provide a more effective vaccine strategy especially in preventing omicron.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , ChAdOx1 nCoV-19 , Inmunidad Humoral , Vacuna nCoV-2019 mRNA-1273 , Análisis por Matrices de Proteínas , COVID-19/prevención & control , Anticuerpos Neutralizantes
10.
J Biol Chem ; 299(1): 102772, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470429

RESUMEN

Mutations in NOTCH3 underlie cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most common inherited cerebral small vessel disease. Two cleavages of NOTCH3 protein, at Asp80 and Asp121, were previously described in CADASIL pathological samples. Using monoclonal antibodies developed against a NOTCH3 neoepitope, we identified a third cleavage at Asp964 between an Asp-Pro sequence. We characterized the structural requirements for proteolysis at Asp964 and the vascular distribution of the cleavage event. A proteome-wide analysis was performed to find proteins that interact with the cleavage product. Finally, we investigated the biochemical determinants of this third cleavage event. Cleavage at Asp964 was critically dependent on the proline adjacent to the aspartate residue. In addition, the cleavage product was highly enriched in CADASIL brain tissue and localized to the media of degenerating arteries, where it deposited with the two additional NOTCH3 cleavage products. Recombinant NOTCH3 terminating at Asp964 was used to probe protein microarrays. We identified multiple molecules that bound to the cleaved NOTCH3 more than to uncleaved protein, suggesting that cleavage may alter the local protein interactome within disease-affected blood vessels. The cleavage of purified NOTCH3 protein at Asp964 in vitro was activated by reducing agents and NOTCH3 protein; cleavage was inhibited by specific dicarboxylic acids, as seen with cleavage at Asp80 and Asp121. Overall, we propose homologous redox-driven Asp-Pro cleavages and alterations in protein interactions as potential mechanisms in inherited small vessel disease; similarities in protein cleavage characteristics may indicate common biochemical modulators of pathological NOTCH3 processing.


Asunto(s)
CADASIL , Receptor Notch3 , Humanos , Encéfalo/metabolismo , CADASIL/genética , CADASIL/patología , Enfermedades de los Pequeños Vasos Cerebrales/genética , Enfermedades de los Pequeños Vasos Cerebrales/patología , Mutación , Receptor Notch3/genética , Receptor Notch3/metabolismo , Unión Proteica , Análisis por Matrices de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Cancer Sci ; 115(5): 1378-1387, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38409909

RESUMEN

The last few decades have seen remarkable strides in the field of cancer therapy. Precision oncology coupled with comprehensive genomic profiling has become routine clinical practice for solid tumors, the advent of immune checkpoint inhibitors has transformed the landscape of oncology treatment, and the number of cancer drug approvals has continued to increase. Nevertheless, the application of genomics-driven precision oncology has thus far benefited only 10%-20% of cancer patients, leaving the majority without matched treatment options. This limitation underscores the need to explore alternative avenues with regard to selecting patients for targeted therapies. In contrast with genomics-based approaches, proteomics-based strategies offer a more precise understanding of the intricate biological processes driving cancer pathogenesis. This perspective underscores the importance of integrating complementary proteomic analyses into the next phase of precision oncology to establish robust biomarker-drug associations and surmount challenges related to drug resistance. One promising technology in this regard is the reverse-phase protein array (RPPA), which excels in quantitatively detecting protein modifications, even with limited amounts of sample. Its cost-effectiveness and rapid turnaround time further bolster its appeal for application in clinical settings. Here, we review the current status of genomics-driven precision oncology, as well as its limitations, with an emphasis on drug resistance. Subsequently, we explore the application of RPPA technology as a catalyst for advancing precision oncology. Through illustrative examples drawn from clinical trials, we demonstrate its utility for unraveling the molecular mechanisms underlying drug responses and resistance.


Asunto(s)
Neoplasias , Medicina de Precisión , Análisis por Matrices de Proteínas , Proteómica , Humanos , Medicina de Precisión/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Análisis por Matrices de Proteínas/métodos , Proteómica/métodos , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Genómica/métodos , Oncología Médica/métodos , Resistencia a Antineoplásicos , Terapia Molecular Dirigida/métodos
12.
Anal Chem ; 96(21): 8721-8729, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38683735

RESUMEN

Tyrosine phosphorylation is one of the most important posttranslational modifications in bacteria, linked to regulating growth, migration, virulence, secondary metabolites, biofilm formation, and capsule production. Only two tyrosine kinases (yccC (etk) and wzc) have been identified in Escherichia coli. The investigation by similarity has not revealed any novel BY-kinases in silico so far, most probably due to their sequence and structural variability. Here we developed a reverse-phase protein array from 4126 overexpressed E. coli clones, lysed, and printed on coated glass slides. These high-density E. coli lysate arrays (ECLAs) were quality controlled by the reproducibility and immobilization of total lysate proteins and specific overexpressed proteins. ECLAs were used to interrogate the relationship between protein overexpression and tyrosine phosphorylation in the total lysate. We identified 6 protein candidates, including etk and wzc, with elevated phosphotyrosine signals in the total lysates. Among them, we identified a novel kinase nrdD with autophosphorylation and transphosphorylation activities in the lysates. Moreover, the overexpression of nrdD induced biofilm formation. Since nrdD is a novel kinase, we used E. coli proteome microarrays (purified 4,126 E. coli proteins) to perform an in vitro kinase assay and identified 33 potential substrates. Together, this study established a new ECLA platform for interrogating posttranslational modifications and identified a novel kinase that is important in biofilm formation, which will shed some light on bacteria biochemistry and new ways to impede drug resistance.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Análisis por Matrices de Proteínas , Proteínas Tirosina Quinasas , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Fosforilación , Biopelículas
13.
Anal Chem ; 96(19): 7353-7359, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38690857

RESUMEN

Accurate detection of multiple cardiovascular biomarkers is crucial for the timely screening of acute coronary syndrome (ACS) and differential diagnosis from acute aortic syndrome (AAS). Herein, an antibody microarray-based metal-enhanced fluorescence assay (AMMEFA) has been developed to quantitatively detect 7 cardiovascular biomarkers through the formation of a sandwich immunoassay on the poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate)-decorated GNR-modified slide (GNR@P(GMA-HEMA) slide). The AMMEFA exhibits high specificity and sensitivity, the linear ranges span 5 orders of magnitude, and the limits of detection (LODs) of cardiac troponin I (cTnI), heart-type fatty acid binding protein (H-FABP), C-reactive protein (CRP), copeptin, myoglobin, D-Dimer, and N-terminal pro-brain natriuretic peptide (NT-proBNP) reach 0.07, 0.2, 65.7, 0.6, 0.2, 8.3, and 0.3 pg mL-1, respectively. To demonstrate its practicability, the AMMEFA has been applied to quantitatively analyze 7 cardiovascular biomarkers in 140 clinical plasma samples. In addition, the expression levels of cardiovascular biomarkers were analyzed by the least absolute shrinkage and selector operator (LASSO) regression, and the area under receiver operator characteristic curves (AUCs) of healthy donors (HDs), ACS patients, and AAS patients are 0.99, 0.98, and 0.97, respectively.


Asunto(s)
Biomarcadores , Humanos , Biomarcadores/sangre , Biomarcadores/análisis , Análisis por Matrices de Proteínas/métodos , Límite de Detección , Inmunoensayo/métodos , Fluorescencia
14.
Expert Rev Proteomics ; 21(4): 205-216, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38584506

RESUMEN

INTRODUCTION: Protein microarray is a promising immunomic approach for identifying biomarkers. Based on our previous study that reviewed parasite antigens and recent parasitic omics research, this article expands to include information on vector-borne parasitic diseases (VBPDs), namely, malaria, schistosomiasis, leishmaniasis, babesiosis, trypanosomiasis, lymphatic filariasis, and onchocerciasis. AREAS COVERED: We revisit and systematically summarize antigen markers of vector-borne parasites identified by the immunomic approach and discuss the latest advances in identifying antigens for the rational development of diagnostics and vaccines. The applications and challenges of this approach for VBPD control are also discussed. EXPERT OPINION: The immunomic approach has enabled the identification and/or validation of antigen markers for vaccine development, diagnosis, disease surveillance, and treatment. However, this approach presents several challenges, including limited sample size, variability in antigen expression, false-positive results, complexity of omics data, validation and reproducibility, and heterogeneity of diseases. In addition, antigen involvement in host immune evasion and antigen sensitivity/specificity are major issues in its application. Despite these limitations, this approach remains promising for controlling VBPD. Advances in technology and data analysis methods should continue to improve candidate antigen identification, as well as the use of a multiantigen approach in diagnostic and vaccine development for VBPD control.


Asunto(s)
Biomarcadores , Enfermedades Parasitarias , Humanos , Animales , Biomarcadores/sangre , Enfermedades Parasitarias/inmunología , Enfermedades Parasitarias/diagnóstico , Enfermedades Transmitidas por Vectores/prevención & control , Enfermedades Transmitidas por Vectores/inmunología , Análisis por Matrices de Proteínas/métodos , Proteómica/métodos
15.
Scand J Immunol ; 99(6): e13366, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38720518

RESUMEN

Antiphospholipid syndrome is a rare autoimmune disease characterized by persistent antiphospholipid antibodies. Immunoglobulin G plays a vital role in disease progression, with its structure and function affected by glycosylation. We aimed to investigate the changes in the serum immunoglobulin G glycosylation pattern in antiphospholipid syndrome patients. We applied lectin microarray on samples from 178 antiphospholipid syndrome patients, 135 disease controls (including Takayasu arteritis, rheumatoid arthritis and cardiovascular disease) and 100 healthy controls. Lectin blots were performed for validation of significant differences. Here, we show an increased immunoglobulin G-binding level of soybean agglutinin (p = 0.047, preferring N-acetylgalactosamine) in antiphospholipid syndrome patients compared with healthy and disease controls. Additionally, the immunoglobulin G from antiphospholipid syndrome patients diagnosed with pregnancy events had lower levels of fucosylation (p = 0.001, recognized by Lotus tetragonolobus) and sialylation (p = 0.030, recognized by Sambucus nigra I) than those with simple thrombotic events. These results suggest the unique serum immunoglobulin G glycosylation profile of antiphospholipid syndrome patients, which may inform future studies to design biomarkers for more accurate diagnosis of antiphospholipid syndrome and even for the prediction of clinical symptoms in patients.


Asunto(s)
Síndrome Antifosfolípido , Inmunoglobulina G , Humanos , Síndrome Antifosfolípido/inmunología , Síndrome Antifosfolípido/sangre , Síndrome Antifosfolípido/diagnóstico , Glicosilación , Femenino , Masculino , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Adulto , Persona de Mediana Edad , Embarazo , Lectinas/sangre , Lectinas/metabolismo , Lectinas/inmunología , Biomarcadores/sangre , Análisis por Matrices de Proteínas/métodos , Anticuerpos Antifosfolípidos/sangre , Anticuerpos Antifosfolípidos/inmunología , Lectinas de Plantas/metabolismo , Lectinas de Plantas/inmunología , Anciano , Glicoproteínas
16.
Anal Biochem ; 684: 115374, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914005

RESUMEN

The overexpression and/or amplification of the HER2/neu oncogene has been proposed as a prognostic marker in breast cancer. The detection of the related peptide HER2 remains a grand challenge in cancer diagnosis and for therapeutic decision-making. Here, we used a biosensing device based on Bloch Surface Waves excited on a one-dimensional photonic crystal (1DPC) as valid alternative to standard techniques. The 1DPC was optimized to operate in the visible spectrum and the biosensor optics has been designed to combine label-free and fluorescence operation modes. This feature enables a real-time monitoring of a direct competitive assay using detection mAbs conjugated with quantum dots for an accurate discrimination in fluorescence mode between HER2-positive/negative human plasma samples. Such a competitive assay was implemented using patterned alternating areas where HER2-Fc chimera and reference molecules were bio-conjugated and monitored in a multiplexed way. By combining Label-Free and fluorescence detection analysis, we were able to tune the parameters of the assay and provide an HER2 detection in human plasma in less than 20 min, allowing for a cost-effective assay and rapid turnaround time. The proposed approach offers a promising technique capable of performing combined label-free and fluorescence detection for both diagnosis and therapeutic monitoring of diseases.


Asunto(s)
Técnicas Biosensibles , Receptor ErbB-2 , Humanos , Receptor ErbB-2/sangre , Fluorescencia , Anticuerpos Monoclonales/química , Dispositivos Laboratorio en un Chip , Análisis por Matrices de Proteínas
17.
Cell ; 136(6): 1073-84, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19303850

RESUMEN

Histone acetyltransferases (HATs) and histone deacetylases (HDACs) conduct many critical functions through nonhistone substrates in metazoans, but only chromatin-associated nonhistone substrates are known in Saccharomyces cerevisiae. Using yeast proteome microarrays, we identified and validated many nonchromatin substrates of the essential nucleosome acetyltransferase of H4 (NuA4) complex. Among these, acetylation sites (Lys19 and 514) of phosphoenolpyruvate carboxykinase (Pck1p) were determined by tandem mass spectrometry. Acetylation at Lys514 was crucial for enzymatic activity and the ability of yeast cells to grow on nonfermentable carbon sources. Furthermore, Sir2p deacetylated Pck1p both in vitro and in vivo. Loss of Pck1p activity blocked the extension of yeast chronological life span caused by water starvation. In human hepatocellular carcinoma (HepG2) cells, human Pck1 acetylation and glucose production were dependent on TIP60, the human homolog of ESA1. Our findings demonstrate a regulatory function for the NuA4 complex in glucose metabolism and life span by acetylating a critical metabolic enzyme.


Asunto(s)
Gluconeogénesis , Histona Acetiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilación , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Histona Acetiltransferasas/genética , Histona Desacetilasas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisina Acetiltransferasa 5 , Complejos Multiproteicos/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Análisis por Matrices de Proteínas , Sirtuinas/metabolismo , Agua/metabolismo
18.
Nucleic Acids Res ; 50(22): e129, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36189884

RESUMEN

Drugs are designed to bind their target proteins in physiologically relevant tissues and organs to modulate biological functions and elicit desirable clinical outcomes. Information about target engagement at cellular and subcellular resolution is therefore critical for guiding compound optimization in drug discovery, and for probing resistance mechanisms to targeted therapies in clinical samples. We describe a target engagement-mediated amplification (TEMA) technology, where oligonucleotide-conjugated drugs are used to visualize and measure target engagement in situ, amplified via rolling-circle replication of circularized oligonucleotide probes. We illustrate the TEMA technique using dasatinib and gefitinib, two kinase inhibitors with distinct selectivity profiles. In vitro binding by the dasatinib probe to arrays of displayed proteins accurately reproduced known selectivity profiles, while their differential binding to fixed adherent cells agreed with expectations from expression profiles of the cells. We also introduce a proximity ligation variant of TEMA to selectively investigate binding to specific target proteins of interest. This form of the assay serves to improve resolution of binding to on- and off-target proteins. In conclusion, TEMA has the potential to aid in drug development and clinical routine by conferring valuable insights in drug-target interactions at spatial resolution in protein arrays, cells and in tissues.


Asunto(s)
Terapia Molecular Dirigida , Dasatinib/farmacología , Sondas de Oligonucleótidos , Análisis por Matrices de Proteínas , Proteínas , Gefitinib/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Terapia Molecular Dirigida/métodos
19.
Clin Oral Investig ; 28(7): 360, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847917

RESUMEN

OBJECTIVES: Lung cancer (LC) is the malignant tumor with the highest mortality rate worldwide, and precise early diagnosis can improve patient prognosis. The purpose of this study was to investigate whether alterations in the glycopatterns recognized by the Hippeastrum hybrid lectin (HHL) in salivary proteins are associated with the development of LC. MATERIALS AND METHODS: First, we collected saliva samples from LC (15 lung adenocarcinoma (ADC); 15 squamous cell carcinoma (SCC); 15 small cell lung cancer (SCLC)) and 15 benign pulmonary disease (BPD) for high-throughput detection of abundance levels of HHL-recognized glycopatterns using protein microarrays, and then validated the pooled samples from each group with lectin blotting analysis. Finally, the N-glycan profiles of salivary glycoproteins isolated from the pooled samples using HHL-magnetic particle conjugates were characterized separately using MALDI-TOF/TOF-MS. RESULTS: The results showed that the abundance level of glycopatterns recognized by HHL in salivary proteins was elevated in LC compared to BPD. The proportion of mannosylated N-glycans was notably higher in ADC (31.7%), SCC (39.0%), and SCLC (46.6%) compared to BPD (23.3%). CONCLUSIONS: The altered salivary glycopatterns such as oligomannose, Manα1-3Man, or Manα1-6Man N-glycans recognized by HHL might serve as potential biomarkers for the diagnosis of LC patients. CLINICAL RELEVANCE: This study provides crucial information for studying changes in salivary to differentiate between BPD and LC and facilitate the discovery of biomarkers for LC diagnosis based on precise alterations of mannosylated N-glycans in saliva.


Asunto(s)
Neoplasias Pulmonares , Saliva , Humanos , Masculino , Saliva/química , Femenino , Persona de Mediana Edad , Anciano , Análisis por Matrices de Proteínas , Polisacáridos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Glicoproteínas , Biomarcadores de Tumor , Proteínas y Péptidos Salivales/metabolismo , Manosa , Lectinas de Plantas/química , Carcinoma de Células Escamosas
20.
J Struct Biol ; 215(3): 107981, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37245604

RESUMEN

Biomaterials for tissue regeneration must mimic the biophysical properties of the native physiological environment. A protein engineering approach allows the generation of protein hydrogels with specific and customised biophysical properties designed to suit a particular physiological environment. Herein, repetitive engineered proteins were successfully designed to form covalent molecular networks with defined physical characteristics able to sustain cell phenotype. Our hydrogel design was made possible by the incorporation of the SpyTag (ST) peptide and multiple repetitive units of the SpyCatcher (SC) protein that spontaneously formed covalent crosslinks upon mixing. Changing the ratios of the protein building blocks (ST:SC), allowed the viscoelastic properties and gelation speeds of the hydrogels to be altered and controlled. The physical properties of the hydrogels could readily be altered further to suit different environments by tuning the key features in the repetitive protein sequence. The resulting hydrogels were designed with a view to allow cell attachment and encapsulation of liver derived cells. Biocompatibility of the hydrogels was assayed using a HepG2 cell line constitutively expressing GFP. The cells remained viable and continued to express GFP whilst attached or encapsulated within the hydrogel. Our results demonstrate how this genetically encoded approach using repetitive proteins could be applied to bridge engineering biology with nanotechnology creating a level of biomaterial customisation previously inaccessible.


Asunto(s)
Hidrogeles , Análisis por Matrices de Proteínas , Proteínas/genética , Materiales Biocompatibles/química , Secuencia de Aminoácidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA