Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.333
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 178(6): 1421-1436.e24, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491386

RESUMEN

The developmental disorder Floating-Harbor syndrome (FHS) is caused by heterozygous truncating mutations in SRCAP, a gene encoding a chromatin remodeler mediating incorporation of histone variant H2A.Z. Here, we demonstrate that FHS-associated mutations result in loss of SRCAP nuclear localization, alter neural crest gene programs in human in vitro models and Xenopus embryos, and cause craniofacial defects. These defects are mediated by one of two H2A.Z subtypes, H2A.Z.2, whose knockdown mimics and whose overexpression rescues the FHS phenotype. Selective rescue by H2A.Z.2 is conferred by one of the three amino acid differences between the H2A.Z subtypes, S38/T38. We further show that H2A.Z.1 and H2A.Z.2 genomic occupancy patterns are qualitatively similar, but quantitatively distinct, and H2A.Z.2 incorporation at AT-rich enhancers and expression of their associated genes are both sensitized to SRCAP truncations. Altogether, our results illuminate the mechanism underlying a human syndrome and uncover selective functions of H2A.Z subtypes during development.


Asunto(s)
Anomalías Múltiples/genética , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Anomalías Craneofaciales/genética , Trastornos del Crecimiento/genética , Defectos del Tabique Interventricular/genética , Histonas/genética , Adenosina Trifosfatasas/genética , Sustitución de Aminoácidos , Animales , Células Madre Embrionarias , Células HEK293 , Humanos , Mutación , Xenopus laevis
2.
Cell ; 176(6): 1310-1324.e10, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30827684

RESUMEN

DNA rearrangements resulting in human genome structural variants (SVs) are caused by diverse mutational mechanisms. We used long- and short-read sequencing technologies to investigate end products of de novo chromosome 17p11.2 rearrangements and query the molecular mechanisms underlying both recurrent and non-recurrent events. Evidence for an increased rate of clustered single-nucleotide variant (SNV) mutation in cis with non-recurrent rearrangements was found. Indel and SNV formation are associated with both copy-number gains and losses of 17p11.2, occur up to ∼1 Mb away from the breakpoint junctions, and favor C > G transversion substitutions; results suggest that single-stranded DNA is formed during the genesis of the SV and provide compelling support for a microhomology-mediated break-induced replication (MMBIR) mechanism for SV formation. Our data show an additional mutational burden of MMBIR consisting of hypermutation confined to the locus and manifesting as SNVs and indels predominantly within genes.


Asunto(s)
Cromosomas Humanos Par 17 , Mutación , Anomalías Múltiples/genética , Puntos de Rotura del Cromosoma , Trastornos de los Cromosomas/genética , Duplicación Cromosómica/genética , Variaciones en el Número de Copia de ADN , Reparación del ADN/genética , Replicación del ADN , Reordenamiento Génico , Genoma Humano , Variación Estructural del Genoma , Humanos , Mutación INDEL , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Recombinación Genética , Análisis de Secuencia de ADN/métodos , Síndrome de Smith-Magenis/genética
3.
Cell ; 157(3): 636-50, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24766809

RESUMEN

CLP1 is a RNA kinase involved in tRNA splicing. Recently, CLP1 kinase-dead mice were shown to display a neuromuscular disorder with loss of motor neurons and muscle paralysis. Human genome analyses now identified a CLP1 homozygous missense mutation (p.R140H) in five unrelated families, leading to a loss of CLP1 interaction with the tRNA splicing endonuclease (TSEN) complex, largely reduced pre-tRNA cleavage activity, and accumulation of linear tRNA introns. The affected individuals develop severe motor-sensory defects, cortical dysgenesis, and microcephaly. Mice carrying kinase-dead CLP1 also displayed microcephaly and reduced cortical brain volume due to the enhanced cell death of neuronal progenitors that is associated with reduced numbers of cortical neurons. Our data elucidate a neurological syndrome defined by CLP1 mutations that impair tRNA splicing. Reduction of a founder mutation to homozygosity illustrates the importance of rare variations in disease and supports the clan genomics hypothesis.


Asunto(s)
Enfermedades del Sistema Nervioso Central/genética , Mutación Missense , Proteínas Nucleares/metabolismo , Enfermedades del Sistema Nervioso Periférico/genética , Fosfotransferasas/metabolismo , ARN de Transferencia/metabolismo , Factores de Transcripción/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Animales , Enfermedades del Sistema Nervioso Central/patología , Cerebro/patología , Preescolar , Endorribonucleasas/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Lactante , Masculino , Ratones , Ratones Endogámicos CBA , Microcefalia/genética , Enfermedades del Sistema Nervioso Periférico/patología , ARN de Transferencia/genética , Proteínas de Unión al ARN
4.
Genome Res ; 34(5): 696-710, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38702196

RESUMEN

Many Mendelian developmental disorders caused by coding variants in epigenetic regulators have now been discovered. Epigenetic regulators are broadly expressed, and each of these disorders typically shows phenotypic manifestations from many different organ systems. An open question is whether the chromatin disruption-the root of the pathogenesis-is similar in the different disease-relevant cell types. This is possible in principle, because all these cell types are subject to effects from the same causative gene, which has the same kind of function (e.g., methylates histones) and is disrupted by the same germline variant. We focus on mouse models for Kabuki syndrome types 1 and 2 and find that the chromatin accessibility changes in neurons are mostly distinct from changes in B or T cells. This is not because the neuronal accessibility changes occur at regulatory elements that are only active in neurons. Neurons, but not B or T cells, show preferential chromatin disruption at CpG islands and at regulatory elements linked to aging. A sensitive analysis reveals that regulatory elements disrupted in B/T cells do show chromatin accessibility changes in neurons, but these are very subtle and of uncertain functional significance. Finally, we are able to identify a small set of regulatory elements disrupted in all three cell types. Our findings reveal the cellular-context-specific effect of variants in epigenetic regulators and suggest that blood-derived episignatures, although useful diagnostically, may not be well suited for understanding the mechanistic basis of neurodevelopment in Mendelian disorders of the epigenetic machinery.


Asunto(s)
Anomalías Múltiples , Envejecimiento , Cromatina , Islas de CpG , Cara , Enfermedades Hematológicas , Neuronas , Enfermedades Vestibulares , Animales , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/metabolismo , Ratones , Cara/anomalías , Cromatina/metabolismo , Cromatina/genética , Enfermedades Vestibulares/genética , Neuronas/metabolismo , Envejecimiento/genética , Anomalías Múltiples/genética , Modelos Animales de Enfermedad , Epigénesis Genética , Linfocitos T/metabolismo , Linfocitos B/metabolismo
5.
Nat Rev Mol Cell Biol ; 16(5): 281-98, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25907612

RESUMEN

RAF family kinases were among the first oncoproteins to be described more than 30 years ago. They primarily act as signalling relays downstream of RAS, and their close ties to cancer have fuelled a large number of studies. However, we still lack a systems-level understanding of their regulation and mode of action. The recent discovery that the catalytic activity of RAF depends on an allosteric mechanism driven by kinase domain dimerization is providing a vital new piece of information towards a comprehensive model of RAF function. The fact that current RAF inhibitors unexpectedly induce ERK signalling by stimulating RAF dimerization also calls for a deeper structural characterization of this family of kinases.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Quinasas raf/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Animales , Humanos , Neoplasias/metabolismo , Quinasas raf/química , Quinasas raf/genética
6.
PLoS Genet ; 20(6): e1011310, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38857303

RESUMEN

Growth deficiency is a characteristic feature of both Kabuki syndrome 1 (KS1) and Kabuki syndrome 2 (KS2), Mendelian disorders of the epigenetic machinery with similar phenotypes but distinct genetic etiologies. We previously described skeletal growth deficiency in a mouse model of KS1 and further established that a Kmt2d-/- chondrocyte model of KS1 exhibits precocious differentiation. Here we characterized growth deficiency in a mouse model of KS2, Kdm6atm1d/+. We show that Kdm6atm1d/+ mice have decreased femur and tibia length compared to controls and exhibit abnormalities in cortical and trabecular bone structure. Kdm6atm1d/+ growth plates are also shorter, due to decreases in hypertrophic chondrocyte size and hypertrophic zone height. Given these disturbances in the growth plate, we generated Kdm6a-/- chondrogenic cell lines. Similar to our prior in vitro model of KS1, we found that Kdm6a-/- cells undergo premature, enhanced differentiation towards chondrocytes compared to Kdm6a+/+ controls. RNA-seq showed that Kdm6a-/- cells have a distinct transcriptomic profile that indicates dysregulation of cartilage development. Finally, we performed RNA-seq simultaneously on Kmt2d-/-, Kdm6a-/-, and control lines at Days 7 and 14 of differentiation. This revealed surprising resemblance in gene expression between Kmt2d-/- and Kdm6a-/- at both time points and indicates that the similarity in phenotype between KS1 and KS2 also exists at the transcriptional level.


Asunto(s)
Anomalías Múltiples , Condrocitos , Modelos Animales de Enfermedad , Cara , Enfermedades Hematológicas , Histona Demetilasas , Enfermedades Vestibulares , Animales , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/patología , Ratones , Cara/anomalías , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/patología , Condrocitos/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Diferenciación Celular/genética , Condrogénesis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/deficiencia , Humanos , Ratones Noqueados , Fenotipo , N-Metiltransferasa de Histona-Lisina , Proteína de la Leucemia Mieloide-Linfoide
7.
J Cell Sci ; 137(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38841887

RESUMEN

Centrosomal proteins play pivotal roles in orchestrating microtubule dynamics, and their dysregulation leads to disorders, including cancer and ciliopathies. Understanding the multifaceted roles of centrosomal proteins is vital to comprehend their involvement in disease development. Here, we report novel cellular functions of CEP41, a centrosomal and ciliary protein implicated in Joubert syndrome. We show that CEP41 is an essential microtubule-associated protein with microtubule-stabilizing activity. Purified CEP41 binds to preformed microtubules, promotes microtubule nucleation and suppresses microtubule disassembly. When overexpressed in cultured cells, CEP41 localizes to microtubules and promotes microtubule bundling. Conversely, shRNA-mediated knockdown of CEP41 disrupts the interphase microtubule network and delays microtubule reassembly, emphasizing its role in microtubule organization. Further, we demonstrate that the association of CEP41 with microtubules relies on its conserved rhodanese homology domain (RHOD) and the N-terminal region. Interestingly, a disease-causing mutation in the RHOD domain impairs CEP41-microtubule interaction. Moreover, depletion of CEP41 inhibits cell proliferation and disrupts cell cycle progression, suggesting its potential involvement in cell cycle regulation. These insights into the cellular functions of CEP41 hold promise for unraveling the impact of its mutations in ciliopathies.


Asunto(s)
Proliferación Celular , Microtúbulos , Humanos , Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Centrosoma/metabolismo , Retina/metabolismo , Retina/patología , Retina/anomalías , Ciliopatías/metabolismo , Ciliopatías/genética , Ciliopatías/patología , Cerebelo/metabolismo , Cerebelo/anomalías , Cerebelo/patología , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Cilios/metabolismo , Cilios/patología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Animales , Anomalías Múltiples/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Anomalías del Ojo/metabolismo , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Unión Proteica , Ciclo Celular/genética , Células HEK293
8.
Nature ; 580(7801): 124-129, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32238941

RESUMEN

Pluripotent stem cells are increasingly used to model different aspects of embryogenesis and organ formation1. Despite recent advances in in vitro induction of major mesodermal lineages and cell types2,3, experimental model systems that can recapitulate more complex features of human mesoderm development and patterning are largely missing. Here we used induced pluripotent stem cells for the stepwise in vitro induction of presomitic mesoderm and its derivatives to model distinct aspects of human somitogenesis. We focused initially on modelling the human segmentation clock, a major biological concept believed to underlie the rhythmic and controlled emergence of somites, which give rise to the segmental pattern of the vertebrate axial skeleton. We observed oscillatory expression of core segmentation clock genes, including HES7 and DKK1, determined the period of the human segmentation clock to be around five hours, and demonstrated the presence of dynamic travelling-wave-like gene expression in in vitro-induced human presomitic mesoderm. Furthermore, we identified and compared oscillatory genes in human and mouse presomitic mesoderm derived from pluripotent stem cells, which revealed species-specific and shared molecular components and pathways associated with the putative mouse and human segmentation clocks. Using CRISPR-Cas9-based genome editing technology, we then targeted genes for which mutations in patients with segmentation defects of the vertebrae, such as spondylocostal dysostosis, have been reported (HES7, LFNG, DLL3 and MESP2). Subsequent analysis of patient-like and patient-derived induced pluripotent stem cells revealed gene-specific alterations in oscillation, synchronization or differentiation properties. Our findings provide insights into the human segmentation clock as well as diseases associated with human axial skeletogenesis.


Asunto(s)
Relojes Biológicos/fisiología , Desarrollo Embrionario/fisiología , Células Madre Pluripotentes/citología , Somitos/citología , Somitos/crecimiento & desarrollo , Anomalías Múltiples/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Relojes Biológicos/genética , Desarrollo Embrionario/genética , Edición Génica , Regulación del Desarrollo de la Expresión Génica/genética , Glicosiltransferasas/deficiencia , Glicosiltransferasas/genética , Hernia Diafragmática/genética , Humanos , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Fenotipo , Somitos/metabolismo , Factores de Tiempo
9.
Hum Mol Genet ; 32(13): 2251-2261, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37043208

RESUMEN

Kabuki syndrome (KS) is a rare, multisystem disorder with a variable clinical phenotype. The majority of KS is caused by dominant loss-of-function mutations in KMT2D (lysine methyltransferase 2D). KMT2D mediates chromatin accessibility by adding methyl groups to lysine residue 4 of histone 3, which plays a critical role in cell differentiation and homeostasis. The molecular underpinnings of KS remain elusive partly because of a lack of histone modification data from human samples. Consequently, we profiled and characterized alterations in histone modification and gene transcription in peripheral blood mononuclear cells (PBMCs) from 33 patients with KMT2D mutations and 36 unaffected healthy controls. Our analysis identified unique enhancer signatures in H3K4me1 and H3K4me2 in KS compared with controls. Reduced enhancer signals were present for promoter-distal sites of immune-related genes for which co-binding of PBMC-specific transcription factors was predicted; 31% of super-enhancers of normal blood cells overlapped with disrupted enhancers in KS, supporting an association of reduced enhancer activity of immune-related genes with immune deficiency phenotypes. In contrast, increased enhancer signals were observed for promoter-proximal regions of metabolic genes enriched with EGR1 and E2F2 motifs, whose transcriptional levels were significantly increased in KS. Additionally, we identified ~100 de novo enhancers in genes, such as in MYO1F and AGAP2. Together, our results underscore the effect of KMT2D haploinsufficiency on dysregulation of enhancer states and gene transcription and provide a framework for the identification of therapeutic targets and biomarkers in preparation for clinical trial readiness.


Asunto(s)
Anomalías Múltiples , Enfermedades Hematológicas , Enfermedades Vestibulares , Humanos , Leucocitos Mononucleares , Lisina/genética , Anomalías Múltiples/genética , Enfermedades Hematológicas/genética , Enfermedades Vestibulares/genética , Mutación , Epigénesis Genética/genética , Miosina Tipo I/genética
10.
Hum Mol Genet ; 32(19): 2913-2928, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37462524

RESUMEN

Human vertebral malformations (VMs) have an estimated incidence of 1/2000 and are associated with significant health problems including congenital scoliosis (CS) and recurrent organ system malformation syndromes such as VACTERL (vertebral anomalies; anal abnormalities; cardiac abnormalities; tracheo-esophageal fistula; renal anomalies; limb anomalies). The genetic cause for the vast majority of VMs are unknown. In a CS/VM patient cohort, three COL11A2 variants (R130W, R1407L and R1413H) were identified in two patients with cervical VM. A third patient with a T9 hemivertebra and the R130W variant was identified from a separate study. These substitutions are predicted to be damaging to protein function, and R130 and R1407 residues are conserved in zebrafish Col11a2. To determine the role for COL11A2 in vertebral development, CRISPR/Cas9 was used to create a nonsense mutation (col11a2L642*) as well as a full gene locus deletion (col11a2del) in zebrafish. Both col11a2L642*/L642* and col11a2del/del mutant zebrafish exhibit vertebral fusions in the caudal spine, which form due to mineralization across intervertebral segments. To determine the functional consequence of VM-associated variants, we assayed their ability to suppress col11a2del VM phenotypes following transgenic expression within the developing spine. While wildtype col11a2 expression suppresses fusions in col11a2del/+ and col11a2del/del backgrounds, patient missense variant-bearing col11a2 failed to rescue the loss-of-function phenotype in these animals. These results highlight an essential role for COL11A2 in vertebral development and support a pathogenic role for two missense variants in CS.


Asunto(s)
Anomalías Múltiples , Escoliosis , Animales , Humanos , Escoliosis/genética , Pez Cebra/genética , Columna Vertebral/anomalías , Anomalías Múltiples/genética , Mutación Missense , Colágeno Tipo XI/genética
11.
Hum Mol Genet ; 32(17): 2681-2692, 2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37364051

RESUMEN

Orofacial clefts, including cleft lip and palate (CL/P) and neural tube defects (NTDs) are among the most common congenital anomalies, but knowledge of the genetic basis of these conditions remains incomplete. The extent to which genetic risk factors are shared between CL/P, NTDs and related anomalies is also unclear. While identification of causative genes has largely focused on coding and loss of function mutations, it is hypothesized that regulatory mutations account for a portion of the unidentified heritability. We found that excess expression of Grainyhead-like 2 (Grhl2) causes not only spinal NTDs in Axial defects (Axd) mice but also multiple additional defects affecting the cranial region. These include orofacial clefts comprising midline cleft lip and palate and abnormalities of the craniofacial bones and frontal and/or basal encephalocele, in which brain tissue herniates through the cranium or into the nasal cavity. To investigate the causative mutation in the Grhl2Axd strain, whole genome sequencing identified an approximately 4 kb LTR retrotransposon insertion that disrupts the non-coding regulatory region, lying approximately 300 base pairs upstream of the 5' UTR. This insertion also lies within a predicted long non-coding RNA, oriented on the reverse strand, which like Grhl2 is over-expressed in Axd (Grhl2Axd) homozygous mutant embryos. Initial analysis of the GRHL2 upstream region in individuals with NTDs or cleft palate revealed rare or novel variants in a small number of cases. We hypothesize that mutations affecting the regulation of GRHL2 may contribute to craniofacial anomalies and NTDs in humans.


Asunto(s)
Anomalías Múltiples , Labio Leporino , Fisura del Paladar , Defectos del Tubo Neural , Disrafia Espinal , Animales , Humanos , Ratones , Anomalías Múltiples/genética , Labio Leporino/genética , Fisura del Paladar/genética , Encefalocele/genética , Mutación , Defectos del Tubo Neural/genética , Disrafia Espinal/genética
12.
Hum Mol Genet ; 32(9): 1429-1438, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36440975

RESUMEN

Pathogenic variants in ANKRD11 or microdeletions at 16q24.3 are the cause of KBG syndrome (KBGS), a neurodevelopmental syndrome characterized by intellectual disability, dental and skeletal anomalies, and characteristic facies. The ANKRD11 gene encodes the ankyrin repeat-containing protein 11A transcriptional regulator, which is expressed in the brain and implicated in neural development. Syndromic conditions caused by pathogenic variants in epigenetic regulatory genes show unique patterns of DNA methylation (DNAm) in peripheral blood, termed DNAm signatures. Given ANKRD11's role in chromatin modification, we tested whether pathogenic ANKRD11 variants underlying KBGS are associated with a DNAm signature. We profiled whole-blood DNAm in 21 individuals with ANKRD11 variants, 2 individuals with microdeletions at 16q24.3 and 28 typically developing individuals, using Illumina's Infinium EPIC array. We identified 95 differentially methylated CpG sites that distinguished individuals with KBGS and pathogenic variants in ANKRD11 (n = 14) from typically developing controls (n = 28). This DNAm signature was then validated in an independent cohort of seven individuals with KBGS and pathogenic ANKRD11 variants. We generated a machine learning model from the KBGS DNAm signature and classified the DNAm profiles of four individuals with variants of uncertain significance (VUS) in ANKRD11. We identified an intermediate classification score for an inherited missense variant transmitted from a clinically unaffected mother to her affected child. In conclusion, we show that the DNAm profiles of two individuals with 16q24.3 microdeletions were indistinguishable from the DNAm profiles of individuals with pathogenic variants in ANKRD11, and we demonstrate the diagnostic utility of the new KBGS signature by classifying the DNAm profiles of individuals with VUS in ANKRD11.


Asunto(s)
Anomalías Múltiples , Proteínas Represoras , Niño , Femenino , Humanos , Anomalías Múltiples/sangre , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Enfermedades del Desarrollo Óseo/sangre , Enfermedades del Desarrollo Óseo/diagnóstico , Enfermedades del Desarrollo Óseo/genética , Deleción Cromosómica , Metilación de ADN/genética , Epigénesis Genética/genética , Facies , Discapacidad Intelectual/sangre , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Aprendizaje Automático , Mutación , Fenotipo , Proteínas Represoras/genética , Anomalías Dentarias/sangre , Anomalías Dentarias/diagnóstico , Anomalías Dentarias/genética , Factores de Transcripción/genética
13.
Annu Rev Genomics Hum Genet ; 23: 301-329, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35655331

RESUMEN

The Joubert syndrome (JS), Meckel syndrome (MKS), and nephronophthisis (NPH) ciliopathy spectrum could be the poster child for advances and challenges in Mendelian human genetics over the past half century. Progress in understanding these conditions illustrates many core concepts of human genetics. The JS phenotype alone is caused by pathogenic variants in more than 40 genes; remarkably, all of the associated proteins function in and around the primary cilium. Primary cilia are near-ubiquitous, microtubule-based organelles that play crucial roles in development and homeostasis. Protruding from the cell, these cellular antennae sense diverse signals and mediate Hedgehog and other critical signaling pathways. Ciliary dysfunction causes many human conditions termed ciliopathies, which range from multiple congenital malformations to adult-onset single-organ failure. Research on the genetics of the JS-MKS-NPH spectrum has spurred extensive functional work exploring the broadly important role of primary cilia in health and disease. This functional work promises to illuminate the mechanisms underlying JS-MKS-NPH in humans, identify therapeutic targets across genetic causes, and generate future precision treatments.


Asunto(s)
Anomalías Múltiples , Ciliopatías , Anomalías del Ojo , Enfermedades Renales Poliquísticas , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Cerebelo/anomalías , Cerebelo/metabolismo , Cerebelo/patología , Niño , Cilios/genética , Cilios/metabolismo , Cilios/patología , Trastornos de la Motilidad Ciliar , Ciliopatías/genética , Ciliopatías/metabolismo , Ciliopatías/patología , Encefalocele , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Anomalías del Ojo/patología , Proteínas Hedgehog/metabolismo , Humanos , Enfermedades Renales Quísticas , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/patología , Retina/anomalías , Retina/metabolismo , Retina/patología , Retinitis Pigmentosa
14.
Nat Rev Genet ; 20(5): 299-309, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30760854

RESUMEN

Many recent advances have emerged in the telomere and telomerase fields. This Timeline article highlights the key advances that have expanded our views on the mechanistic underpinnings of telomeres and telomerase and their roles in ageing and disease. Three decades ago, the classic view was that telomeres protected the natural ends of linear chromosomes and that telomerase was a specific telomere-terminal transferase necessary for the replication of chromosome ends in single-celled organisms. While this concept is still correct, many diverse fields associated with telomeres and telomerase have substantially matured. These areas include the discovery of most of the key molecular components of telomerase, implications for limits to cellular replication, identification and characterization of human genetic disorders that result in premature telomere shortening, the concept that inhibiting telomerase might be a successful therapeutic strategy and roles for telomeres in regulating gene expression. We discuss progress in these areas and conclude with challenges and unanswered questions in the field.


Asunto(s)
Envejecimiento/genética , Genómica/historia , Neoplasias/genética , Telomerasa/genética , Telómero/química , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Envejecimiento/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/química , ADN/genética , ADN/metabolismo , Regulación de la Expresión Génica , Genómica/métodos , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Chaperonas Moleculares , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Progeria/genética , Progeria/metabolismo , Progeria/patología , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Complejo Shelterina , Telomerasa/metabolismo , Telómero/metabolismo , Homeostasis del Telómero , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
15.
Nature ; 574(7777): 249-253, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31578523

RESUMEN

The integrity of the mammalian epidermis depends on a balance of proliferation and differentiation in the resident population of stem cells1. The kinase RIPK4 and the transcription factor IRF6 are mutated in severe developmental syndromes in humans, and mice lacking these genes display epidermal hyperproliferation and soft-tissue fusions that result in neonatal lethality2-5. Our understanding of how these genes control epidermal differentiation is incomplete. Here we show that the role of RIPK4 in mouse development requires its kinase activity; that RIPK4 and IRF6 expressed in the epidermis regulate the same biological processes; and that the phosphorylation of IRF6 at Ser413 and Ser424 primes IRF6 for activation. Using RNA sequencing (RNA-seq), histone chromatin immunoprecipitation followed by sequencing (ChIP-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) of skin in wild-type and IRF6-deficient mouse embryos, we define the transcriptional programs that are regulated by IRF6 during epidermal differentiation. IRF6 was enriched at bivalent promoters, and IRF6 deficiency caused defective expression of genes that are involved in the metabolism of lipids and the formation of tight junctions. Accordingly, the lipid composition of the stratum corneum of Irf6-/- skin was abnormal, culminating in a severe defect in the function of the epidermal barrier. Collectively, our results explain how RIPK4 and IRF6 function to ensure the integrity of the epidermis and provide mechanistic insights into why developmental syndromes that are characterized by orofacial, skin and genital abnormalities result when this axis goes awry.


Asunto(s)
Diferenciación Celular , Células Epidérmicas/citología , Epidermis/fisiología , Factores Reguladores del Interferón/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Anomalías Múltiples/genética , Animales , Labio Leporino/genética , Fisura del Paladar/genética , Quistes/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Células Epidérmicas/metabolismo , Epidermis/embriología , Anomalías del Ojo/genética , Femenino , Dedos/anomalías , Regulación de la Expresión Génica , Factores Reguladores del Interferón/deficiencia , Factores Reguladores del Interferón/genética , Rodilla/anomalías , Articulación de la Rodilla/anomalías , Labio/anomalías , Metabolismo de los Lípidos/genética , Deformidades Congénitas de las Extremidades Inferiores/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Fosfoserina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Sindactilia/genética , Anomalías Urogenitales/genética
16.
PLoS Genet ; 18(6): e1010278, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35727845

RESUMEN

Wiedemann-Steiner syndrome (WDSTS) is a neurodevelopmental disorder caused by de novo variants in KMT2A, which encodes a multi-domain histone methyltransferase. To gain insight into the currently unknown pathogenesis of WDSTS, we examined the spatial distribution of likely WDSTS-causing variants across the 15 different domains of KMT2A. Compared to variants in healthy controls, WDSTS variants exhibit a 61.9-fold overrepresentation within the CXXC domain-which mediates binding to unmethylated CpGs-suggesting a major role for this domain in mediating the phenotype. In contrast, we find no significant overrepresentation within the catalytic SET domain. Corroborating these results, we find that hippocampal neurons from Kmt2a-deficient mice demonstrate disrupted histone methylation (H3K4me1 and H3K4me3) preferentially at CpG-rich regions, but this has no systematic impact on gene expression. Motivated by these results, we combine accurate prediction of the CXXC domain structure by AlphaFold2 with prior biological knowledge to develop a classification scheme for missense variants in the CXXC domain. Our classifier achieved 92.6% positive and 92.9% negative predictive value on a hold-out test set. This classification performance enabled us to subsequently perform an in silico saturation mutagenesis and classify a total of 445 variants according to their functional effects. Our results yield a novel insight into the mechanistic basis of WDSTS and provide an example of how AlphaFold2 can contribute to the in silico characterization of variant effects with very high accuracy, suggesting a paradigm potentially applicable to many other Mendelian disorders.


Asunto(s)
Anomalías Múltiples , Trastornos del Crecimiento , N-Metiltransferasa de Histona-Lisina , Hipertricosis , Discapacidad Intelectual , Proteína de la Leucemia Mieloide-Linfoide , Anomalías Múltiples/genética , Animales , Anomalías Craneofaciales , Trastornos del Crecimiento/genética , N-Metiltransferasa de Histona-Lisina/genética , Hipertricosis/genética , Discapacidad Intelectual/genética , Ratones , Mutación Missense , Proteína de la Leucemia Mieloide-Linfoide/genética , Dominios Proteicos , Pliegue de Proteína , Síndrome
17.
J Cell Physiol ; 239(4): e31189, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38219074

RESUMEN

Joubert syndrome (JBTS) is a systematic developmental disorder mainly characterized by a pathognomonic mid-hindbrain malformation. All known JBTS-associated genes encode proteins involved in the function of antenna-like cellular organelle, primary cilium, which plays essential roles in cellular signal transduction and development. Here, we identified four unreported variants in ARL13B in two patients with the classical features of JBTS. ARL13B is a member of the Ras GTPase family and functions in ciliogenesis and cilia-related signaling. The two missense variants in ARL13B harbored the substitutions of amino acids at evolutionarily conserved positions. Using model cell lines, we found that the accumulations of the missense variants in cilia were impaired and the variants showed attenuated functions in ciliogenesis or the trafficking of INPP5E. Overall, these findings expanded the ARL13B pathogenetic variant spectrum of JBTS.


Asunto(s)
Factores de Ribosilacion-ADP , Anomalías Múltiples , Cerebelo , Anomalías del Ojo , Enfermedades Renales Quísticas , Retina , Humanos , Anomalías Múltiples/genética , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Cerebelo/anomalías , Cilios/genética , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Anomalías del Ojo/patología , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/patología , Monoéster Fosfórico Hidrolasas/metabolismo , Retina/metabolismo , Retina/anomalías , Masculino , Femenino , Lactante
18.
Hum Mol Genet ; 31(16): 2766-2778, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35348676

RESUMEN

We previously molecularly and clinically characterized Mazzanti syndrome, a RASopathy related to Noonan syndrome that is mostly caused by a single recurrent missense variant (c.4A > G, p.Ser2Gly) in SHOC2, which encodes a leucine-rich repeat-containing protein facilitating signal flow through the RAS-mitogen-associated protein kinase (MAPK) pathway. We also documented that the pathogenic p.Ser2Gly substitution causes upregulation of MAPK signaling and constitutive targeting of SHOC2 to the plasma membrane due to the introduction of an N-myristoylation recognition motif. The almost invariant occurrence of the pathogenic c.4A > G missense change in SHOC2 is mirrored by a relatively homogeneous clinical phenotype of Mazzanti syndrome. Here, we provide new data on the clinical spectrum and molecular diversity of this disorder and functionally characterize new pathogenic variants. The clinical phenotype of six unrelated individuals carrying novel disease-causing SHOC2 variants is delineated, and public and newly collected clinical data are utilized to profile the disorder. In silico, in vitro and in vivo characterization of the newly identified variants provides evidence that the consequences of these missense changes on SHOC2 functional behavior differ from what had been observed for the canonical p.Ser2Gly change but converge toward an enhanced activation of the RAS-MAPK pathway. Our findings expand the molecular spectrum of pathogenic SHOC2 variants, provide a more accurate picture of the phenotypic expression associated with variants in this gene and definitively establish a gain-of-function behavior as the mechanism of disease.


Asunto(s)
Anomalías Múltiples , Péptidos y Proteínas de Señalización Intracelular , Síndrome del Cabello Anágeno Suelto , Anomalías Múltiples/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Síndrome del Cabello Anágeno Suelto/genética , Fenotipo , Proteínas ras/genética , Proteínas ras/metabolismo
19.
Hum Mol Genet ; 31(19): 3245-3265, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-35470378

RESUMEN

Mutations in Talpid3, a basal body protein essential for the assembly of primary cilia, have been reported to be causative for Joubert Syndrome (JS). Herein, we report prominent developmental defects in the hippocampus of a conditional knockout mouse lacking the conserved exons 11 and 12 of Talpid3. At early postnatal stages, the Talpid3 mutants exhibit a reduction in proliferation in the dentate gyrus and a disrupted glial scaffold. The occurrence of mis-localized progenitors in the granule cell layer suggests a role for the disrupted glial scaffold in cell migration resulting in defective subpial neurogenic zone-to-hilar transition. Neurospheres derived from the hippocampus of Talpid3fl/flUbcCre mouse, in which Talpid3 was conditionally deleted, lacked primary cilia and were smaller in size. In addition, neurosphere cells showed a disrupted actin cytoskeleton and defective migration. Our findings suggest a link between the hippocampal defects and the learning/memory deficits seen in JS patients.


Asunto(s)
Anomalías Múltiples , Anomalías del Ojo , Enfermedades Renales Quísticas , Anomalías Múltiples/genética , Animales , Cerebelo/anomalías , Giro Dentado , Anomalías del Ojo/genética , Hipocampo , Enfermedades Renales Quísticas/genética , Ratones , Ratones Noqueados , Neurogénesis/genética , Retina/anomalías
20.
Hum Mol Genet ; 31(24): 4131-4142, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-35861666

RESUMEN

KBG syndrome (KBGS) is characterized by distinctive facial gestalt, short stature and variable clinical findings. With ageing, some features become more recognizable, allowing a differential diagnosis. We aimed to better characterize natural history of KBGS. In the context of a European collaborative study, we collected the largest cohort of KBGS patients (49). A combined array- based Comparative Genomic Hybridization and next generation sequencing (NGS) approach investigated both genomic Copy Number Variants and SNVs. Intellectual disability (ID) (82%) ranged from mild to moderate with severe ID identified in two patients. Epilepsy was present in 26.5%. Short stature was consistent over time, while occipitofrontal circumference (median value: -0.88 SD at birth) normalized over years. Cerebral anomalies, were identified in 56% of patients and thus represented the second most relevant clinical feature reinforcing clinical suspicion in the paediatric age when short stature and vertebral/dental anomalies are vague. Macrodontia, oligodontia and dental agenesis (53%) were almost as frequent as skeletal anomalies, such as brachydactyly, short fifth finger, fifth finger clinodactyly, pectus excavatum/carinatum, delayed bone age. In 28.5% of individuals, prenatal ultrasound anomalies were reported. Except for three splicing variants, leading to a premature termination, variants were almost all frameshift. Our results, broadening the spectrum of KBGS phenotype progression, provide useful tools to facilitate differential diagnosis and improve clinical management. We suggest to consider a wider range of dental anomalies before excluding diagnosis and to perform a careful odontoiatric/ear-nose-throat (ENT) evaluation in order to look for even submucosal palate cleft given the high percentage of palate abnormalities. NGS approaches, following evidence of antenatal ultrasound anomalies, should include ANKRD11.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Enanismo , Discapacidad Intelectual , Anomalías Dentarias , Embarazo , Femenino , Humanos , Facies , Anomalías Dentarias/genética , Enfermedades del Desarrollo Óseo/genética , Anomalías Múltiples/genética , Anomalías Múltiples/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Hibridación Genómica Comparativa , Proteínas Represoras/genética , Fenotipo , Enanismo/genética , Pueblo Europeo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA