Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48.995
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 175(1): 10-13, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30217361

RESUMEN

This year's Lasker Clinical Research Award goes to James Baird Glen for the discovery and development of the anesthetic propofol. Patients benefit from its fast onset and rapid systemic clearance, eliminating the prolonged sedation effects experienced with earlier agents. In just 30 years, propofol has been adopted around the world for safe and controlled induction of anesthesia.


Asunto(s)
Propofol/farmacología , Propofol/uso terapéutico , Anestesia/historia , Anestesia/métodos , Distinciones y Premios , Historia del Siglo XXI , Humanos , Propofol/historia
3.
PLoS Biol ; 21(2): e3002013, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36802356

RESUMEN

Substantial progress in the field of neuroscience has been made from anaesthetized preparations. Ketamine is one of the most used drugs in electrophysiology studies, but how ketamine affects neuronal responses is poorly understood. Here, we used in vivo electrophysiology and computational modelling to study how the auditory cortex of bats responds to vocalisations under anaesthesia and in wakefulness. In wakefulness, acoustic context increases neuronal discrimination of natural sounds. Neuron models predicted that ketamine affects the contextual discrimination of sounds regardless of the type of context heard by the animals (echolocation or communication sounds). However, empirical evidence showed that the predicted effect of ketamine occurs only if the acoustic context consists of low-pitched sounds (e.g., communication calls in bats). Using the empirical data, we updated the naïve models to show that differential effects of ketamine on cortical responses can be mediated by unbalanced changes in the firing rate of feedforward inputs to cortex, and changes in the depression of thalamo-cortical synaptic receptors. Combined, our findings obtained in vivo and in silico reveal the effects and mechanisms by which ketamine affects cortical responses to vocalisations.


Asunto(s)
Anestesia , Corteza Auditiva , Quirópteros , Ketamina , Animales , Corteza Auditiva/fisiología , Estimulación Acústica , Ketamina/farmacología , Quirópteros/fisiología , Neuronas/fisiología , Percepción Auditiva/fisiología
4.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38100331

RESUMEN

Imaging awake animals is quickly gaining traction in neuroscience as it offers a means to eliminate the confounding effects of anesthesia, difficulties of inter-species translation (when humans are typically imaged while awake), and the inability to investigate the full range of brain and behavioral states in unconscious animals. In this systematic review, we focus on the development of awake mouse blood oxygen level dependent functional magnetic resonance imaging (fMRI). Mice are widely used in research due to their fast-breeding cycle, genetic malleability, and low cost. Functional MRI yields whole-brain coverage and can be performed on both humans and animal models making it an ideal modality for comparing study findings across species. We provide an analysis of 30 articles (years 2011-2022) identified through a systematic literature search. Our conclusions include that head-posts are favorable, acclimation training for 10-14 d is likely ample under certain conditions, stress has been poorly characterized, and more standardization is needed to accelerate progress. For context, an overview of awake rat fMRI studies is also included. We make recommendations that will benefit a wide range of neuroscience applications.


Asunto(s)
Anestesia , Imagen por Resonancia Magnética , Humanos , Ratones , Ratas , Animales , Imagen por Resonancia Magnética/métodos , Vigilia , Encéfalo/diagnóstico por imagen , Mapeo Encefálico
5.
J Neurosci ; 43(26): 4884-4895, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37225435

RESUMEN

Establishing the neural mechanisms responsible for the altered global states of consciousness during anesthesia and dissociating these from other drug-related effects remains a challenge in consciousness research. We investigated differences in brain activity between connectedness and disconnectedness by administering various anesthetics at concentrations designed to render 50% of the subjects unresponsive. One hundred and sixty healthy male subjects were randomized to receive either propofol (1.7 µg/ml; n = 40), dexmedetomidine (1.5 ng/ml; n = 40), sevoflurane (0.9% end-tidal; n = 40), S-ketamine (0.75 µg/ml; n = 20), or saline placebo (n = 20) for 60 min using target-controlled infusions or vaporizer with end-tidal monitoring. Disconnectedness was defined as unresponsiveness to verbal commands probed at 2.5-min intervals and unawareness of external events in a postanesthesia interview. High-resolution positron emission tomography (PET) was used to quantify regional cerebral metabolic rates of glucose (CMRglu) utilization. Contrasting scans where the subjects were classified as connected and responsive versus disconnected and unresponsive revealed that for all anesthetics, except S-ketamine, the level of thalamic activity differed between these states. A conjunction analysis across the propofol, dexmedetomidine and sevoflurane groups confirmed the thalamus as the primary structure where reduced metabolic activity was related to disconnectedness. Widespread cortical metabolic suppression was observed when these subjects, classified as either connected or disconnected, were compared with the placebo group, suggesting that these findings may represent necessary but alone insufficient mechanisms for the change in the state of consciousness.SIGNIFICANCE STATEMENT Experimental anesthesia is commonly used in the search for measures of brain function which could distinguish between global states of consciousness. However, most previous studies have not been designed to separate effects related to consciousness from other effects related to drug exposure. We employed a novel study design to disentangle these effects by exposing subjects to predefined EC50 doses of four commonly used anesthetics or saline placebo. We demonstrate that state-related effects are remarkably limited compared with the widespread cortical effects related to drug exposure. In particular, decreased thalamic activity was associated with disconnectedness with all used anesthetics except for S-ketamine.


Asunto(s)
Anestesia , Anestésicos por Inhalación , Dexmedetomidina , Ketamina , Propofol , Masculino , Humanos , Propofol/farmacología , Sevoflurano/farmacología , Ketamina/farmacología , Dexmedetomidina/farmacología , Anestésicos por Inhalación/farmacología , Anestésicos Intravenosos
6.
BMC Bioinformatics ; 25(1): 178, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714921

RESUMEN

BACKGROUND: In low-middle income countries, healthcare providers primarily use paper health records for capturing data. Paper health records are utilized predominately due to the prohibitive cost of acquisition and maintenance of automated data capture devices and electronic medical records. Data recorded on paper health records is not easily accessible in a digital format to healthcare providers. The lack of real time accessible digital data limits healthcare providers, researchers, and quality improvement champions to leverage data to improve patient outcomes. In this project, we demonstrate the novel use of computer vision software to digitize handwritten intraoperative data elements from smartphone photographs of paper anesthesia charts from the University Teaching Hospital of Kigali. We specifically report our approach to digitize checkbox data, symbol-denoted systolic and diastolic blood pressure, and physiological data. METHODS: We implemented approaches for removing perspective distortions from smartphone photographs, removing shadows, and improving image readability through morphological operations. YOLOv8 models were used to deconstruct the anesthesia paper chart into specific data sections. Handwritten blood pressure symbols and physiological data were identified, and values were assigned using deep neural networks. Our work builds upon the contributions of previous research by improving upon their methods, updating the deep learning models to newer architectures, as well as consolidating them into a single piece of software. RESULTS: The model for extracting the sections of the anesthesia paper chart achieved an average box precision of 0.99, an average box recall of 0.99, and an mAP0.5-95 of 0.97. Our software digitizes checkbox data with greater than 99% accuracy and digitizes blood pressure data with a mean average error of 1.0 and 1.36 mmHg for systolic and diastolic blood pressure respectively. Overall accuracy for physiological data which includes oxygen saturation, inspired oxygen concentration and end tidal carbon dioxide concentration was 85.2%. CONCLUSIONS: We demonstrate that under normal photography conditions we can digitize checkbox, blood pressure and physiological data to within human accuracy when provided legible handwriting. Our contributions provide improved access to digital data to healthcare practitioners in low-middle income countries.


Asunto(s)
Teléfono Inteligente , Humanos , Anestesia , Registros Electrónicos de Salud , Países en Desarrollo , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Profundo
7.
J Physiol ; 602(4): 713-736, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38294945

RESUMEN

In the resting state, cortical neurons can fire action potentials spontaneously but synchronously (Up state), followed by a quiescent period (Down state) before the cycle repeats. Extracellular recordings in the infragranular layer of cortex with a micro-electrode display a negative deflection (depth-negative) during Up states and a positive deflection (depth-positive) during Down states. The resulting slow wave oscillation (SWO) has been studied extensively during sleep and under anaesthesia. However, recent research on the balanced nature of synaptic excitation and inhibition has highlighted our limited understanding of its genesis. Specifically, are excitation and inhibition balanced during SWOs? We analyse spontaneous local field potentials (LFPs) during SWOs recorded from anaesthetised rats via a multi-channel laminar micro-electrode and show that the Down state consists of two distinct synaptic states: a Dynamic Down state associated with depth-positive LFPs and a prominent dipole in the extracellular field, and a Static Down state with negligible ( ≈ 0 mV $ \approx 0{\mathrm{\;mV}}$ ) LFPs and a lack of dipoles extracellularly. We demonstrate that depth-negative and -positive LFPs are generated by a shift in the balance of synaptic excitation and inhibition from excitation dominance (depth-negative) to inhibition dominance (depth-positive) in the infragranular layer neurons. Thus, although excitation and inhibition co-tune overall, differences in their timing lead to an alternation of dominance, manifesting as SWOs. We further show that Up state initiation is significantly faster if the preceding Down state is dynamic rather than static. Our findings provide a coherent picture of the dependence of SWOs on synaptic activity. KEY POINTS: Cortical neurons can exhibit repeated cycles of spontaneous activity interleaved with periods of relative silence, a phenomenon known as 'slow wave oscillation' (SWO). During SWOs, recordings of local field potentials (LFPs) in the neocortex show depth-negative deflection during the active period (Up state) and depth-positive deflection during the silent period (Down state). Here we further classified the Down state into a dynamic phase and a static phase based on a novel method of classification and revealed non-random, stereotypical sequences of the three states occurring with significantly different transitional kinetics. Our results suggest that the positive and negative deflections in the LFP reflect the shift of the instantaneous balance between excitatory and inhibitory synaptic activity of the local cortical neurons. The differences in transitional kinetics may imply distinct synaptic mechanisms for Up state initiation. The study may provide a new approach for investigating spontaneous brain rhythms.


Asunto(s)
Anestesia , Neocórtex , Ratas , Animales , Neocórtex/fisiología , Potenciales de Acción/fisiología , Neuronas/fisiología , Sueño/fisiología
8.
Annu Rev Pharmacol Toxicol ; 61: 401-420, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-32679007

RESUMEN

Two-pore domain potassium (K2P) channels stabilize the resting membrane potential of both excitable and nonexcitable cells and, as such, are important regulators of cell activity. There are many conditions where pharmacological regulation of K2P channel activity would be of therapeutic benefit, including, but not limited to, atrial fibrillation, respiratory depression, pulmonary hypertension, neuropathic pain, migraine, depression, and some forms of cancer. Up until now, few if any selective pharmacological regulators of K2P channels have been available. However, recent publications of solved structures with small-molecule activators and inhibitors bound to TREK-1, TREK-2, and TASK-1 K2P channels have given insight into the pharmacophore requirements for compound binding to these sites. Together with the increasing availability of a number of novel, active, small-molecule compounds from K2P channel screening programs, these advances have opened up the possibility of rational activator and inhibitor design to selectively target K2P channels.


Asunto(s)
Anestesia , Preparaciones Farmacéuticas , Canales de Potasio de Dominio Poro en Tándem , Humanos
9.
Eur J Neurosci ; 59(5): 752-770, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37586411

RESUMEN

It has been suggested that consciousness is closely related to the complexity of the brain. The perturbational complexity index (PCI) has been used in humans and rodents to distinguish conscious from unconscious states based on the global cortical responses (recorded by electroencephalography, EEG) to local cortical stimulation (CS). However, it is unclear how different cortical layers respond to CS and contribute to the resulting intra- and inter-areal cortical connectivity and PCI. A detailed investigation of the local dynamics is needed to understand the basis for PCI. We hypothesized that the complexity level of global cortical responses (PCI) correlates with layer-specific activity and connectivity. We tested this idea by measuring global cortical dynamics and layer-specific activity in the somatosensory cortex (S1) of mice, combining cortical electrical stimulation in deep motor cortex, global electrocorticography (ECoG) and local laminar recordings from layers 1-6 in S1, during wakefulness and general anaesthesia (sevoflurane). We found that the transition from wake to sevoflurane anaesthesia correlated with a drop in both the global and local PCI (PCIst ) values (complexity). This was accompanied by a local decrease in neural firing rate, spike-field coherence and long-range functional connectivity specific to deep layers (L5, L6). Our results suggest that deep cortical layers are mechanistically important for changes in PCI and thereby for changes in the state of consciousness.


Asunto(s)
Anestesia , Corteza Somatosensorial , Humanos , Animales , Ratones , Sevoflurano , Estado de Conciencia , Encéfalo
10.
Eur J Neurosci ; 59(7): 1536-1557, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38233998

RESUMEN

For a long time, it has been assumed that dopaminergic (DA) neurons in both the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc) uniformly respond to rewarding and aversive stimuli by either increasing or decreasing their activity, respectively. This response was believed to signal information about the perceived stimuli's values. The identification of VTA&SNc DA neurons that are excited by both rewarding and aversive stimuli has led to the categorisation of VTA&SNc DA neurons into two subpopulations: one signalling the value and the other signalling the salience of the stimuli. It has been shown that the general state of the brain can modulate the electrical activity of VTA&SNc DA neurons, but it remains unknown whether this factor may also influence responses to aversive stimuli, such as a footshock (FS). To address this question, we have recorded the responses of VTA&SNc DA neurons to FSs across cortical activation and slow wave activity brain states in urethane-anaesthetised rats. Adding to the knowledge of aversion signalling by midbrain DA neurons, we report that significant proportion of VTA&SNc DA neurons can change their responses to an aversive stimulus in a brain state-dependent manner. The majority of these neurons decreased their activity in response to FS during cortical activation but switched to increasing it during slow wave activity. It can be hypothesised that this subpopulation of DA neurons may be involved in the 'dual signalling' of both the value and the salience of the stimuli, depending on the general state of the brain.


Asunto(s)
Anestesia , Neuronas Dopaminérgicas , Ratas , Animales , Uretano/farmacología , Sustancia Negra/fisiología , Mesencéfalo , Área Tegmental Ventral/fisiología , Anestésicos Intravenosos
11.
Eur J Neurosci ; 59(2): 208-219, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38105520

RESUMEN

Postoperative cognitive dysfunction (POCD) is a prevalent central nervous system complication predominantly observed in elderly patients. Sevoflurane, a general anaesthetic agent, has been implicated in the development of POCD, yet the underlying regulatory mechanisms potentially involving Sestrin1 (SESN1), a stress-responsive protein that plays a critical role in cellular homeostasis and protection against stress-induced damage, including oxidative stress and DNA damage, remain elusive. This study endeavoured to elucidate the impact of SESN1 on sevoflurane-induced cognitive impairment in rats. Employing a model in which SESN1 was transfected into SD male rats and cognitive dysfunction was induced by sevoflurane. The Morris Water Maze test was used for behavioural evaluation, Enzyme-Linked Immunosorbent Assay, Western blotting and immunofluorescence were applied to assess the influence of SESN1 on the inflammatory response and mitophagy in the rat hippocampus. The study further aimed to uncover the putative mechanism by which SESN1, through SIRT1, might modulate cognitive function. Concurrently, levels of malondialdehyde, superoxide dismutase and mitochondrially produced ATP within the rat hippocampus were quantified. Experimental outcomes suggested that SESN1 overexpression significantly mitigated the deleterious effects of sevoflurane anaesthesia, ameliorated neuroinflammation and inflammasome activation, modified mitochondrial function and facilitated mitophagy. Additionally, SESN1, via the activation of SIRT1, may suppress inflammasome activation and mitochondrial dysfunction. Collectively, these findings underscore SESN1's integral role in counteracting sevoflurane-induced cognitive impairment, impeding inflammasome activation, enhancing mitochondrial function and fostering mitophagy, which appear to be intricately linked to SESN1-mediated SIRT1 activation. SESN1 is a novel therapeutic target for POCD, potentially advancing neuroprotective strategies in clinical settings.


Asunto(s)
Anestesia , Disfunción Cognitiva , Humanos , Masculino , Ratas , Animales , Anciano , Sevoflurano/farmacología , Sirtuina 1/metabolismo , Mitofagia , Inflamasomas/efectos adversos , Inflamasomas/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Anestesia/efectos adversos , Hipocampo/metabolismo , Sestrinas/metabolismo
12.
Eur J Neurosci ; 59(1): 36-53, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985440

RESUMEN

Dexmedetomidine (Dex) may exert neuroprotective effects by attenuating inflammatory responses. However, whether Dex specifically improves postoperative cognitive dysfunction (POCD) by inhibiting microglial inflammation through what pathway remains unclear. In this study, the POCD model was constructed by performing open surgery after 3 h of continuous inhalation of 3% sevoflurane to rats, which were intraperitoneally injected with 25 µg/kg Dex .5 h before anaesthesia. The results displayed that Dex intervention decreased rat escape latency, maintained swimming speed and increased the number of times rats crossed the platform and the time spent in the target quadrant. Furthermore, the rat neuronal injury was restored, alleviated POCD modelling-induced rat hippocampal microglial activation and inhibited microglial M1 type polarization. Besides, we administered Dex injection and/or CCAAT/enhancer-binding protein beta (CEBPB) knockdown on the basis of sevoflurane exposure and open surgery and found that CEBPB was knocked down, resulting in the inability of Dex to function, which confirmed CEBPB as a target for Dex treatment. To sum up, Dex improved POCD by considering CEBPB as a drug target to activate the c-Jun N-terminal kinase (JNK)/p-38 signaling pathway, inhibiting microglial M1 polarization-mediated inflammation in the central nervous system.


Asunto(s)
Anestesia , Disfunción Cognitiva , Dexmedetomidina , Ratas , Animales , Sevoflurano/farmacología , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Hipocampo/metabolismo , Inflamación/metabolismo
13.
J Neuroinflammation ; 21(1): 104, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649932

RESUMEN

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common neurological complication of anesthesia and surgery in aging individuals. Neuroinflammation has been identified as a hallmark of POCD. However, safe and effective treatments of POCD are still lacking. Itaconate is an immunoregulatory metabolite derived from the tricarboxylic acid cycle that exerts anti-inflammatory effects by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In this study, we investigated the effects and underlying mechanism of 4-octyl itaconate (OI), a cell-permeable itaconate derivative, on POCD in aged mice. METHODS: A POCD animal model was established by performing aseptic laparotomy in 18-month-old male C57BL/6 mice under isoflurane anesthesia while maintaining spontaneous ventilation. OI was intraperitoneally injected into the mice after surgery. Primary microglia and neurons were isolated and treated to lipopolysaccharide (LPS), isoflurane, and OI. Cognitive function, neuroinflammatory responses, as well as levels of gut microbiota and their metabolites were evaluated. To determine the mechanisms underlying the therapeutic effects of OI in POCD, ML385, an antagonist of Nrf2, was administered intraperitoneally. Cognitive function, neuroinflammatory responses, endogenous neurogenesis, neuronal apoptosis, and Nrf2/extracellular signal-related kinases (ERK) signaling pathway were evaluated. RESULTS: Our findings revealed that OI treatment significantly alleviated anesthesia/surgery-induced cognitive impairment, concomitant with reduced levels of the neuroinflammatory cytokines IL-1ß and IL-6, as well as suppressed activation of microglia and astrocytes in the hippocampus. Similarly, OI treatment inhibited the expression of IL-1ß and IL-6 in LPS and isoflurane-induced primary microglia in vitro. Intraperitoneal administration of OI led to alterations in the gut microbiota and promoted the production of microbiota-derived metabolites associated with neurogenesis. We further confirmed that OI promoted endogenous neurogenesis and inhibited neuronal apoptosis in the hippocampal dentate gyrus of aged mice. Mechanistically, we observed a decrease in Nrf2 expression in hippocampal neurons both in vitro and in vivo, which was reversed by OI treatment. We found that Nrf2 was required for OI treatment to inhibit neuroinflammation in POCD. The enhanced POCD recovery and promotion of neurogenesis triggered by OI exposure were, at least partially, mediated by the activation of the Nrf2/ERK signaling pathway. CONCLUSIONS: Our findings demonstrate that OI can attenuate anesthesia/surgery-induced cognitive impairment by stabilizing the gut microbiota and activating Nrf2 signaling to restrict neuroinflammation and promote neurogenesis. Boosting endogenous itaconate or supplementation with exogenous itaconate derivatives may represent novel strategies for the treatment of POCD.


Asunto(s)
Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Neurogénesis , Enfermedades Neuroinflamatorias , Complicaciones Cognitivas Postoperatorias , Succinatos , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Masculino , Ratones , Neurogénesis/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Complicaciones Cognitivas Postoperatorias/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Succinatos/farmacología , Succinatos/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Anestesia
14.
J Pharmacol Exp Ther ; 390(2): 196-202, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38719479

RESUMEN

Substantial clinical and preclinical evidence indicates that transient receptor potential vanilloid 1 (TRPV1) receptors are expressed on terminals of colorectal chemoreceptors and mechanoreceptors and are involved in various rectal hypersensitivity disorders with common features of colorectal overactivity. These stimulatory properties of TRPV1 receptors on colorectal function suggested that brief stimulation of TRPV1 might provide a means of pharmacologically activating the colorectum to induce defecation in patients with an "unresponsive" colorectum. The current studies explored the basic features of TRPV1 receptor-induced contractions of the colorectum in anesthetized rats with and without acute spinal cord injury (aSCI). Cumulative concentration-response curves to intrarectal (IR) capsaicin (CAP) solutions (0.003%-3.0%) were performed in anesthetized aSCI and spinal intact rats. CAP produced an "inverted U," cumulative concentration-response curve with a threshold for inducing colorectal contractions at 0.01% and a peak response at 0.1% and slight decreases in responses up to 3%. Decreases in responses with concentrations >0.1% are due to a rapid desensitization (i.e., ≤30 minutes) of TRPV1 receptors to each successive dose. Desensitization appeared fully recovered within 24 hours in spinal intact rats. Colorectal contractions were completely blocked by atropine, indicating a reflexogenic activation of parasympathetic neurons, and responses were completely unaffected by a neurokinin 2 receptor antagonist, indicating that release of neurokinin A from afferent terminals and subsequent direct contractions of the smooth muscle was not involved. IR administration of three other TRPV1 receptor agonists produced similar results as CAP. SIGNIFICANCE STATEMENT: Individuals with spinal cord injury often lose control of defecation. Time-consuming bowel programs using digital stimulation of the rectum are used to empty the bowel. This study shows that intrarectal administration of the transient receptor potential vanilloid 1 (TRPV1) receptor agonist, capsaicin, can induce rapid-onset, short-duration colorectal contractions capable of inducing defecation in spinal cord injured and intact rats. Therefore, TRPV1 agonists show promise as potential therapeutics to induce defecation in individuals with neurogenic bowel.


Asunto(s)
Capsaicina , Colon , Contracción Muscular , Ratas Sprague-Dawley , Canales Catiónicos TRPV , Animales , Masculino , Ratas , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/metabolismo , Capsaicina/farmacología , Colon/efectos de los fármacos , Colon/metabolismo , Contracción Muscular/efectos de los fármacos , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/metabolismo , Recto/efectos de los fármacos , Recto/inervación , Relación Dosis-Respuesta a Droga , Anestesia , Factores de Tiempo
15.
J Neurol Neurosurg Psychiatry ; 95(3): 214-221, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37679030

RESUMEN

BACKGROUND: This study aims: (1) To compare cognitive and psychiatric outcomes after bilateral awake versus asleep subthalamic nucleus (STN) deep brain stimulation (DBS) surgery for Parkinson's disease (PD). (2) To explore the occurrence of psychiatric diagnoses, cognitive impairment and quality of life after surgery in our whole sample. (3) To validate whether we can predict postoperative cognitive decline. METHODS: 110 patients with PD were randomised to receive awake (n=56) or asleep (n=54) STN DBS surgery. At baseline and 6-month follow-up, all patients underwent standardised assessments testing several cognitive domains, psychiatric symptoms and quality of life. RESULTS: There were no differences on neuropsychological composite scores and psychiatric symptoms between the groups, but we found small differences on individual tests and cognitive domains. The asleep group performed better on the Rey Auditory Verbal Learning Test delayed memory test (f=4.2, p=0.04), while the awake group improved on the Rivermead Behavioural Memory Test delayed memory test. (f=4.4, p=0.04). The Stroop III score was worse for the awake group (f=5.5, p=0.02). Worse scores were present for Stroop I (Stroop word card) (f=6.3, p=0.01), Stroop II (Stroop color card) (f=46.4, p<0.001), Stroop III (Stroop color-word card) (f=10.8, p=0.001) and Trailmaking B/A (f=4.5, p=0.04). Improvements were seen on quality of life: Parkinson's Disease Questionnaire-39 (f=24.8, p<0.001), and psychiatric scales: Hamilton Depression Rating Scale (f=6.2, p=0.01), and Hamilton Anxiety Rating Scale (f=5.5, p=0.02). CONCLUSIONS: This study suggests that the choice between awake and asleep STN DBS does not affect cognitive, mood and behavioural adverse effects, despite a minor difference in memory. STN DBS has a beneficial effect on quality of life, mood and anxiety symptoms. TRIAL REGISTRATION NUMBER: NTR5809.


Asunto(s)
Anestesia , Estimulación Encefálica Profunda , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/psicología , Estimulación Encefálica Profunda/efectos adversos , Calidad de Vida , Cognición/fisiología , Resultado del Tratamiento
16.
Synapse ; 78(1): e22286, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38287474

RESUMEN

In this study, we aimed to validate the hypothesis that the interplay between sevoflurane, oxidative stress and ferroptosis is crucial for the pathogenesis of sevoflurane-induced cognitive impairment in aged individuals. The mice with sevoflurane-induced cognitive impairment were used to explore the effects of sevoflurane on oxidative stress, iron homeostasis, and cognitive function in aged mice. Iron content and oxidative stress markers were analyzed in hippocampal tissue homogenates using specific assays. Additionally, the levels of iron death-related markers (Fth1 and Gpx4) were assessed by real-time PCR and Western blotting. Morris Water Maze and novel object recognition (NOR) tests were conducted to evaluate cognitive function. Sevoflurane exposure in aged mice resulted in a significant increase in iron overloading in the hippocampus, followed by a subsequent stabilization. Oxidative stress levels were elevated in the hippocampal tissue of sevoflurane-exposed mice, and a significant correlation was observed between iron death and oxidative stress. Liproxstatin-1, a ferroptosis inhibitor, effectively ameliorated the decline in memory and learning abilities induced by sevoflurane anesthesia. Liproxstatin-1 treatment reduced iron overload and oxidative stress in the hippocampal tissue of aged mice. The expression of Fth1 and Gpx4, iron death-related markers, was downregulated following Liproxstatin-1 intervention. Our findings suggest that sevoflurane anesthesia disrupts iron homeostasis, leading to increased oxidative stress and cognitive impairment in aged mice. These results highlight the potential of targeting iron-mediated processes to mitigate sevoflurane-induced cognitive impairment in the aging population.


Asunto(s)
Anestesia , Disfunción Cognitiva , Ferroptosis , Quinoxalinas , Compuestos de Espiro , Animales , Ratones , Sevoflurano/efectos adversos , Sevoflurano/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Estrés Oxidativo , Anestesia/efectos adversos , Cognición , Hierro/efectos adversos , Hierro/metabolismo , Hipocampo/metabolismo
17.
PLoS Biol ; 19(6): e3001299, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34133413

RESUMEN

Early in auditory processing, neural responses faithfully reflect acoustic input. At higher stages of auditory processing, however, neurons become selective for particular call types, eventually leading to specialized regions of cortex that preferentially process calls at the highest auditory processing stages. We previously proposed that an intermediate step in how nonselective responses are transformed into call-selective responses is the detection of informative call features. But how neural selectivity for informative call features emerges from nonselective inputs, whether feature selectivity gradually emerges over the processing hierarchy, and how stimulus information is represented in nonselective and feature-selective populations remain open question. In this study, using unanesthetized guinea pigs (GPs), a highly vocal and social rodent, as an animal model, we characterized the neural representation of calls in 3 auditory processing stages-the thalamus (ventral medial geniculate body (vMGB)), and thalamorecipient (L4) and superficial layers (L2/3) of primary auditory cortex (A1). We found that neurons in vMGB and A1 L4 did not exhibit call-selective responses and responded throughout the call durations. However, A1 L2/3 neurons showed high call selectivity with about a third of neurons responding to only 1 or 2 call types. These A1 L2/3 neurons only responded to restricted portions of calls suggesting that they were highly selective for call features. Receptive fields of these A1 L2/3 neurons showed complex spectrotemporal structures that could underlie their high call feature selectivity. Information theoretic analysis revealed that in A1 L4, stimulus information was distributed over the population and was spread out over the call durations. In contrast, in A1 L2/3, individual neurons showed brief bursts of high stimulus-specific information and conveyed high levels of information per spike. These data demonstrate that a transformation in the neural representation of calls occurs between A1 L4 and A1 L2/3, leading to the emergence of a feature-based representation of calls in A1 L2/3. Our data thus suggest that observed cortical specializations for call processing emerge in A1 and set the stage for further mechanistic studies.


Asunto(s)
Corteza Auditiva/fisiología , Neuronas/fisiología , Vocalización Animal/fisiología , Estimulación Acústica , Anestesia , Animales , Femenino , Masculino , Modelos Biológicos , Factores de Tiempo
18.
PLoS Biol ; 19(4): e3001146, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33793545

RESUMEN

General anesthesia is characterized by reversible loss of consciousness accompanied by transient amnesia. Yet, long-term memory impairment is an undesirable side effect. How different types of general anesthetics (GAs) affect the hippocampus, a brain region central to memory formation and consolidation, is poorly understood. Using extracellular recordings, chronic 2-photon imaging, and behavioral analysis, we monitor the effects of isoflurane (Iso), medetomidine/midazolam/fentanyl (MMF), and ketamine/xylazine (Keta/Xyl) on network activity and structural spine dynamics in the hippocampal CA1 area of adult mice. GAs robustly reduced spiking activity, decorrelated cellular ensembles, albeit with distinct activity signatures, and altered spine dynamics. CA1 network activity under all 3 anesthetics was different to natural sleep. Iso anesthesia most closely resembled unperturbed activity during wakefulness and sleep, and network alterations recovered more readily than with Keta/Xyl and MMF. Correspondingly, memory consolidation was impaired after exposure to Keta/Xyl and MMF, but not Iso. Thus, different anesthetics distinctly alter hippocampal network dynamics, synaptic connectivity, and memory consolidation, with implications for GA strategy appraisal in animal research and clinical settings.


Asunto(s)
Anestésicos/efectos adversos , Hipocampo/efectos de los fármacos , Consolidación de la Memoria/efectos de los fármacos , Columna Vertebral/efectos de los fármacos , Anestesia/efectos adversos , Anestésicos/farmacología , Animales , Fenómenos Electrofisiológicos/efectos de los fármacos , Femenino , Fentanilo/efectos adversos , Fentanilo/farmacología , Hipocampo/citología , Hipocampo/fisiología , Isoflurano/efectos adversos , Isoflurano/farmacología , Ketamina/efectos adversos , Ketamina/farmacología , Masculino , Medetomidina/efectos adversos , Medetomidina/farmacología , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Midazolam/efectos adversos , Midazolam/farmacología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Columna Vertebral/fisiología , Xilazina/efectos adversos , Xilazina/farmacología
19.
Anesthesiology ; 140(3): 387-398, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37976442

RESUMEN

BACKGROUND: An intraoperative transfer of care from one anesthesia provider to another, or handover, may result in information loss and contribute to adverse patient outcomes. In 2019 the authors undertook a quality improvement effort to increase the use of a structured intraoperative handover tool incorporated in the electronic medical record. The authors hypothesized that intraoperative handovers of anesthesia care would be associated with adverse patient outcomes, and that increased use of a structured tool would attenuate this effect. METHODS: This study included adult patients undergoing noncardiac surgery of at least 1 h duration performed during the period 2016 to 2021. Cases with a handover were identified if either there was a change of attending anesthesiologist or change of nurse anesthetist or resident for more than 35 min. The primary outcome was the occurrence of a composite of postoperative mortality and major postoperative morbidity. The effect of the intervention was analyzed by examining the quarterly change in odds ratio for the primary outcome for cases with and without a handover. RESULTS: A total of 121,077 cases, 40.4% of which had a handover, were included. After weighting, the composite outcome was statistically associated with handovers (3,517 of 48,986 [7.2%] in handover cases vs. 4,470 of 72,091 [6.2%] in nonhandover cases; odds ratio, 1.08; 95% CI, 1.04 to 1.12). Time series analysis showed a marked increase in usage of the structured tool after the initial intervention. The odds ratio for the composite outcome showed a significant decrease over time after the initial intervention (t = -3.97; P < 0.001), with the slope of the odds ratio versus time curve decreasing from 0.002 (95% CI, 0.001 to 0.004; P = 0.018) to -0.011 (95% CI, -0.01 to -0.018; P < 0.001). CONCLUSIONS: Intraoperative handovers are significantly associated with adverse outcomes even after controlling for multiple confounding variables. Use of a structured handover tool during anesthesia care may attenuate the adverse effect.


Asunto(s)
Anestesia , Anestesiología , Pase de Guardia , Adulto , Humanos , Mejoramiento de la Calidad , Estudios Retrospectivos , Anestesia/efectos adversos
20.
Anesthesiology ; 141(1): 175-187, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38739769

RESUMEN

General anesthetics adversely alters the distribution of infused fluid between the plasma compartment and the extravascular space. This maldistribution occurs largely from the effects of anesthetic agents on lymphatic pumping, which can be demonstrated by macroscopic fluid kinetics studies in awake versus anesthetized patients. The magnitude of this effect can be appreciated as follows: a 30% reduction in lymph flow may result in a fivefold increase of fluid-induced volume expansion of the interstitial space relative to plasma volume. Anesthesia-induced lymphatic dysfunction is a key factor why anesthetized patients require greater than expected fluid administration than can be accounted for by blood loss, urine output, and insensible losses. Anesthesia also blunts the transvascular refill response to bleeding, an important compensatory mechanism during hemorrhagic hypovolemia, in part through lymphatic inhibition. Last, this study addresses how catecholamines and hypertonic and hyperoncotic fluids may mobilize interstitial fluid to mitigate anesthesia-induced lymphatic dysfunction.


Asunto(s)
Anestesia , Humanos , Anestesia/métodos , Anestesia/efectos adversos , Animales , Sistema Linfático/efectos de los fármacos , Sistema Linfático/fisiopatología , Sistema Linfático/fisiología , Enfermedades Linfáticas/inducido químicamente , Enfermedades Linfáticas/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA