Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 137(5): 678-689, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33538796

RESUMEN

Thrombospondin-1 (TSP-1) is released by platelets upon activation and can increase platelet activation, but its role in hemostasis in vivo is unclear. We show that TSP-1 is a critical mediator of hemostasis that promotes platelet activation by modulating inhibitory cyclic adenosine monophosphate (cAMP) signaling. Genetic deletion of TSP-1 did not affect platelet activation in vitro, but in vivo models of hemostasis and thrombosis showed that TSP-1-deficient mice had prolonged bleeding, defective thrombosis, and increased sensitivity to the prostacyclin mimetic iloprost. Adoptive transfer of wild-type (WT) but not TSP-1-/- platelets ameliorated the thrombotic phenotype, suggesting a key role for platelet-derived TSP-1. In functional assays, TSP-1-deficient platelets showed an increased sensitivity to cAMP signaling, inhibition of platelet aggregation, and arrest under flow by prostacyclin (PGI2). Plasma swap experiments showed that plasma TSP-1 did not correct PGI2 hypersensitivity in TSP-1-/- platelets. By contrast, incubation of TSP-1-/- platelets with releasates from WT platelets or purified TSP-1, but not releasates from TSP-1-/- platelets, reduced the inhibitory effects of PGI2. Activation of WT platelets resulted in diminished cAMP accumulation and downstream signaling, which was associated with increased activity of the cAMP hydrolyzing enzyme phosphodiesterase 3A (PDE3A). PDE3A activity and cAMP accumulation were unaffected in platelets from TSP-1-/- mice. Platelets deficient in CD36, a TSP-1 receptor, showed increased sensitivity to PGI2/cAMP signaling and diminished PDE3A activity, which was unaffected by platelet-derived or purified TSP-1. This scenario suggests that the release of TSP-1 regulates hemostasis in vivo through modulation of platelet cAMP signaling at sites of vascular injury.


Asunto(s)
Plaquetas/fisiología , AMP Cíclico/fisiología , Trastornos Hemorrágicos/genética , Hemostasis/fisiología , Trombospondina 1/fisiología , Animales , Tiempo de Sangría , Plaquetas/efectos de los fármacos , Antígenos CD36/deficiencia , Antígenos CD36/fisiología , Células Cultivadas , Cloruros/toxicidad , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Gránulos Citoplasmáticos/metabolismo , Epoprostenol/fisiología , Compuestos Férricos/toxicidad , Humanos , Iloprost/farmacología , Ratones , Ratones Endogámicos C57BL , Transfusión de Plaquetas , Sistemas de Mensajero Secundario/fisiología , Trombosis/inducido químicamente , Trombosis/prevención & control , Trombospondina 1/deficiencia , Trombospondina 1/farmacología
2.
FASEB J ; 34(4): 5658-5672, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32100381

RESUMEN

A contradictory role of CD36 in insulin resistance was found to be related to the nutrient state. Here, we examined that the physiological functions of CD36 in insulin signal transduction in mice fed a low-fat diet. CD36 deficiency led to hepatic insulin resistance and decreased insulin-stimulated tyrosine phosphorylation of insulin receptor ß (IRß) in mice fed a low-fat diet. The ability of insulin to bind with IR did not differ between WT and CD36-deficient hepatocytes. CD36 formed a complex with IRß and dissociation of CD36/Fyn complex or inhibition of Fyn only partially reversed the effects of CD36 on hepatic insulin signaling. Furthermore, we found that CD36 deficiency led to abnormally increased hepatic protein-tyrosine phosphatase 1B (PTP1B) expression and enhanced PTP1B and IR interactions, which contributed to the decreased insulin signaling and disordered glucose metabolism. In addition, increased endoplasmic reticulum (ER) stress was found in the livers of the CD36-deficient mice, while inhibited ER stress normalized the PTP1B expression and restored insulin signaling in the CD36-deficient mice. Our findings suggest that the loss of CD36 impairs hepatic insulin signaling by enhancing the PTP1B/IR interaction that is induced by ER stress, indicating a possible critical step in the progression of hepatic insulin resistance.


Asunto(s)
Antígenos CD36/fisiología , Estrés del Retículo Endoplásmico , Resistencia a la Insulina , Insulina/metabolismo , Hígado/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Animales , Femenino , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Receptor de Insulina/genética , Transducción de Señal
3.
J Virol ; 93(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30894476

RESUMEN

Enterovirus 71 (EV71) infection is generally associated with hand-foot-and-mouth disease (HFMD) and may cause severe neurological disorders and even death. An effective murine oral infection model for studying the pathogenesis of various clinical EV71 isolates is lacking. We developed a transgenic (Tg) mouse that expresses an EV71 receptor, that is, human scavenger receptor class B member 2 (hSCARB2), in a pattern highly similar to that of endogenous murine SCARB2 (mSCARB2) protein. A FLAG-tagged SCARB2 cDNA fragment composed of exons 3 to 12 was inserted into a murine Scarb2 gene-containing bacterial artificial chromosome (BAC) clone, and the resulting transgene was used for establishment of chimeric receptor-expressing Tg mice. Tg mice intragastrically (i.g.) infected with clinical isolates of EV71 showed neurological symptoms, such as ataxia and paralysis, and fatality. There was an age-dependent decrease in susceptibility to viral infection. Pathological characteristics of the infected Tg mice resembled those of encephalomyelitis in human patients. Viral infection was accompanied by microglial activation. Clodronate treatment of the brain slices from Tg mice enhanced viral replication, while lipopolysaccharide treatment significantly inhibited it, suggesting an antiviral role for microglia during EV71 infection. Taken together, this Tg mouse provides a model that closely mimics natural infection for studying EV71 pathogenesis and for evaluating the efficacy of vaccines or other antiviral drugs.IMPORTANCE The availability of a murine model of EV71 infection is beneficial for the understanding of pathogenic mechanisms and the development and assessment of vaccines and antiviral drugs. However, the lack of a murine oral infection model thwarted the study of pathogenesis induced by clinically relevant EV71 strains that are transmitted via the oral-oral or oral-fecal route. Our Tg mice could be intragastrically infected with clinically relevant EV71 strains in an efficient way and developed neurological symptoms and pathological changes strikingly resembling those of human infection. Moreover, these mice showed an age-dependent change in susceptibility that is similar to the human case. This Tg mouse, when combined with the use of other genetically modified mice, potentially contributes to studying the relationship between developmental changes in immunity and susceptibility to virus.


Asunto(s)
Antígenos CD36/metabolismo , Infecciones por Enterovirus/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Receptores Depuradores/metabolismo , Animales , Antígenos CD36/fisiología , Línea Celular , Células Cultivadas , Modelos Animales de Enfermedad , Enterovirus/genética , Enterovirus/metabolismo , Enterovirus Humano A/genética , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/virología , Humanos , Proteínas de Membrana de los Lisosomas/fisiología , Ratones , Ratones Transgénicos , Receptores Depuradores/genética , Receptores Depuradores/fisiología , Receptores Virales/metabolismo , Replicación Viral
4.
EMBO Rep ; 19(6)2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29777051

RESUMEN

Cellular senescence is a unique cell fate characterized by stable proliferative arrest and the extensive production and secretion of various inflammatory proteins, a phenomenon known as the senescence-associated secretory phenotype (SASP). The molecular mechanisms responsible for generating a SASP in response to senescent stimuli remain largely obscure. Here, using unbiased gene expression profiling, we discover that the scavenger receptor CD36 is rapidly upregulated in multiple cell types in response to replicative, oncogenic, and chemical senescent stimuli. Moreover, ectopic CD36 expression in dividing mammalian cells is sufficient to initiate the production of a large subset of the known SASP components via activation of canonical Src-p38-NF-κB signaling, resulting in the onset of a full senescent state. The secretome is further shown to be ligand-dependent, as amyloid-beta (Aß) is sufficient to drive CD36-dependent NF-κB and SASP activation. Finally, loss-of-function experiments revealed a strict requirement for CD36 in secretory molecule production during conventional senescence reprogramming. Taken together, these results uncover the Aß-CD36-NF-κB signaling axis as an important regulator of the senescent cell fate via induction of the SASP.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Antígenos CD36/fisiología , Senescencia Celular/fisiología , FN-kappa B/metabolismo , Antígenos CD36/genética , Células Cultivadas , Senescencia Celular/genética , Fibroblastos/metabolismo , Humanos , Mutación con Pérdida de Función , Transducción de Señal
5.
Arterioscler Thromb Vasc Biol ; 39(2): 263-275, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30567481

RESUMEN

Objective- Dysregulated proliferation of vascular smooth muscle cells (VSMC) plays an essential role in neointimal hyperplasia. CD36 functions critically in atherogenesis and thrombosis. We hypothesize that CD36 regulates VSMC proliferation and contributes to the development of obstructive vascular diseases. Approach and Results- We found by immunofluorescent staining that CD36 was highly expressed in human vessels with obstructive diseases. Using guidewire-induced carotid artery injury and shear stress-induced intima thickening models, we compared neointimal hyperplasia in Apoe-/-, Cd36-/- /Apoe-/-, and CD36 specifically deleted in VSMC (VSMC cd36-/-) mice. CD36 deficiency, either global or VSMC-specific, dramatically reduced injury-induced neointimal thickening. Correspondingly, carotid artery blood flow was significantly increased in Cd36-/- /Apoe-/- compared with Apoe-/- mice. In cultured VSMCs from thoracic aorta of wild-type and Cd36-/- mice, we found that loss of CD36 significantly decreased serum-stimulated proliferation and increased cell populations in S phase, suggesting that CD36 is necessary for VSMC S/G2-M-phase transition. Treatment of VSMCs with a TSR (thrombospondin type 1 repeat) peptide significantly increased wild-type, but not Cd36-/- VSMC proliferation. TSR or serum treatment significantly increased cyclin A expression in wild-type, but not in Cd36-/- VSMCs. STAT3 (signal transducer and activator of transcription), which reportedly enhances both VSMC differentiation and maturation, was higher in Cd36-/- VSMCs. CD36 deficiency significantly decreased expression of Col1A1 (type 1 collagen A1 chain) and TGF-ß1 (transforming growth factor beta 1), and increased expression of contractile proteins, including calponin 1 and smooth muscle α actin, and dramatically increased cell contraction. Conclusions- CD36 promotes VSMC proliferation via upregulation of cyclin A expression that contributes to the development of neointimal hyperplasia, collagen deposition, and obstructive vascular diseases.


Asunto(s)
Antígenos CD36/fisiología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/fisiología , Neointima/patología , Animales , Antígenos CD36/análisis , Proliferación Celular , Ciclina A/análisis , Hiperplasia , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción STAT3/fisiología
6.
Nutr Neurosci ; 23(3): 210-220, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29961406

RESUMEN

The influence of HFCS (high fructose corn syrup - free fructose) and sucrose (bound fructose) on fetal appetite signals is unknown. This study aimed to determine the effects of HFCS or sucrose on the peptide-mediated appetite regulation in fetal programming of obesity. Sprague Dawley female rats were administered feed and plain water (control) or water containing maltodextrin (vehicle), sucrose, fructose, or HFCS (20%, w/v) for 12 weeks before mating and throughout pregnancy and lactation (ndams = 31; npups = 207). Maternal chow-feed consumption in the HFCS and sucrose groups and sugar-added drink consumption in the HFCS group were higher compared to the vehicle and control groups (P < 0.05). The total body fat accumulated in sucrose, fructose, and HFCS groups in dams and pups was higher than those in the vehicle and control groups (P < 0.05). The HFCS groups showed lower plasma leptin levels and higher ghrelin levels. Soluble CD36 levels in plasma and tongue samples were high in HFCS groups of dams and pups (P < 0.05). Rather than bound fructose, the free fructose from the maternal diet contributes to the programming of obesity through the disruption of leptin, ghrelin, and CD36 expression involved in appetite regulation.


Asunto(s)
Antígenos CD36/fisiología , Azúcares de la Dieta/administración & dosificación , Desarrollo Fetal/fisiología , Ghrelina/fisiología , Leptina/fisiología , Obesidad/etiología , Animales , Regulación del Apetito/fisiología , Antígenos CD36/análisis , Sacarosa en la Dieta/administración & dosificación , Femenino , Fructosa/administración & dosificación , Ghrelina/sangre , Leptina/sangre , Fenómenos Fisiologicos Nutricionales Maternos , Distrofias Neuroaxonales , Osteopetrosis , Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Ratas , Ratas Sprague-Dawley
7.
Am J Respir Cell Mol Biol ; 61(6): 737-746, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31461627

RESUMEN

The impact of lipotoxicity on the development of lung fibrosis is unclear. Saturated fatty acids, such as palmitic acid (PA), activate endoplasmic reticulum (ER) stress, a cellular stress response associated with the development of idiopathic pulmonary fibrosis (IPF). We tested the hypothesis that PA increases susceptibility to lung epithelial cell death and experimental fibrosis by modulating ER stress. Total liquid chromatography and mass spectrometry were used to measure fatty acid content in IPF lungs. Wild-type mice were fed a high-fat diet (HFD) rich in PA or a standard diet and subjected to bleomycin-induced lung injury. Lung fibrosis was determined by hydroxyproline content. Mouse lung epithelial cells were treated with PA. ER stress and cell death were assessed by Western blotting, TUNEL staining, and cell viability assays. IPF lungs had a higher level of PA compared with controls. Bleomycin-exposed mice fed an HFD had significantly increased pulmonary fibrosis associated with increased cell death and ER stress compared with those fed a standard diet. PA increased apoptosis and activation of the unfolded protein response in lung epithelial cells. This was attenuated by genetic deletion and chemical inhibition of CD36, a fatty acid transporter. In conclusion, consumption of an HFD rich in saturated fat increases susceptibility to lung fibrosis and ER stress, and PA mediates lung epithelial cell death and ER stress via CD36. These findings demonstrate that lipotoxicity may have a significant impact on the development of lung injury and fibrosis by enhancing pro-death ER stress pathways.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ácido Palmítico/toxicidad , Fibrosis Pulmonar/inducido químicamente , Animales , Apoptosis/efectos de los fármacos , Antígenos CD36/deficiencia , Antígenos CD36/fisiología , Células Epiteliales/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ácido Palmítico/administración & dosificación , Ácido Palmítico/farmacocinética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología
8.
J Biol Chem ; 293(34): 13338-13348, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-29914985

RESUMEN

Obesity-induced metabolic dysfunctions increase the risk for vascular diseases, including type II diabetes and stroke. Managing obesity is of interest to address the worldwide health problem; however, the role of genetic variability in human obesity development and specific targets for obesity-related metabolic disease have not been thoroughly studied. A SNP in the brain-derived neurotropic factor (BDNF) gene that results in the substitution of a valine with a methionine at codon 66 (Val66Met) occurs with a high frequency in humans. This study addressed the effect of genetic variability in developing obesity and the efficacy of the inhibition of cluster of differentiation 36 (CD36), a multifunctional receptor implicated in obesity and insulin resistance, in WT mice and mice with the BDNF Val66Met variant. CD36 inhibition by salvionolic acid B (SAB) in diet-induced obese WT mice reduced visceral fat accumulation and improved insulin resistance. The benefit of SAB was abrogated in CD36 knockout mice, showing the specificity of SAB. In addition, mice with the Val66Met variant in both alleles (BDNFM/M) fed a high-fat diet exhibited extreme obesity with increased CD36 gene and protein levels in macrophages. Chronic SAB treatment in BDNFM/M mice significantly decreased visceral fat accumulation and improved insulin resistance. Notably, the effect of SAB was greater in the extremely obese BDNFM/M mice compared with the WT mice. The study demonstrated a link between BDNF Val66Met and elevated CD36 expression and suggested that CD36 inhibition may be a potential strategy to improve metabolic dysfunctions and to normalize risk factors for vascular diseases in the obese population.


Asunto(s)
Benzofuranos/farmacología , Factor Neurotrófico Derivado del Encéfalo/genética , Antígenos CD36/antagonistas & inhibidores , Resistencia a la Insulina , Grasa Intraabdominal , Mutación , Obesidad/prevención & control , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Antígenos CD36/fisiología , Diferenciación Celular , Dieta Alta en Grasa/efectos adversos , Masculino , Metionina/química , Metionina/genética , Metionina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Valina/química , Valina/genética , Valina/metabolismo
9.
J Hepatol ; 70(5): 930-940, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30677459

RESUMEN

BACKGROUND & AIMS: The most prescribed non-nucleoside reverse transcriptase inhibitor, efavirenz, has been associated with elevated risk of dyslipidemia and hepatic steatosis in HIV-infected patients but the underlying mechanisms remain elusive. Herein, we investigated the role of pregnane X receptor (PXR) in mediating the adverse effects of efavirenz on lipid homeostasis. METHODS: Cell-based reporter assays, primary cell culture, and multiple mouse models including conditional knockout and humanized mice were combined to study the impact of efavirenz on PXR activities and lipid homeostasis in vitro and in vivo. A novel liver-specific Pxr knockout mouse model was also generated to determine the contribution of hepatic PXR signaling to efavirenz-elicited dyslipidemia and hepatic steatosis. RESULTS: We found that efavirenz is a potent PXR-selective agonist that can efficiently activate PXR and induce its target gene expression in vitro and in vivo. Treatment with efavirenz-induced hypercholesterolemia and hepatic steatosis in mice but deficiency of hepatic PXR abolished these adverse effects. Interestingly, efavirenz-mediated PXR activation regulated the expression of several key hepatic lipogenic genes including fatty acid transporter CD36 and cholesterol biosynthesis enzyme squalene epoxidase (SQLE), leading to increased lipid uptake and cholesterol biosynthesis in hepatic cells. While CD36 is a known PXR target gene, we identified a DR-2-type of PXR-response element in the SQLE promoter and established SQLE as a direct transcriptional target of PXR. Since PXR exhibits considerable differences in its pharmacology across species, we also confirmed these findings in PXR-humanized mice and human primary hepatocytes. CONCLUSIONS: The widely prescribed antiretroviral drug efavirenz induces hypercholesterolemia and hepatic steatosis by activating PXR signaling. Activation of PXR should be taken into consideration for patients undergoing long-term treatment with PXR agonistic antiretroviral drugs. LAY SUMMARY: Efavirenz is widely prescribed for HIV-infected patients but has some side effects. It can increase lipid levels in patients' blood and liver. Here we show that efavirenz can activate a unique liver protein called PXR which mediates the adverse effects of efavirenz on lipid levels in mouse models.


Asunto(s)
Benzoxazinas/efectos adversos , Hígado Graso/inducido químicamente , Hipercolesterolemia/inducido químicamente , Receptor X de Pregnano/agonistas , Inhibidores de la Transcriptasa Inversa/efectos adversos , Alquinos , Animales , Antígenos CD36/fisiología , Colesterol/biosíntesis , Ciclopropanos , Hepatocitos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Receptor X de Pregnano/fisiología , Transducción de Señal/fisiología , Escualeno-Monooxigenasa/fisiología
10.
Biochem J ; 475(7): 1253-1265, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29523748

RESUMEN

The cardioprotective lipoprotein HDL (high-density lipoprotein) prevents myocardial infarction and cardiomyocyte death due to ischemia/reperfusion injury. The scavenger receptor class B, type 1 (SR-B1) is a high-affinity HDL receptor and has been shown to mediate HDL-dependent lipid transport as well as signaling in a variety of different cell types. The contribution of SR-B1 in cardiomyocytes to the protective effects of HDL on cardiomyocyte survival following ischemia has not yet been studied. Here, we use a model of simulated ischemia (oxygen and glucose deprivation, OGD) to assess the mechanistic involvement of SR-B1, PI3K (phosphatidylinositol-3-kinase), and AKT in HDL-mediated protection of cardiomyocytes from cell death. Neonatal mouse cardiomyocytes and immortalized human ventricular cardiomyocytes, subjected to OGD for 4 h, underwent substantial cell death due to necrosis but not necroptosis or apoptosis. Pretreatment of cells with HDL, but not low-density lipoprotein, protected them against OGD-induced necrosis. HDL-mediated protection was lost in cardiomyocytes from SR-B1-/- mice or when SR-B1 was knocked down in human immortalized ventricular cardiomyocytes. HDL treatment induced the phosphorylation of AKT in cardiomyocytes in an SR-B1-dependent manner. Finally, chemical inhibition of PI3K or AKT or silencing of either AKT1 or AKT2 gene expression abolished HDL-mediated protection against OGD-induced necrosis of cardiomyocytes. These results are the first to identify a role of SR-B1 in mediating the protective effects of HDL against necrosis in cardiomyocytes, and to identify AKT activation downstream of SR-B1 in cardiomyocytes.


Asunto(s)
Antígenos CD36/fisiología , Glucosa/deficiencia , Lipoproteínas HDL/farmacología , Miocitos Cardíacos/efectos de los fármacos , Oxígeno/toxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Necrosis , Fosforilación , Transducción de Señal
11.
Int Heart J ; 60(1): 159-167, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30518717

RESUMEN

CD36 is one of the important transporters of long-chain fatty acids (LCFAs) in the myocardium. We previously reported that CD36-deficient patients demonstrate a marked reduction of myocardial uptake of LCFA, while myocardial glucose uptake shows a compensatory increase, and are often accompanied by cardiomyopathy. However, the molecular mechanisms and functional role of CD36 in the myocardium remain unknown.The current study aimed to explore the pathophysiological role of CD36 in the heart. Methods: Using wild type (WT) and knockout (KO) mice, we generated pressure overload by transverse aortic constriction (TAC) and analyzed cardiac functions by echocardiography. To assess cardiac hypertrophy and fibrosis, histological and molecular analyses and measurement of ATP concentration in mouse hearts were performed.By applying TAC, the survival rate was significantly lower in KO than that in WT mice. After TAC, KO mice showed significantly higher heart weight-to-tibial length ratio and larger cross-sectional area of cardiomyocytes than those of WT. Although left ventricular (LV) wall thickness in the KO mice was similar to that in the WT mice, the KO mice showed a significant enlargement of LV cavity and reduced LV fractional shortening compared to the WT mice with TAC. A tendency for decreased myocardial ATP concentration was observed in the KO mice compared to the WT mice after TAC operation.These data suggest that the LCFA transporter CD36 is required for the maintenance of energy provision, systolic function, and myocardial structure.


Asunto(s)
Antígenos CD36/genética , Proteínas de Transporte de Ácidos Grasos/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antígenos CD36/fisiología , Metabolismo Energético/fisiología , Fibrosis , Glucosa/metabolismo , Hipertrofia Ventricular Izquierda/complicaciones , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/patología , Miocitos Cardíacos/patología , Presión/efectos adversos , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/fisiopatología , Remodelación Ventricular
12.
Malar J ; 16(1): 193, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28486940

RESUMEN

BACKGROUND: Plasmodium falciparum-infected erythrocytes sequester in the microcirculation due to interaction between surface-expressed parasite proteins and endothelial receptors. Endothelial cells are covered in a carbohydrate-rich glycocalyx that shields against undesired leukocyte adhesion. It was investigated if the cellular glycocalyx affects the binding of P. falciparum-infected erythrocytes to CD36 in vitro. METHODS: Glycocalyx growth was followed in vitro by using azido sugars and cationized ferritin detecting O-glycoproteins and negatively charged proteoglycans, respectively. P. falciparum (clone FCR3/IT) was selected on Chinese hamster ovary (CHO) cells transfected with human CD36. Cytoadhesion to CHO CD36 at 1-4 days after seeding was quantified by using a static binding assay. RESULTS: The glycocalyx thickness of CHO cells increased during 4 days in culture as assessed by metabolic labelling of glycans with azido sugars and with electron microscopy studying the binding of cationized ferritin to cell surfaces. The functional importance of this process was addressed in binding assays by using CHO cells transfected with CD36. In parallel with the maturation of the glycocalyx, antibody-binding to CD36 was inhibited, despite stable expression of CD36. P. falciparum selected for CD36-binding recognized CD36 on CHO cells on the first day in culture, but the binding was lost after 2-4 days. CONCLUSION: The endothelial glycocalyx affects parasite cytoadhesion in vitro, an effect that has previously been ignored. The previously reported loss of glycocalyx during experimental malaria may play an important role in the pathogenesis of malaria complications by allowing the close interaction between infected erythrocytes and endothelial receptors.


Asunto(s)
Antígenos CD36/fisiología , Eritrocitos/parasitología , Glicocálix/parasitología , Plasmodium falciparum/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Células Endoteliales/fisiología , Humanos , Malaria Falciparum/fisiopatología
13.
Blood ; 122(4): 580-9, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23699602

RESUMEN

Oxidized low-density lipoproteins (oxLDL) generated in the hyperlipidemic state may contribute to unregulated platelet activation during thrombosis. Although the ability of oxLDL to activate platelets is established, the underlying signaling mechanisms remain obscure. We show that oxLDL stimulate platelet activation through phosphorylation of the regulatory light chains of the contractile protein myosin IIa (MLC). oxLDL, but not native LDL, induced shape change, spreading, and phosphorylation of MLC (serine 19) through a pathway that was ablated under conditions that blocked CD36 ligation or inhibited Src kinases, suggesting a tyrosine kinase-dependent mechanism. Consistent with this, oxLDL induced tyrosine phosphorylation of a number of proteins including Syk and phospholipase C γ2. Inhibition of Syk, Ca(2+) mobilization, and MLC kinase (MLCK) only partially inhibited MLC phosphorylation, suggesting the presence of a second pathway. oxLDL activated RhoA and RhoA kinase (ROCK) to induce inhibitory phosphorylation of MLC phosphatase (MLCP). Moreover, inhibition of Src kinases prevented the activation of RhoA and ROCK, indicating that oxLDL regulates contractile signaling through a tyrosine kinase-dependent pathway that induces MLC phosphorylation through the dual activation of MLCK and inhibition of MLCP. These data reveal new signaling events downstream of CD36 that are critical in promoting platelet aggregation by oxLDL.


Asunto(s)
Plaquetas/efectos de los fármacos , Lipoproteínas LDL/farmacología , Activación Plaquetaria/efectos de los fármacos , Proteínas Tirosina Quinasas/fisiología , Proteína de Unión al GTP rhoA/fisiología , Plaquetas/citología , Antígenos CD36/metabolismo , Antígenos CD36/fisiología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Forma de la Célula/efectos de los fármacos , Humanos , Quinasa de Cadena Ligera de Miosina/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Fosforilación/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factores de Tiempo , Proteína de Unión al GTP rhoA/metabolismo
14.
FASEB J ; 28(8): 3494-505, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24769669

RESUMEN

Secretin, a classical gastrointestinal hormone released from S cells in response to acid and dietary lipid, regulates pleiotropic physiological functions, such as exocrine pancreatic secretion and gastric motility. Subsequent to recently proposed revisit on secretin's metabolic effects, we have confirmed lipolytic actions of secretin during starvation and discovered a hormone-sensitive lipase-mediated mechanistic pathway behind. In this study, a 12 wk high-fat diet (HFD) feeding to secretin receptor-knockout (SCTR(-/-)) mice and their wild-type (SCTR(+/+)) littermates revealed that, despite similar food intake, SCTR(-/-) mice gained significantly less weight (SCTR(+/+): 49.6±0.9 g; SCTR(-/-): 44.7±1.4 g; P<0.05) and exhibited lower body fat content. These SCTR(-/-) mice have corresponding alleviated HFD-associated hyperleptinemia and improved glucose/insulin tolerance. Further analyses indicate that SCTR(-/-) have impaired intestinal fatty acid absorption while having similar energy expenditure and locomotor activity. Reduced fat absorption in the intestine is further supported by lowered postprandial triglyceride concentrations in circulation in SCTR(-/-) mice. In jejunal cells, transcript and protein levels of a key fat absorption regulator, cluster of differentiation 36 (CD36), was reduced in knockout mice, while transcript of Cd36 and fatty-acid uptake in isolated enterocytes was stimulated by secretin. Based on our findings, a novel positive feedback pathway involving secretin and CD36 to enhance intestinal lipid absorption is being proposed.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/farmacocinética , Absorción Intestinal/genética , Obesidad/genética , Receptores Acoplados a Proteínas G/fisiología , Receptores de la Hormona Gastrointestinal/fisiología , Secretina/fisiología , Adiposidad/genética , Adiposidad/fisiología , Animales , Antígenos CD36/fisiología , Proteínas Portadoras/fisiología , Metabolismo Energético , Enterocitos/metabolismo , Retroalimentación Fisiológica , Femenino , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina , Yeyuno/metabolismo , Leptina/sangre , Locomoción , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/sangre , Obesidad/etiología , Obesidad/fisiopatología , Receptores Acoplados a Proteínas G/deficiencia , Receptores de la Hormona Gastrointestinal/deficiencia , Triglicéridos/sangre , Aumento de Peso
15.
Circ Res ; 113(1): 52-61, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23584255

RESUMEN

RATIONALE: Apoptotic cell phagocytosis (efferocytosis) is mediated by specific receptors and is essential for resolution of inflammation. In chronic inflammation, apoptotic cell clearance is dysfunctional and soluble levels of several apoptotic cell receptors are elevated. Reports have identified proteolytic cleavage as a mechanism capable of releasing soluble apoptotic cell receptors, but the functional implications of their proteolysis are unclear. OBJECTIVE: To test the hypothesis that ADAM17-mediated cleavage of apoptotic cell receptors limits efferocytosis in vivo. METHODS AND RESULTS: In vivo comparison of macrophage efferocytosis in wild-type and Adam17-null hematopoietic chimeras demonstrates that ADAM17 deficiency leads to a 60% increase in efferocytosis and an enhanced anti-inflammatory phenotype in a model of peritonitis. In vitro uptake of phosphatidylserine liposomes identifies the dual-pass apoptotic cell receptor CD36 as a major contributor to enhanced efferocytosis, and CD36 surface levels are elevated on macrophages from Adam17-null mice. Further, temporal elevation of CD36 expression with inflammation may also contribute to its impact. Soluble CD36 from macrophage-conditioned media comprises 2 species based on Western blotting, and mass spectrometry identifies 3 N-terminal peptides that represent probable cleavage sites. Levels of soluble CD36 are decreased in Adam17-null conditioned media, providing evidence for involvement of ADAM17 in CD36 cleavage. Importantly, enhanced efferocytosis in vivo by macrophages lacking ADAM17 is CD36 dependent and accelerates macrophage clearance from the peritoneum, thus promoting resolution of inflammation and highlighting the impact of increased apoptotic cell uptake. CONCLUSIONS: Our studies demonstrate the importance of ADAM17-mediated proteolysis for in vivo efferocytosis regulation and suggest a possible mechanistic link between chronic inflammation and defective efferocytosis.


Asunto(s)
Proteínas ADAM/fisiología , Apoptosis/fisiología , Antígenos CD36/fisiología , Macrófagos Peritoneales/enzimología , Peritonitis/enzimología , Fagocitosis/fisiología , Proteínas ADAM/deficiencia , Proteínas ADAM/genética , Proteína ADAM17 , Secuencia de Aminoácidos , Animales , Trasplante de Médula Ósea , Antígenos CD36/química , Quimera , Medios de Cultivo Condicionados/farmacología , Dexametasona/farmacología , Células Madre Embrionarias/trasplante , Liposomas , Macrófagos Peritoneales/fisiología , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Peritonitis/inducido químicamente , Peritonitis/patología , Fenotipo , Tioglicolatos/toxicidad , Timocitos/patología , Timocitos/trasplante
16.
Arterioscler Thromb Vasc Biol ; 34(6): 1187-92, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24675658

RESUMEN

OBJECTIVE: Platelets abundantly express the membrane receptor CD36 and store its ligand thrombospondin-1 (TSP1) in the α-granules. We investigated whether released TSP1 can support platelet adhesion and thrombus formation via interaction with CD36. APPROACH AND RESULTS: Mouse platelets deficient in CD36 showed reduced adhesion to TSP1 and subsequent phosphatidylserine expression. Deficiency in either CD36 or TSP1 resulted in markedly increased dissolution of thrombi formed on collagen, although thrombus buildup was unchanged. In mesenteric vessels in vivo, deficiency in CD36 prolonged the time to occlusion and enhanced embolization, which was in agreement with earlier observations in TSP1-deficient mice. Thrombi formed using wild-type blood stained positively for secreted TSP1. Releasate from wild-type but not from TSP1-deficient platelets enhanced platelet activation, phosphatidylserine expression, and thrombus formation on collagen. The enhancement was dependent on CD36 because it was without effect on thrombus formation by CD36-deficient platelets. CONCLUSIONS: These results demonstrate an anchoring role of platelet-released TSP1 via CD36 in platelet adhesion and collagen-dependent thrombus stabilization. Thus, the TSP1-CD36 tandem is another platelet ligand-receptor axis contributing to the maintenance of a stable thrombus.


Asunto(s)
Antígenos CD36/fisiología , Colágeno/metabolismo , Trombosis/etiología , Trombospondina 1/fisiología , Animales , Ratones , Ratones Endogámicos C57BL , Activación Plaquetaria , Adhesividad Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/fisiología
17.
Bioorg Med Chem Lett ; 25(10): 2100-5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25900219

RESUMEN

We report a new series of 8-membered benzo-fused lactams that inhibit cellular lipid uptake from HDL particles mediated by Scavenger Receptor, Class B, Type I (SR-BI). The series was identified via a high-throughput screen of the National Institutes of Health Molecular Libraries Small Molecule Repository (NIH MLSMR), measuring the transfer of the fluorescent lipid DiI from HDL particles to CHO cells overexpressing SR-BI. The series is part of a previously reported diversity-oriented synthesis (DOS) library prepared via a build-couple-pair approach. Detailed structure-activity relationship (SAR) studies were performed with a selection of the original library, as well as additional analogs prepared via solution phase synthesis. These studies demonstrate that the orientation of the substituents on the aliphatic ring have a critical effect on activity. Additionally, a lipophilic group is required at the western end of the molecule, and a northern hydroxyl group and a southern sulfonamide substituent also proved to be optimal. Compound 2p was found to possess a superior combination of potency (av IC50=0.10µM) and solubility (79µM in PBS), and it was designated as probe ML312.


Asunto(s)
Antígenos CD36/antagonistas & inhibidores , Lactamas/farmacología , Metabolismo de los Lípidos , Animales , Antígenos CD36/fisiología , Humanos , Lactamas/química , Relación Estructura-Actividad
18.
Hepatology ; 57(5): 1716-24, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23212706

RESUMEN

UNLABELLED: Oxidized low-density lipoprotein (oxLDL) has been reported as an inhibitor of hepatitis C virus (HCV) cell entry, making it the only known component of human lipid metabolism with an antiviral effect on HCV. However, several questions remain open, including its effect on full-length cell-culture-grown HCV (HCVcc) of different genotypes or on other steps of the viral replication cycle, its mechanism of action, and whether endogenous oxLDL shares the anti-HCV properties of in vitro-generated oxLDL. We combined molecular virology tools with oxLDL serum measurements in different patient cohorts to address these questions. We found that oxLDL inhibits HCVcc at least as potently as HCV pseudoparticles. There was moderate variation between genotypes, with genotype 4 appearing the most oxLDL sensitive. Intracellular RNA replication and assembly and release of new particles were unaffected. HCV particles entering target cells lost oxLDL sensitivity with time kinetics parallel to anti-SR-BI (scavenger receptor class B type I), but significantly earlier than anti-CD81, suggesting that oxLDL acts by perturbing interaction between HCV and SR-BI. Finally, in chronically HCV-infected individuals, endogenous serum oxLDL levels did not correlate with viral load, but in HCV-negative sera, high endogenous oxLDL had a negative effect on HCV infectivity in vitro. CONCLUSION: oxLDL is a potent pangenotype HCV entry inhibitor that maintains its activity in the context of human serum and targets an early step of HCV entry.


Asunto(s)
Hepacivirus/genética , Hepacivirus/fisiología , Hepatitis C Crónica/sangre , Lipoproteínas LDL/farmacología , Replicación Viral/efectos de los fármacos , Antígenos CD36/fisiología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Línea Celular Tumoral , Células Cultivadas , ADN Viral/genética , Genotipo , Hepacivirus/efectos de los fármacos , Humanos , Técnicas In Vitro , Lipoproteínas LDL/sangre , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Carga Viral , Virión/fisiología , Replicación Viral/fisiología
19.
Blood ; 119(25): 6136-44, 2012 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-22431576

RESUMEN

Diabetes mellitus has been associated with platelet hyperreactivity, which plays a central role in the hyperglycemia-related prothrombotic phenotype. The mechanisms responsible for this phenomenon are not established. In the present study, we investigated the role of CD36, a class-B scavenger receptor, in this process. Using both in vitro and in vivo mouse models, we demonstrated direct and specific interactions of platelet CD36 with advanced glycation end products (AGEs) generated under hyperglycemic conditions. AGEs bound to platelet CD36 in a specific and dose-dependent manner, and binding was inhibited by the high-affinity CD36 ligand NO(2)LDL. Cd36-null platelets did not bind AGE. Using diet- and drug-induced mouse models of diabetes, we have shown that cd36-null mice had a delayed time to the formation of occlusive thrombi compared with wild-type (WT) in a FeCl(3)-induced carotid artery injury model. Cd36-null mice had a similar level of hyperglycemia and a similar level of plasma AGEs compared with WT mice under this condition, but WT mice had more AGEs incorporated into thrombi. Mechanistic studies revealed that CD36-dependent JNK2 activation is involved in this prothrombotic pathway. Therefore, the results of the present study couple vascular complications in diabetes mellitus with AGE-CD36-mediated platelet signaling and hyperreactivity.


Asunto(s)
Enfermedades Asintomáticas , Plaquetas/metabolismo , Antígenos CD36/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/fisiología , Trombosis/etiología , Animales , Plaquetas/efectos de los fármacos , Antígenos CD36/genética , Antígenos CD36/fisiología , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Angiopatías Diabéticas/sangre , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/patología , Dieta Aterogénica , Productos Finales de Glicación Avanzada/farmacología , Hiperglucemia/sangre , Hiperglucemia/etiología , Hiperglucemia/genética , Hiperglucemia/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Agregación Plaquetaria/genética , Agregación Plaquetaria/fisiología , Unión Proteica , Estreptozocina , Trombosis/metabolismo , Trombosis/patología
20.
Reprod Biol Endocrinol ; 12: 21, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24628875

RESUMEN

BACKGROUND: Ovarian angiogenesis is a complex process that is regulated by a balance between pro- and anti-angiogenic factors. Physiological processes within the ovary, such as folliculogenesis, ovulation, and luteal formation are dependent upon adequate vascularization and anything that disrupts normal angiogenic processes may result in ovarian dysfunction, and possibly infertility. The objective of this study was to evaluate the role of the thrombospondin-1 (TSP-1) receptor CD36 in mediating ovarian angiogenesis and regulating ovarian function. METHODS: The role of CD36 was evaluated in granulosa cells in vitro and ovarian morphology and protein expression were determined in wild type and CD36 null mice. RESULTS: In vitro, CD36 inhibition increased granulosa cell proliferation and decreased apoptosis. Granulosa cells in which CD36 was knocked down also exhibited an increase in expression of survival and angiogenic proteins. Ovaries from CD36 null mice were hypervascularized, with increased expression of pro-angiogenic vascular endothelial growth factor (VEGF) and its receptor VEGFR-2. Ovaries from CD36 null mice contained an increase in the numbers of pre-ovulatory follicles and decreased numbers of corpora lutea. CD36 null mice also had fewer number of offspring compared to wild type controls. CONCLUSIONS: The results from this study demonstrate that CD36 is integral to the regulation of ovarian angiogenesis by TSP-1 and the expression of these family members may be useful in the control of ovarian vascular disorders.


Asunto(s)
Antígenos CD36/fisiología , Neovascularización Fisiológica/fisiología , Folículo Ovárico/fisiología , Inductores de la Angiogénesis/metabolismo , Animales , Línea Celular Transformada , Proliferación Celular , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Folículo Ovárico/citología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA