RESUMEN
Inulin, a widely recognized prebiotic, has diverse applications across various industrial sectors. Although inulin is primarily produced through plant extraction, there is growing interest in enzymatic synthesis as an alternative. The enzymatic production of inulin from sucrose, which yields polymers with degrees of polymerization similar to those of plant-derived inulin, shows potential as a viable replacement for traditional extraction methods. In this study, an inulosucrase from Neobacillus bataviensis was identified, demonstrating a non-processive mechanism specifically tailored for synthesizing inulin with polymerization degrees ranging from 3 to approximately 40. The enzyme exhibited optimal activity at pH 6.5 and 55 °C, efficiently producing inulin with a yield of 50.6%. Ca2+ can improve the activity and thermostability of this enzyme. To enhance catalytic total activity, site-directed and truncated mutagenesis techniques were applied, resulting in the identification of a mutant, T149S, displaying a significant 57% increase in catalytic total activity. Molecular dynamics simulations unveiled that the heightened flexibility observed in three surface regions positively influenced enzymatic activity. This study not only contributes to the theoretical foundation for inulosucrase engineering but also presents a potential avenue for the production of inulin.
Asunto(s)
Hexosiltransferasas , Inulina , Inulina/metabolismo , Hexosiltransferasas/metabolismo , Hexosiltransferasas/genética , Hexosiltransferasas/química , Simulación de Dinámica Molecular , Concentración de Iones de Hidrógeno , Sacarosa/metabolismo , Peso Molecular , Mutagénesis Sitio-Dirigida , Bacillales/enzimología , Bacillales/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Ingeniería de Proteínas , Estabilidad de Enzimas , Temperatura , Calcio/metabolismoRESUMEN
The family Anoxybacillaceae was recently proposed encompassing the genera Anoxybacillus, Geobacillus, Parageobacillus, Saccharococcus and Thermolongibacillus. Of these genera, Anoxybacillus contains >50% of the Anoxybacillaceae species. However, Anoxybacillus species form multiple unrelated clades in phylogenetic trees and their evolutionary relationships are unclear. To clarify the evolutionary relationships of Anoxybacillus and other Anoxybacillaceae species, detailed phylogenomic and comparative analyses were conducted on 38 Anoxybacillaceae species with available genomes. In a phylogenomic tree based on 1148 core proteins, all Anoxybacillus, Geobacillus, Parageobacillus, Saccharococcus and Thermolongibacillus species, excepting Anoxybacillus sediminis, formed a strongly supported clade representing the family Anoxybacillaceae. Five conserved signature indels (CSIs) reported here are also uniquely found in these species, providing robust means for the demarcation of family Anoxybacillaceae in molecular terms. In our phylogenomic tree and in the Genomic Taxonomy Database, Anoxybacillus species formed four distinct clades designated as Anoxybacillus sensu stricto (containing the type species A. pushchinoensis), Anoxybacillus_A, Anoxybacillus_B and Anoxybacillus_C. Our analyses have identified 17 novel CSIs which offer means to reliably distinguish species from these clades based upon multiple uniquely shared molecular characteristics. Additionally, we have identified three and seven CSIs specific for the genera Geobacillus and Brevibacillus, respectively. All seven Brevibacillus-specific CSIs are also shared by Anoxybacillus sediminis, which branches reliably with this genus. Based on the strong phylogenetic and molecular evidence presented here, we are proposing that the genus Anoxybacillus should be restricted to only the species from Anoxybacillus sensu stricto clade, whereas the species from Anoxybacillus_A, Anoxybacillus_B, and Anoxybacillus_C clades should be transferred into three novel genera Anoxybacteroides gen. nov., Paranoxybacillus gen. nov. and Thermaerobacillus gen. nov., respectively. Additionally, we are also proposing the transfer of Anoxybacillus sediminis to the genus Brevibacillus. The proposed changes, which reliably depict the evolutionary relationships among Anoxybacillaceae species, should be helpful in the studies of these organisms.
Asunto(s)
Anoxybacillus , Genoma Bacteriano , Filogenia , Anoxybacillus/genética , Anoxybacillus/clasificación , Anoxybacillus/aislamiento & purificación , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana , Evolución Molecular , Bacillales/genética , Bacillales/clasificación , Bacillales/aislamiento & purificación , ARN Ribosómico 16S/genéticaRESUMEN
BACKGROUND: Sigma factor B (SigB) is the central regulator of the general stress response in Bacillus subtilis and regulates a group of genes in response to various stressors, known as the SigB regulon members. Genes that are directly regulated by SigB contain a promotor binding motif (PBM) with a previously identified consensus sequence. RESULTS: In this study, refined SigB PBMs were derived and different spacer compositions and lengths (N12-N17) were taken into account. These were used to identify putative SigB-regulated genes in the B. subtilis genome, revealing 255 genes: 99 had been described in the literature and 156 genes were newly identified, increasing the number of SigB putative regulon members (with and without a SigB PBM) to > 500 in B. subtilis. The 255 genes were assigned to five categories (I-V) based on their similarity to the original SigB consensus sequences. The functionalities of selected representatives per category were assessed using promoter-reporter fusions in wt and ΔsigB mutants upon exposure to heat, ethanol, and salt stress. The activity of the PrsbV (I) positive control was induced upon exposure to all three stressors. PytoQ (II) showed SigB-dependent activity only upon exposure to ethanol, whereas PpucI (II) with a N17 spacer and PylaL (III) with a N16 spacer showed mild induction regardless of heat/ethanol/salt stress. PywzA (III) and PyaaI (IV) displayed ethanol-specific SigB-dependent activities despite a lower-level conserved - 10 binding motif. PgtaB (V) was SigB-induced under ethanol and salt stress while lacking a conserved - 10 binding region. The activities of PygaO and PykaA (III) did not show evident changes under the conditions tested despite having a SigB PBM that highly resembled the consensus. The identified extended SigB regulon candidates in B. subtilis are mainly involved in coping with stress but are also engaged in other cellular processes. Orthologs of SigB regulon candidates with SigB PBMs were identified in other Bacillales genomes, but not all showed a SigB PBM. Additionally, genes involved in the integration of stress signals to activate SigB were predicted in these genomes, indicating that SigB signaling and regulon genes are species-specific. CONCLUSION: The entire SigB regulatory network is sophisticated and not yet fully understood even for the well-characterized organism B. subtilis 168. Knowledge and information gained in this study can be used in further SigB studies to uncover a complete picture of the role of SigB in B. subtilis and other species.
Asunto(s)
Bacillales , Bacillus subtilis , Bacillus subtilis/fisiología , Bacillales/genética , Regulón , Respuesta al Choque Térmico , Etanol/farmacología , Factor sigma/genética , Factor sigma/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión GénicaRESUMEN
The RNA-guided CRISPR-associated (Cas) nucleases are versatile tools for genome editing in various organisms. The large sizes of the commonly used Cas9 and Cas12a nucleases restrict their flexibility in therapeutic applications that use the cargo-size-limited adeno-associated virus delivery vehicle. More compact systems would thus offer more therapeutic options and functionality for this field. Here, we report a miniature class 2 type V-F CRISPR-Cas genome-editing system from Acidibacillus sulfuroxidans (AsCas12f1, 422 amino acids). AsCas12f1 is an RNA-guided endonuclease that recognizes 5' T-rich protospacer adjacent motifs and creates staggered double-stranded breaks to target DNA. We show that AsCas12f1 functions as an effective genome-editing tool in both bacteria and human cells using various delivery methods, including plasmid, ribonucleoprotein and adeno-associated virus. The small size of AsCas12f1 offers advantages for cellular delivery, and characterizations of AsCas12f1 may facilitate engineering more compact genome-manipulation technologies.
Asunto(s)
Bacillales/química , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Edición GénicaRESUMEN
SR1 is a dual-function sRNA from Bacillus subtilis. It inhibits translation initiation of ahrC mRNA encoding the transcription activator of the arginine catabolic operons. Base-pairing is promoted by the RNA chaperone CsrA, which induces a slight structural change in the ahrC mRNA to facilitate SR1 binding. Additionally, SR1 encodes the small protein SR1P that interacts with glyceraldehyde-3P dehydrogenase A to promote binding to RNase J1 and enhancing J1 activity. Here, we describe a new target of SR1, kinA mRNA encoding the major histidine kinase of the sporulation phosphorelay. SR1 and kinA mRNA share 7 complementary regions. Base-pairing between SR1 and kinA mRNA decreases kinA translation without affecting kinA mRNA stability and represses transcription of the KinA/Spo0A downstream targets spoIIE, spoIIGA and cotA. The initial interaction between SR1 and kinA mRNA occurs 10 nt downstream of the kinA start codon and is decisive for inhibition. The sr1 encoded peptide SR1P is dispensable for kinA regulation. Deletion of sr1 accelerates sporulation resulting in low quality spores with reduced stress resistance and altered coat protein composition which can be compensated by sr1 overexpression. Neither CsrA nor Hfq influence sporulation or spore properties.
Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Biosíntesis de Proteínas , Proteínas Quinasas/genética , ARN Pequeño no Traducido/fisiología , Bacillales/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismo , Emparejamiento Base , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Proteínas Quinasas/biosíntesis , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo , Esporas Bacterianas/química , Esporas Bacterianas/genética , Esporas Bacterianas/fisiología , Factores de Transcripción/metabolismoRESUMEN
Hyphantria cunea Drury (Lepidoptera: Erebidae) is a quarantine pest in China that can cause damage to hundreds of plants. As biological control agents, Nuclear Polyhedrosis Virus (NPV) and Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (Bt) are commonly used to inhibit the prevalence of H. cunea. To investigate the role of midgut bacteria in the infection of NPV and Bt in H. cunea, we performed a series of tests, including isolating the dominant culturable bacteria in the midgut, eliminating intestinal bacteria, and respectively inoculating the dominant strains with NPV and Bt for bioassay. Two dominant bacteria, Klebsiella oxytoca Lautrop (Enterobacterales: Enterobacteriaceae) and Enterococcus mundtii Collins (Lactobacillales: Enterococcaceae), in the midgut of H. cunea were identified, and a strain of H. cunea larvae without intestinal bacteria was successfully established. In the bioassays of entomopathogen infection, K. oxytoca showed significant synergistic effects with both NPV and Bt on the death of H. cunea. In contrast, E. mundtii played antagonistic effects. This phenomenon may be attributed to the differences in the physico-chemical properties of the two gut bacteria and the alkaline environment required for NPV and Bt to infect the host. It is worth noting that the enhanced insecticidal activity of K. oxytoca on NPV and Bt provides a reference for future biological control of H. cunea by intestinal bacteria.
Asunto(s)
Bacillaceae , Bacillales , Bacillus thuringiensis , Lepidópteros , Mariposas Nocturnas , Nucleopoliedrovirus , Animales , LarvaRESUMEN
Dormant Bacillales and Clostridiales spores begin to grow when small molecules (germinants) trigger germination, potentially leading to food spoilage or disease. Germination-specific proteins sense germinants, transport small molecules, and hydrolyze specific bonds in cortex peptidoglycan and specific proteins. Major events in germination include (a) germinant sensing; (b) commitment to germinate; (c) release of spores' depot of dipicolinic acid (DPA); (d) hydrolysis of spores' peptidoglycan cortex; and (e) spore core swelling and water uptake, cell wall peptidoglycan remodeling, and restoration of core protein and inner spore membrane lipid mobility. Germination is similar between Bacillales and Clostridiales, but some species differ in how germinants are sensed and how cortex hydrolysis and DPA release are triggered. Despite detailed knowledge of the proteins and signal transduction pathways involved in germination, precisely what some germination proteins do and how they do it remain unclear.
Asunto(s)
Bacillales/crecimiento & desarrollo , Clostridiales/crecimiento & desarrollo , Peptidoglicano/metabolismo , Esporas/crecimiento & desarrollo , Pared Celular/metabolismo , Fluidez de la Membrana , Lípidos de la Membrana/metabolismo , Ácidos Picolínicos/metabolismo , Agua/metabolismoRESUMEN
A novel strictly aerobic, Gram-stain-positive, rod-shaped, motile, endospore-forming, white-coloured bacterium, designated strain MFER-1T, was isolated from a fermented liquor of wild grasses sampled in the Republic of Korea. The respiratory quinone of strain MFER-1T was menaquinone-7 and its major cellular fatty acids were anteiso-C15â:â0 (55.3â%), iso-C16â:â0 (17.5â%) and C16â:â0 (12.1â%). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unidentified aminophospholipids and an unidentified phospholipid. The 16S rRNA gene sequence of strain MFER-1T showed similarity of 98.1â% to 'Cohnella cholangitidis' 1â605-214T and below 98.0â% sequence similarity to the other Cohnella species. The phylogenomic tree indicated that strain MFER-1T formed a reliable cluster with several Cohnella species. The estimated genome size of strain MFER-1T was 8.52 Mb. Genomic DNA G+C content was 50.7mol%. The orthologous average nucleotide identity, digital DNA-DNA hybridization and amino acid identity values of strain MFER-1T with the most closely related species 'Cohnella cholangitidis' 1â605-214T were 78.7, 23.0 and 79.6â%, respectively. Based on the phenotypic, chemotaxonomic and phylogenetic results, strain MFER-1T should represent a novel species of the genus Cohnella, for which the name Cohnella herbarum sp. nov. is proposed, with strain MFER-1T (=KACC 21â257T=NBRC 114â628T) as the type strain.
Asunto(s)
Bacillales , Poaceae , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fermentación , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: The microbial production of hemicellulasic cocktails is still a challenge for the biorefineries sector and agro-waste valorization. In this work, the production of hemicellulolytic enzymes by Thermobacillus xylanilyticus has been considered. This microorganism is of interest since it is able to produce an original set of thermostable hemicellulolytic enzymes, notably a xylanase GH11, Tx-xyn11. However, cell-to-cell heterogeneity impairs the production capability of the whole microbial population. RESULTS: Sequential cultivations of the strain on xylan as a carbon source has been considered in order to highlight and better understand this cell-to-cell heterogeneity. Successive cultivations pointed out a fast decrease of xylanase activity (loss of ~ 75%) and Tx-xyn11 gene expression after 23.5 generations. During serial cultivations on xylan, flow cytometry analyses pointed out that two subpopulations, differing at their light-scattering properties, were present. An increase of the recurrence of the subpopulation exhibiting low forward scatter (FSC) signal was correlated with a progressive loss of xylanase activity over several generations. Cell sorting and direct observation of the sorted subpopulations revealed that the low-FSC subpopulation was not sporulating, whereas the high-FSC subpopulation contained cells at the onset of the sporulation stage. The subpopulation differences (growth and xylanase activity) were assessed during independent growth. The low-FSC subpopulation exhibited a lag phase of 10 h of cultivation (and xylanase activities from 0.15 ± 0.21 to 3.89 ± 0.14 IU/mL along the cultivation) and the high-FSC subpopulation exhibited a lag phase of 5 h (and xylanase activities from 0.52 ± 0.00 to 4.43 ± 0.61 over subcultivations). Serial cultivations on glucose, followed by a switch to xylan led to a ~ 1.5-fold to ~ 15-fold improvement of xylanase activity, suggesting that alternating cultivation conditions could lead to an efficient population management strategy for the production of xylanase. CONCLUSIONS: Taken altogether, the data from this study point out that a cheating behavior is responsible for the progressive reduction in xylanase activity during serial cultivations of T. xylanilyticus. Alternating cultivation conditions between glucose and xylan could be used as an efficient strategy for promoting population stability and higher enzymatic productivity from this bacterium.
Asunto(s)
Bacillales , Endo-1,4-beta Xilanasas , Bacillales/metabolismo , Carbono/metabolismo , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Xilanos/metabolismoRESUMEN
Stereoselective synthesis of d-glycero- and l-glycero-ß-d-mannoheptosides has been achieved by cesium carbonate-mediated ß-selective anomeric O-alkylation of the corresponding d-mannoheptoses. In addition, this method has been utilized in the total synthesis of a tetrasaccharide repeat unit of Bacillus thermoaerophilus surface-layer glycoprotein.
Asunto(s)
Glicoproteínas de Membrana , Oligosacáridos , Alquilación , Bacillales , GlicoproteínasRESUMEN
Aneurinibacillus thermoaerophilus CCM 8960 is a thermophilic bacterium isolated from compost in Brno. The bacterium accumulates polyhydroxyalkanoates (PHAs), a biodegradable and renewable alternative to petrochemical polymers. The bacterium reveals several features that make it a very interesting candidate for the industrial production of PHA. At first, due to its thermophilic character, the bacterium can be utilized in agreement with the concept of next-generation industrial biotechnology (NGIB), which relies on extremophiles. Second, the bacterium is capable of producing PHA copolymers containing a very high portion of 4-hydroxybutyrate (4HB). Such materials possess unique properties and can be advantageously used in multiple applications, including but not limited to medicine and healthcare. Therefore, this work focuses on the in-depth characterization of A. thermoaerophilus CCM 8960. In particular, we sequenced and assembled the genome of the bacterium and identified its most important genetic features, such as the presence of plasmids, prophages, CRISPR arrays, antibiotic-resistant genes, and restriction-modification (R-M) systems, which might be crucial for the development of genome editing tools. Furthermore, we focused on genes directly involved in PHA metabolism. We also experimentally studied the kinetics of glycerol and 1,4-butanediol (1,4BD) utilization as well as biomass growth and PHA production during cultivation. Based on these data, we constructed a metabolic model to reveal metabolic fluxes and nodes of glycerol and 1,4BD concerning their incorporation into the poly(3-hydroxybutyrate-co-4-hydroxybutyrate (P(3HB-co-4HB)) structure. KEY POINTS: ⢠Aneurinibacillus sp. H1 was identified as Aneurinibacillus thermoaerophilus. ⢠PHA metabolism pathway with associated genes was presented. ⢠Unique monomer composition of produced PHAs was reported.
Asunto(s)
Polihidroxialcanoatos , Ácido 3-Hidroxibutírico , Bacillales , Butileno Glicoles , Glicerol , Poliésteres/metabolismoRESUMEN
Lasso peptides are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) defined by their threaded structure. Besides the class-defining isopeptide bond, other post-translational modifications (PTMs) that further tailor lasso peptides have been previously reported. Using genome mining tools, we identified a subset of lasso peptide biosynthetic gene clusters (BGCs) that are colocalized with genes encoding protein l-isoaspartyl methyltransferase (PIMT) homologues. PIMTs have an important role in protein repair, restoring isoaspartate residues formed from asparagine deamidation to aspartate. Here we report a new function for PIMT enzymes in the post-translational modification of lasso peptides. The PIMTs associated with lasso peptide BGCs first methylate an l-aspartate side chain found within the ring of the lasso peptide. The methyl ester is then converted into a stable aspartimide moiety, endowing the lasso peptide ring with rigidity relative to its unmodified counterpart. We describe the heterologous expression and structural characterization of two examples of aspartimide-modified lasso peptides from thermophilic Gram-positive bacteria. The lasso peptide cellulonodin-2 is encoded in the genome of actinobacterium Thermobifida cellulosilytica, while lihuanodin is encoded in the genome of firmicute Lihuaxuella thermophila. Additional genome mining revealed PIMT-containing lasso peptide BGCs in 48 organisms. In addition to heterologous expression, we have reconstituted PIMT-mediated aspartimide formation in vitro, showing that lasso peptide-associated PIMTs transfer methyl groups very rapidly as compared to canonical PIMTs. Furthermore, in stark contrast to other characterized lasso peptide PTMs, the methyltransferase functions only on lassoed substrates.
Asunto(s)
Ácido Aspártico/análogos & derivados , Bacillales/genética , Péptidos/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Bacillales/metabolismo , Péptidos/química , Péptidos/genética , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/metabolismo , Procesamiento Proteico-Postraduccional , Thermobifida/genética , Thermobifida/metabolismoRESUMEN
BACKGROUND: Limited available animal and human data suggest an association between dysbiosis of gut microbiota and PCOS. We aimed to determine whether gut microbiota in lean women with PCOS shows any alterations compared to healthy women. MATERIALS AND METHODS: Twenty-four lean patients with PCOS phenotype A according to the Rotterdam 2003 diagnostic criteria and 22 BMI-matched healthy women were included in this study. Anthropometric, hormonal and biochemical measurements were carried out in all participants. 16S rRNA gene V3-V4 region amplicon sequencing was performed on stool samples. Preprocessing of the raw data was performed using QIIME, and both QIIME and R packages were used for microbiome analysis. RESULTS: Bacterial richness and diversity did not show a significant difference between patients and controls. Beta diversity was similar between the groups. However, Erysipelotrichaceae, Proteobacteria, Gammaproteobacteria, Enterobacteriaceae, Planococcaceae, Gemmules and Bacillales were significantly abundant in PCOS group according to LEfSe analysis. Clostridium cluster XVII showed increased abundance in patient group, while Clostridium sensustricto and Roseburia were decreased compared to controls. Random forest prediction analysis revealed Clostridium cluster XIVb as the most discriminative feature of patient group and Roseburia for healthy controls. Testosterone and androstenedione were negatively correlated with alpha and phylogenetic diversity. CONCLUSIONS: Our results suggest that gut microbiome of lean PCOS patients with full phenotype shows compositional alterations with similar bacterial richness and diversity compared to controls and that hyperandrogenism is associated with dysbiosis.
Asunto(s)
Microbioma Gastrointestinal/genética , Síndrome del Ovario Poliquístico/microbiología , Androstenodiona/sangre , Bacillales , Índice de Masa Corporal , Estudios de Casos y Controles , Clostridium , Enterobacteriaceae , Femenino , Firmicutes , Gammaproteobacteria , Humanos , Planococcaceae , Síndrome del Ovario Poliquístico/sangre , Proteobacteria , ARN Ribosómico 16S/genética , Testosterona/sangre , Adulto JovenRESUMEN
Recently, the industrial-scale development of microbial D-lactic acid production has been discussed. In this study, the efficiency of the new isolate Sporolactobacillus terrae SBT-1 for producing D-lactic acid under challenge conditions was investigated. The isolate SBT-1 exhibited superior activity in fermenting a very high glucose or sucrose concentration to D-lactic acid compared to the other S. terrae isolates previously reported in the literature; therefore, SBT-1 could overcome the limitations of effective lactic acid production. In batch cultivation using 360 g/L glucose, SBT-1 produced 290.30 g/L D-lactate with a sufficiently high glucose conversion yield of 86%, volumetric productivity of 3.02 g/L h, and optical purity of 96.80% enantiomer excess. SBT-1 could also effectively utilize 440 g/L sucrose as a sole carbon source to produce 276.50 g/L lactic acid with a conversion yield of 90%, a production rate of 2.88 g/L h, and an optical purity of 98%. D-Lactic acid fermentation by two other related producers, S. inulinus NRIC1133T and S. terrae NRIC0357T, was compared with fermentation by isolate SBT-1. The experimental data revealed that SBT-1 possessed the ability to ferment relatively high glucose or sucrose concentrations to D-lactic acid without obvious catabolite repression and byproduct formation compared to the two reference strains. In draft genome sequencing of S. terrae SBT-1, the results provided here can promote further study to overcome the current limitations for the industrial-scale production of D-lactic acid.
Asunto(s)
Bacillales , Fermentación , Genoma Bacteriano , Ácido Láctico , Azúcares , Bacillales/genética , Genoma Bacteriano/genética , Glucosa/metabolismo , Ácido Láctico/metabolismo , Azúcares/metabolismoRESUMEN
A Gram-positive, aerobic, endospore-forming, rod-shaped bacterial strain, CAU 1483 T, was isolated from tidal-flat mud in the Republic of Korea. It grew optimally at 30 °C, in a pH 7.0 medium with 2% (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain CAU 1483 T formed a separate clade within Paenibacillaceae together with members of the genus Cohnella. Strain CAU 1483 T exhibited the highest 16S rRNA gene sequence similarity (97.1%) to C. candidum 18JY8-7 T. Whole genome of strain CAU 1483 T was 4.29 Mb in size with a 53.7 mol% G + C content, and included 4046 coding sequences and included 4046 coding sequences, some of which associated with stress response. The average nucleotide identity and digital DNA-DNA hybridization similarity between strain CAU 1483 T and related members of the genus Cohnella were 71.8-74.9% and 22.6-33.9%, respectively. The major respiratory quinone present in this strain was menaquinone-7. Strain CAU 1483 T contained anteiso-C15:0 and iso-C16:0 as the major fatty acids, while its polar lipids consisted of phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, lysyl-phosphatidylglycerol, phosphatidylcholine, three unidentified aminophospholipids, two unidentified lipids and an unidentified phospholipid. Peptidoglycan type was A1γ meso-Dpm. On the basis of taxonomic characterization, strain CAU 1483 T constitutes a novel species, for which the name Cohnella pontilimi sp. nov. is proposed. The type strain of this novel species is CAU 1483 T (= KCTC 43047 T = NBRC 113953 T).
Asunto(s)
Bacillales/clasificación , Sedimentos Geológicos/microbiología , Bacillales/química , Bacillales/fisiología , ADN Bacteriano/genética , Ácidos Grasos/química , Genoma Bacteriano/genética , Peptidoglicano/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivadosRESUMEN
A Gram-positive, rod-shaped, spore-forming, thermophilic, and acidophilic bacterium, designated as strain skT53T, was isolated from farm soil in Tokyo, Japan. Under aerobic conditions, the strain grew at 35-55 °C (optimum temperature 44-55 °C) and pH 4.0-6.0 (optimum pH 5.0). Phylogenetic analysis of the 16S rRNA gene sequence showed that the isolate was moderately related to the type strain of Effusibacillus consociatus (94.3% similarity). The G + C content of the genomic DNA was 48.2 mol%, and MK-7 was the predominant respiratory quinone in the strain. The major fatty acids were anteiso-C15:0, iso-C15:0, and iso-C16:0. Based on the phenotypic and chemotaxonomic characteristics, as well as 16S rRNA gene sequence similarity and whole genome analyses, strain skT53T represents a novel species in the genus Effusibacillus, for which the name Effusibacillus dendaii sp. nov. has been proposed. The type strain is skT53T (= NBRC 114101 T = TBRC 11241 T).
Asunto(s)
Microbiología del Suelo , Suelo , Bacillales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Granjas , Ácidos Grasos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
A Gram-positive, aerobic, rod-shaped bacterium, designated as strain 1605-214T, was isolated from the blood sample of a patient with cholangitis. Based on its 16S rRNA gene sequence, the strain 1605-214T belonged to the genus Cohnella and exhibited 97.9% sequence identity with Cohnella luojiensis DSM 24270T (GQ214052). DNA-DNA hybridization, digital DNA-DNA hybridization, and average nucleotide identity values between the two species were 23% ± 1.9, 21.1%, and 77.2%, respectively. The cellular fatty acids of strain 1605-214T were mainly comprised of anteiso-C15:0 (36.1%), iso-C16:0 (16.5%), and C16:0 (15.1%). The predominant quinone was menaquinone-7; predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, and aminophospholipid-1. The cell wall peptidoglycan of strain 1605-214T contained meso-diaminopimelic acid. DNA G + C content of strain 1605-214T was 50.6 mol%. 5187 genes out of a total of 5413 (94.6%) were assigned putative functions using eggNOG v5.0. Based on genotypic characteristics and genomic sequence analysis results, strain 1605-214T was confirmed to represent a novel species of genus Cohnella, for which the name Cohnella cholangitidis sp. nov., was proposed.
Asunto(s)
Ácidos Grasos , Fosfolípidos , Bacillales , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Humanos , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Vitamina K 2RESUMEN
A Gram-positive, aerobic, flagellated, endospore-forming, rod-shaped strain, designated as G13T, was isolated from soil. The results of 16S rRNA gene sequence analysis led to the conclusion that strain G13T was phylogenetically related to Cohnella boryungensis BR29T (97.5â%) and Cohnella phaseoli CECT 7287T (96.9â%) with digital DNA-DNA hybridization values of 21.0 and 21.4â%, and distantly related to Cohnella thermotolerans CCUG 47242T (94.8â%), type species of the genus Cohnella, at 19.0â%. The genome size of strain G13T was 5â387â258 bp, with 51.3 mol% G+C content. The predominant fatty acids were summed feature 9 (iso-C17â:â1 ω9c and/or C16â:â0 10-methyl), anteiso-C17â:â0, iso-C17â:â0 and iso-C15â:â0. The predominant quinone was menaquinone-7 and the major polar lipids were diphosphatidyglycerol, phosphatidylethanolamine, phosphatidylglycerol, lysylphosphatidylglycerol, three aminophospholipids, two phosphoglycolipids, three aminolipids and two unidentified lipids. Based on the data from phenotypic tests and the genotypic differences between strain G13T and its close phylogenetic relatives, strain G13T represents a new species belonging to the genus Cohnella, for which the name Cohnella terricola sp. nov. (=KACC 19905T=NBRC 113748T) is proposed.
Asunto(s)
Bacillales/clasificación , Filogenia , Microbiología del Suelo , Bacillales/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMEN
The GH-51 α-l-arabinofuranosidase from Thermobacillus xylanilyticus (TxAbf) possesses versatile catalytic properties, displaying not only the ability to hydrolyze glycosidic linkages but also to synthesize furanobiosides in α-l-Araf and ß-d-Galf series. Herein, mutants are investigated to evaluate their ability to perform self-condensation, assessing both yield improvements and changes in regioselectivity. Overall yields of oligo-α-l-arabino- and oligo-ß-d-galactofuranosides were increased up to 4.8-fold compared to the wild-type enzyme. In depth characterization revealed that the mutants exhibit increased transfer rates and thus a hydrolysis/self-condensation ratio in favor of synthesis. The consequence of the substitution N216W is the creation of an additional binding subsite that provides the basis for an alternative acceptor substrate binding mode. As a result, mutants bearing N216W synthesize not only (1,2)-linked furanobiosides, but also (1,3)- and even (1,5)-linked furanobiosides. Since the self-condensation is under kinetic control, the yield of homo-disaccharides was maximized using higher substrate concentrations. In this way, the mutant R69H-N216W produced oligo-ß-d-galactofuranosides in > 70% yield. Overall, this study further demonstrates the potential usefulness of TxAbf mutants for glycosynthesis and shows how these might be used to synthesize biologically-relevant glycoconjugates.
Asunto(s)
Bacillales/enzimología , Inhibidores Enzimáticos/farmacología , Furanos/farmacología , Glicósido Hidrolasas/antagonistas & inhibidores , Conformación de Carbohidratos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Furanos/síntesis química , Furanos/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Modelos Moleculares , Relación Estructura-ActividadRESUMEN
The genus Cohnella belongs to a group of Gram-positive endospore-forming bacteria within the Paenibacillaceae family. Although most species were described as xylanolytic bacteria, the literature still lacks some key information regarding their repertoire of xylan-degrading enzymes. The whole genome sequence of an isolated xylan-degrading bacterium Cohnella sp. strain AR92 was found to contain five genes encoding putative endo-1,4-ß-xylanases, of which four were cloned, expressed, and characterized to better understand the contribution of the individual endo-xylanases to the overall xylanolytic properties of strain AR92. Three of the enzymes, CoXyn10A, CoXyn10C, and CoXyn11A, were shown to be effective at hydrolyzing xylans-derived from agro-industrial, producing oligosaccharides with substrate conversion values of 32.5%, 24.7%, and 10.6%, respectively, using sugarcane bagasse glucuronoarabinoxylan and of 29.9%, 19.1%, and 8.0%, respectively, using wheat bran-derived arabinoxylan. The main reaction products from GH10 enzymes were xylobiose and xylotriose, whereas CoXyn11A produced mostly xylooligosaccharides (XOS) with 2 to 5 units of xylose, often substituted, resulting in potentially prebiotic arabinoxylooligosaccharides (AXOS). The endo-xylanases assay displayed operational features (temperature optima from 49.9 to 50.4 °C and pH optima from 6.01 to 6.31) fitting simultaneous xylan utilization. Homology modeling confirmed the typical folds of the GH10 and GH11 enzymes, substrate docking studies allowed the prediction of subsites (- 2 to + 1 in GH10 and - 3 to + 1 in GH11) and identification of residues involved in ligand interactions, supporting the experimental data. Overall, the Cohnella sp. AR92 endo-xylanases presented significant potential for enzymatic conversion of agro-industrial by-products into high-value products.Key points⢠Cohnella sp. AR92 genome encoded five potential endo-xylanases.⢠Cohnella sp. AR92 enzymes produced xylooligosaccharides from xylan, with high yields.⢠GH10 enzymes from Cohnella sp. AR92 are responsible for the production of X2 and X3 oligosaccharides.⢠GH11 from Cohnella sp. AR92 contributes to the overall xylan degradation by producing substituted oligosaccharides.