Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.489
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(2): 267-269, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32707092

RESUMEN

Brain disorders are at the leading edge of global disease burden worldwide. Effective therapies are lagging behind because most drugs cannot reach their targets in the brain because of the blood-brain barrier (BBB). The new development of a BBB transport vehicle may bring us a step closer to solve this problem.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encefalopatías/patología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Barrera Hematoencefálica/efectos de los fármacos , Encefalopatías/metabolismo , Portadores de Fármacos/química , Humanos , Inmunoconjugados/química , Inmunoconjugados/inmunología , Inmunoconjugados/farmacología , Receptores de Transferrina/inmunología , Receptores de Transferrina/metabolismo , Transcitosis
2.
Cell ; 174(5): 1216-1228.e19, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30057111

RESUMEN

Protein phosphorylation is a prevalent and ubiquitous mechanism of regulation. Kinases are popular drug targets, but identifying selective phosphatase inhibitors has been challenging. Here, we used surface plasmon resonance to design a method to enable target-based discovery of selective serine/threonine phosphatase inhibitors. The method targeted a regulatory subunit of protein phosphatase 1, PPP1R15B (R15B), a negative regulator of proteostasis. This yielded Raphin1, a selective inhibitor of R15B. In cells, Raphin1 caused a rapid and transient accumulation of its phosphorylated substrate, resulting in a transient attenuation of protein synthesis. In vitro, Raphin1 inhibits the recombinant R15B-PP1c holoenzyme, but not the closely related R15A-PP1c, by interfering with substrate recruitment. Raphin1 was orally bioavailable, crossed the blood-brain barrier, and demonstrated efficacy in a mouse model of Huntington's disease. This identifies R15B as a druggable target and provides a platform for target-based discovery of inhibitors of serine/threonine phosphatases.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Guanidinas/farmacología , Proteína Fosfatasa 1/antagonistas & inhibidores , Animales , Peso Corporal , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Femenino , Guanidinas/química , Células HeLa , Humanos , Enfermedad de Huntington/metabolismo , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteína Fosfatasa 1/metabolismo , Subunidades de Proteína/antagonistas & inhibidores , Proteostasis , Proteínas Recombinantes/farmacología , Resonancia por Plasmón de Superficie
3.
Cell ; 173(1): 130-139.e10, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29526461

RESUMEN

Endogenous circadian rhythms are thought to modulate responses to external factors, but mechanisms that confer time-of-day differences in organismal responses to environmental insults/therapeutic treatments are poorly understood. Using a xenobiotic, we find that permeability of the Drosophila "blood"-brain barrier (BBB) is higher at night. The permeability rhythm is driven by circadian regulation of efflux and depends on a molecular clock in the perineurial glia of the BBB, although efflux transporters are restricted to subperineurial glia (SPG). We show that transmission of circadian signals across the layers requires cyclically expressed gap junctions. Specifically, during nighttime, gap junctions reduce intracellular magnesium ([Mg2+]i), a positive regulator of efflux, in SPG. Consistent with lower nighttime efflux, nighttime administration of the anti-epileptic phenytoin is more effective at treating a Drosophila seizure model. These findings identify a novel mechanism of circadian regulation and have therapeutic implications for drugs targeted to the central nervous system.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Relojes Circadianos , Drosophila/metabolismo , Rodaminas/metabolismo , Xenobióticos/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/metabolismo , Relojes Circadianos/efectos de los fármacos , Conexinas/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Uniones Comunicantes/metabolismo , Magnesio/metabolismo , Neuroglía/metabolismo , Fenitoína/farmacología , Fenitoína/uso terapéutico , Convulsiones/tratamiento farmacológico , Convulsiones/patología , Convulsiones/veterinaria
4.
Proc Natl Acad Sci U S A ; 121(20): e2318119121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709930

RESUMEN

Brain metastasis of advanced breast cancer often results in deleterious consequences. Metastases to the brain lead to significant challenges in treatment options, as the blood-brain barrier (BBB) prevents conventional therapy. Thus, we hypothesized that creation of a nanoparticle (NP) that distributes to both primary tumor site and across the BBB for secondary brain tumor can be extremely beneficial. Here, we report a simple targeting strategy to attack both the primary breast and secondary brain tumors utilizing a single NP platform. The nature of these mitochondrion-targeted, BBB-penetrating NPs allow for simultaneous targeting and drug delivery to the hyperpolarized mitochondrial membrane of the extracranial primary tumor site in addition to tumors at the brain. By utilizing a combination of such dual anatomical distributing NPs loaded with therapeutics, we demonstrate a proof-of-concept idea to combat the increased metabolic plasticity of brain metastases by lowering two major energy sources, oxidative phosphorylation (OXPHOS) and glycolysis. By utilizing complementary studies and genomic analyses, we demonstrate the utility of a chemotherapeutic prodrug to decrease OXPHOS and glycolysis by pairing with a NP loaded with pyruvate dehydrogenase kinase 1 inhibitor. Decreasing glycolysis aims to combat the metabolic flexibility of both primary and secondary tumors for therapeutic outcome. We also address the in vivo safety parameters by addressing peripheral neuropathy and neurobehavior outcomes. Our results also demonstrate that this combination therapeutic approach utilizes mitochondrial genome targeting strategy to overcome DNA repair-based chemoresistance mechanisms.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Neoplasias de la Mama , Nanopartículas , Fosforilación Oxidativa , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/patología , Animales , Humanos , Femenino , Nanopartículas/química , Ratones , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Fosforilación Oxidativa/efectos de los fármacos , Línea Celular Tumoral , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Glucólisis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Profármacos/farmacología , Profármacos/uso terapéutico
5.
FASEB J ; 38(13): e23790, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38982638

RESUMEN

Integrase strand transfer inhibitors (INSTIs) based antiretroviral therapy (ART) is currently used as first-line regimen to treat HIV infection. Despite its high efficacy and barrier to resistance, ART-associated neuropsychiatric adverse effects remain a major concern. Recent studies have identified a potential interaction between the INSTI, dolutegravir (DTG), and folate transport pathways at the placental barrier. We hypothesized that such interactions could also occur at the two major blood-brain interfaces: blood-cerebrospinal fluid barrier (BCSFB) and blood-brain barrier (BBB). To address this question, we evaluated the effect of two INSTIs, DTG and bictegravir (BTG), on folate transporters and receptor expression at the mouse BCSFB and the BBB in vitro, ex vivo and in vivo. We demonstrated that DTG but not BTG significantly downregulated the mRNA and/or protein expression of folate transporters (RFC/SLC19A1, PCFT/SLC46A1) in human and mouse BBB models in vitro, and mouse brain capillaries ex vivo. Our in vivo study further revealed a significant downregulation in Slc19a1 and Slc46a1 mRNA expression at the BCSFB and the BBB following a 14-day DTG oral treatment in C57BL/6 mice. However, despite the observed downregulatory effect of DTG in folate transporters/receptor at both brain barriers, a 14-day oral treatment of DTG-based ART did not significantly alter the brain folate level in animals. Interestingly, DTG treatment robustly elevated the mRNA and/or protein expression of pro-inflammatory cytokines and chemokines (Cxcl1, Cxcl2, Cxcl3, Il6, Il23, Il12) in primary cultures of mouse brain microvascular endothelial cells (BBB). DTG oral treatment also significantly upregulated proinflammatory cytokines and chemokine (Il6, Il1ß, Tnfα, Ccl2) at the BCSFB in mice. We additionally observed a downregulated mRNA expression of drug efflux transporters (Abcc1, Abcc4, and Abcb1a) and tight junction protein (Cldn3) at the CP isolated from mice treated with DTG. Despite the structural similarities, BTG only elicited minor effects on the markers of interest at both the BBB and BCSFB. In summary, our current data demonstrates that DTG but not BTG strongly induced inflammatory responses in a rodent BBB and BCSFB model. Together, these data provide valuable insights into the mechanism of DTG-induced brain toxicity, which may contribute to the pathogenesis of DTG-associated neuropsychiatric adverse effect.


Asunto(s)
Barrera Hematoencefálica , Compuestos Heterocíclicos con 3 Anillos , Oxazinas , Piperazinas , Piridonas , Animales , Ratones , Piperazinas/farmacología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Oxazinas/farmacología , Inflamación/inducido químicamente , Inflamación/metabolismo , Ratones Endogámicos C57BL , Femenino , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/efectos adversos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Masculino , Antirretrovirales/efectos adversos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos
6.
Rev Med Virol ; 34(5): e2575, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39160646

RESUMEN

Neurotropic viral infections pose a significant challenge due to their ability to target the central nervous system and cause severe neurological complications. Traditional antiviral therapies face limitations in effectively treating these infections, primarily due to the blood-brain barrier, which restricts the delivery of therapeutic agents to the central nervous system. Nanoparticle-based therapies have emerged as a promising approach to overcome these challenges. Nanoparticles offer unique properties that facilitate drug delivery across biological barriers, such as the blood-brain barrier, and can be engineered to possess antiviral activities.


Asunto(s)
Antivirales , Barrera Hematoencefálica , Enfermedades Virales del Sistema Nervioso Central , Nanopartículas , Humanos , Nanopartículas/química , Antivirales/uso terapéutico , Antivirales/farmacología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Enfermedades Virales del Sistema Nervioso Central/tratamiento farmacológico , Enfermedades Virales del Sistema Nervioso Central/virología , Sistemas de Liberación de Medicamentos , Virosis/tratamiento farmacológico , Virosis/virología
7.
Mol Ther ; 32(5): 1344-1358, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38454606

RESUMEN

Effective delivery of mRNA or small molecule drugs to the brain is a significant challenge in developing treatment for acute ischemic stroke (AIS). To address the problem, we have developed targeted nanomedicine to increase drug concentrations in endothelial cells of the blood-brain barrier (BBB) of the injured brain. Inflammation during ischemic stroke causes continuous neuronal death and an increase in the infarct volume. To enable targeted delivery to the inflamed BBB, we conjugated lipid nanocarriers (NCs) with antibodies that bind cell adhesion molecules expressed at the BBB. In the transient middle cerebral artery occlusion mouse model, NCs targeted to vascular cellular adhesion molecule-1 (VCAM) achieved the highest level of brain delivery, nearly two orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles with luciferase-encoding mRNA and Cre-recombinase showed selective expression in the ischemic brain. Anti-inflammatory drugs administered intravenously after ischemic stroke reduced cerebral infarct volume by 62% (interleukin-10 mRNA) or 35% (dexamethasone) only when they were encapsulated in VCAM-targeted NCs. Thus, VCAM-targeted lipid NCs represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS.


Asunto(s)
Barrera Hematoencefálica , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico , Liposomas , Nanopartículas , Molécula 1 de Adhesión Celular Vascular , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Animales , Ratones , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Nanopartículas/química , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Lípidos/química , Sistemas de Liberación de Medicamentos/métodos , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Humanos
8.
Cell Mol Life Sci ; 81(1): 293, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976012

RESUMEN

The function of astrocytes in response to gut microbiota-derived signals has an important role in the pathophysiological processes of central nervous system (CNS) diseases. However, the specific effects of microbiota-derived metabolites on astrocyte activation have not been elucidated yet. Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL/6 mice as a classical MS model. The alterations of gut microbiota and the levels of short-chain fatty acids (SCFAs) were assessed after EAE induction. We observed that EAE mice exhibit low levels of Allobaculum, Clostridium_IV, Clostridium_XlVb, Lactobacillus genera, and microbial-derived SCFAs metabolites. SCFAs supplementation suppressed astrocyte activation by increasing the level of tryptophan (Trp)-derived AhR ligands that activating the AhR. The beneficial effects of SCFAs supplementation on the clinical scores, histopathological alterations, and the blood brain barrier (BBB)-glymphatic function were abolished by intracisterna magna injection of AAV-GFAP-shAhR. Moreover, SCFAs supplementation suppressed the loss of AQP4 polarity within astrocytes in an AhR-dependent manner. Together, SCFAs potentially suppresses astrocyte activation by amplifying Trp-AhR-AQP4 signaling in EAE mice. Our study demonstrates that SCFAs supplementation may serve as a viable therapy for inflammatory disorders of the CNS.


Asunto(s)
Acuaporina 4 , Astrocitos , Encefalomielitis Autoinmune Experimental , Ácidos Grasos Volátiles , Ratones Endogámicos C57BL , Receptores de Hidrocarburo de Aril , Transducción de Señal , Triptófano , Animales , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Ratones , Triptófano/metabolismo , Triptófano/farmacología , Femenino , Transducción de Señal/efectos de los fármacos , Acuaporina 4/metabolismo , Acuaporina 4/genética , Microbioma Gastrointestinal/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos
9.
Drug Resist Updat ; 76: 101122, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079407

RESUMEN

O6-methylguanine DNA methyltransferase (MGMT) is a crucial determinant of temozolomide (TMZ) sensitivity in patients with glioblastoma (GBM). The therapeutic potential of small interfering RNA (siRNA) targeting MGMT to enhance TMZ sensitivity has been hampered by serum nuclease degradation, off-target effects, poor accumulation at tumor sites, and low circulation in blood stream. In this study, we developed a framework nucleic acid-based nanoparticles (FNN), which is constructed from a six-helix DNA bundle, to encapsulate and protect siMGMT for improving TMZ sensitivity in GBM treatment. For better blood-brain barrier (BBB) penetration and GBM targeting, we conjugated Angiopep-2 (ANG) targeting modules to each end of the FNN. Nucleolin (NCL)-responsive locks were engineered along the sides of the six-helix DNA bundle, which safeguard siMGMT before tumor entry. Upon interaction with tumor-overexpressed NCL, these locks unlock, exposing siMGMT, this allows for effective suppression of MGMT, resulting in a significant improvement of TMZ therapeutic efficacy in GBM. This innovative strategy has the potential to transform the current treatment landscape for GBM.


Asunto(s)
Antineoplásicos Alquilantes , Barrera Hematoencefálica , Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Temozolomida , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Temozolomida/farmacología , Temozolomida/administración & dosificación , Temozolomida/uso terapéutico , Humanos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Nanopartículas/química , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Proteínas de Unión al ARN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Nucleolina , Fosfoproteínas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , ARN Interferente Pequeño/administración & dosificación , Ácidos Nucleicos , Péptidos
10.
Nano Lett ; 24(17): 5214-5223, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38649327

RESUMEN

Stroke is a leading cause of global mortality and severe disability. However, current strategies used for treating ischemic stroke lack specific targeting capabilities, exhibit poor immune escape ability, and have limited drug release control. Herein, we developed an ROS-responsive nanocarrier for targeted delivery of the neuroprotective agent rapamycin (RAPA) to mitigate ischemic brain damage. The nanocarrier consisted of a sulfated chitosan (SCS) polymer core modified with a ROS-responsive boronic ester enveloped by a red blood cell membrane shell incorporating a stroke homing peptide. When encountering high levels of intracellular ROS in ischemic brain tissues, the release of SCS combined with RAPA from nanoparticle disintegration facilitates effective microglia polarization and, in turn, maintains blood-brain barrier integrity, reduces cerebral infarction, and promotes cerebral neurovascular remodeling in a mouse stroke model involving transient middle cerebral artery occlusion (tMCAO). This work offers a promising strategy to treat ischemic stroke therapy.


Asunto(s)
Barrera Hematoencefálica , Quitosano , Portadores de Fármacos , Accidente Cerebrovascular Isquémico , Nanopartículas , Sirolimus , Animales , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/patología , Ratones , Quitosano/química , Portadores de Fármacos/química , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Sirolimus/farmacología , Sirolimus/química , Sirolimus/uso terapéutico , Nanopartículas/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Polisacáridos/química , Polisacáridos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Sulfatos/química , Sulfatos/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo
11.
J Infect Dis ; 230(4): 1042-1051, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622836

RESUMEN

Cryptococcus neoformans (Cn) is an opportunistic fungus that causes severe central nervous system (CNS) disease in immunocompromised individuals. Brain parenchyma invasion requires fungal traversal of the blood-brain barrier. In this study, we describe that Cn alters the brain endothelium by activating small GTPase RhoA, causing reorganization of the actin cytoskeleton and tight junction modulation to regulate endothelial barrier permeability. We confirm that the main fungal capsule polysaccharide glucuronoxylomannan is responsible for these alterations. We reveal a therapeutic benefit of RhoA inhibition by CCG-1423 in vivo. RhoA inhibition prolonged survival and reduced fungal burden in a murine model of disseminated cryptococcosis, supporting the therapeutic potential of targeting RhoA in the context of cryptococcal infection. We examine the complex virulence of Cn in establishing CNS disease, describing cellular components of the brain endothelium that may serve as molecular targets for future antifungal therapies to alleviate the burden of life-threatening cryptococcal CNS infection.


Asunto(s)
Barrera Hematoencefálica , Criptococosis , Cryptococcus neoformans , Polisacáridos , Proteína de Unión al GTP rhoA , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/patogenicidad , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/microbiología , Barrera Hematoencefálica/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo , Criptococosis/microbiología , Criptococosis/tratamiento farmacológico , Ratones , Polisacáridos/farmacología , Polisacáridos/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/microbiología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/microbiología , Humanos , Cápsulas Fúngicas/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
12.
Med Res Rev ; 44(6): 2793-2824, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39031446

RESUMEN

Nanoparticles (NPs) that target multiple transport mechanisms facilitate targeted delivery of active therapeutic agents to the central nervous system (CNS) and improve therapeutic transport and efficacy across the blood-brain barrier (BBB). CNS nanotherapeutics mostly target neurons and endothelial cells, however, microglial immune cells are the first line of defense against neuronal damage and brain infections. Through triggering release of inflammatory cytokines, chemokines and proteases, microglia can however precipitate neurological damage-a significant factor in neurodegenerative diseases. Thus, microglial inhibitory agents are attracting much attention among those researching and developing novel treatments for neurodegenerative disorders. The most established inhibitors of microglia investigated to date are resveratrol, curcumin, quercetin, and minocycline. Thus, there is great interest in developing novel agents that can bypass or easily cross the BBB. One such approach is the use of modified-nanocarriers as, or for, delivery of, therapeutic agents to the brain and wider CNS. For microglial inhibition, polymeric NPs are the preferred vehicles for choice. Here, we summarize the immunologic and neuroinflammatory role of microglia, established microglia inhibitor agents, challenges of CNS drug delivery, and the nanotherapeutics explored for microglia inhibition to date. We also discuss applications of the currently considered "most useful" polymeric NPs for microglial-inhibitor drug delivery in CNS-related diseases.


Asunto(s)
Microglía , Nanopartículas , Enfermedades Neurodegenerativas , Polímeros , Humanos , Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Nanopartículas/química , Polímeros/química , Sistemas de Liberación de Medicamentos , Barrera Hematoencefálica/efectos de los fármacos
13.
Am J Physiol Cell Physiol ; 327(1): C65-C73, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38766766

RESUMEN

The blood-brain barrier (BBB) plays a critical role in the development and outcome of subarachnoid hemorrhage (SAH). This study focuses on the potential mechanism by which G-protein-coupled estrogen receptor 30 (GPR30) affects the BBB after SAH. A rat SAH model was established using an intravascular perforation approach. G1 (GPR30 agonist) was administered to investigate the mechanism of BBB damage after SAH. Brain water content, Western blotting, Evans blue leakage, and immunofluorescence staining were performed. Brain microvascular endothelial cells were induced by hemin to establish SAH model in vitro. By adding LY294002 [a phosphatidylinositol 3-kinase (PI3K) blocker] and zinc protoporphyrin IX (ZnPP IX) [a heme oxygenase 1 (HO-1) antagonist], the mechanism of improving BBB integrity through the activation of GPR30 was studied. In vivo, GPR30 activation improved BBB disruption, as evidenced by decreased cerebral edema, downregulated albumin expression, and reduced extravasation of Evans blue and IgG after G1 administration in SAH rats. Moreover, SAH downregulated the levels of tight junction (TJ) proteins, whereas treatment with G1 reversed the effect of SAH. The protective effect of G1 on BBB integrity in vitro was consistent with that in vivo, as evidenced by G1 reducing the impact of hemin on transendothelial electrical resistance (TEER) value, dextran diffusivity, and TJ protein levels in brain microvascular endothelial cells. In addition, G1 activated the PI3K/ protein kinase B (Akt) and nuclear factor erythroid 2-related factor 2 (Nrf2)/HO-1 pathways both in vivo and in vitro. Furthermore, the administration of LY294002 and ZnPP IX partially reversed the protective effect of G1 on BBB integrity in hemin-stimulated cells. We demonstrated that the activation of GPR30, at least partly through the PI3K/Akt and Nrf2/HO-1 pathways, alleviated BBB damage both in vivo and in vitro. This study introduced a novel therapeutic approach for protecting the BBB after SAH.NEW & NOTEWORTHY The PI3K/Akt and Nrf2/HO-1 pathways might be potential mechanisms by which GPR30 protected the integrity of the BBB in SAH models. Therefore, treatment of SAH with GPR30 activator might be a promising therapeutic strategy.


Asunto(s)
Barrera Hematoencefálica , Receptores Acoplados a Proteínas G , Transducción de Señal , Hemorragia Subaracnoidea , Animales , Masculino , Ratas , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/metabolismo , Hemina/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/patología , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/complicaciones
14.
J Cell Mol Med ; 28(16): e70008, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39153195

RESUMEN

Blood-brain barrier (BBB) disruption is a major pathophysiological event of ischemic stroke. Brain microvascular endothelial cells are critical to maintain homeostasis between central nervous system and periphery. Resveratrol protects against ischemic stroke. 3,3',4,5'-tetramethoxy-trans-stilbene (3,3',4,5'-TMS) and 3,4',5-trimethoxy-trans-stilbene (3,4',5-TMS) are resveratrol derivatives with addition of methoxy groups, showing better pharmacokinetic performance. We aimed to explore their protective effects and underlying mechanisms. Oxygen-glucose deprivation (OGD) model was applied in bEnd.3 cell line, mouse brain microvascular endothelium to mimic ischemia. The cells were pre-treated with 3,3',4,5'-TMS or 3,4',5-TMS (1 and 5 µM, 24 h) and then subjected to 2-h OGD injury. Cell viability, levels of proinflammatory cytokines and reactive oxygen species (ROS), and protein expressions were measured by molecular assays and fluorescence staining. OGD injury triggered cell death, inflammatory responses, ROS production and nuclear factor-kappa B (NF-κB) signalling pathway. These impairments were remarkably attenuated by the two stilbenes, 3,3',4,5'-TMS and 3,4',5-TMS. They also alleviated endothelial barrier injuries through upregulating the expression of tight junction proteins. Moreover, 3,3',4,5'-TMS and 3,4',5-TMS activated 5' adenosine monophosphate-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS). Overall, 3,3',4,5'-TMS and 3,4',5-TMS exert protective effects against OGD damage through suppressing cell death, inflammatory responses, oxidative stress, as well as BBB disruption on bEnd.3 cells.


Asunto(s)
Encéfalo , Supervivencia Celular , Células Endoteliales , Glucosa , Oxígeno , Especies Reactivas de Oxígeno , Estilbenos , Estilbenos/farmacología , Animales , Glucosa/metabolismo , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Oxígeno/metabolismo , Línea Celular , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Supervivencia Celular/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Estrés Oxidativo/efectos de los fármacos , Citocinas/metabolismo , Transducción de Señal/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos
15.
J Cell Mol Med ; 28(16): e70033, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39180511

RESUMEN

The aim of this study was to review the roles of endothelial cells in normal tissue function and to show how COVID-19 disease impacts on endothelial cell properties that lead to much of its associated symptomatology. This places the endothelial cell as a prominent cell type to target therapeutically in the treatment of this disorder. Advances in glycosaminoglycan analytical techniques and functional glycomics have improved glycosaminoglycan mimetics development, providing agents that can more appropriately target various aspects of the behaviour of the endothelial cell in-situ and have also provided polymers with potential to prevent viral infection. Thus, promising approaches are being developed to combat COVID-19 disease and the plethora of symptoms this disease produces. Glycosaminoglycan mimetics that improve endothelial glycocalyx boundary functions have promising properties in the prevention of viral infection, improve endothelial cell function and have disease-modifying potential. Endothelial cell integrity, forming tight junctions in cerebral cell populations in the blood-brain barrier, prevents the exposure of the central nervous system to circulating toxins and harmful chemicals, which may contribute to the troublesome brain fogging phenomena reported in cognitive processing in long COVID disease.


Asunto(s)
Barrera Hematoencefálica , COVID-19 , Células Endoteliales , Glicocálix , SARS-CoV-2 , Humanos , Glicocálix/metabolismo , COVID-19/metabolismo , COVID-19/patología , COVID-19/virología , Células Endoteliales/metabolismo , Células Endoteliales/patología , SARS-CoV-2/metabolismo , SARS-CoV-2/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Glicosaminoglicanos/metabolismo
16.
J Am Chem Soc ; 146(42): 28783-28794, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39394087

RESUMEN

Currently used drugs for glioblastoma (GBM) treatments are ineffective, primarily due to the significant challenges posed by strong drug resistance, poor blood-brain barrier (BBB) permeability, and the lack of tumor specificity. Here, we report two cationic fluorescent anticancer agents (TriPEX-ClO4 and TriPEX-PF6) capable of BBB penetration for efficient GBM therapy via paraptosis and ferroptosis induction. These aggregation-induced emission (AIE)-active agents specifically target mitochondria, effectively triggering ATF4/JNK/Alix-regulated paraptosis and GPX4-mediated ferroptosis. Specifically, they rapidly induce substantial mitochondria-derived vacuolation, accompanied by reactive oxygen species generation, decreased mitochondrial membrane potential, and intracellular Ca2+ overload, thereby disrupting metabolisms and inducing nonapoptotic cell death. In vivo imaging revealed that TriPEX-ClO4 and TriPEX-PF6 successfully traversed the BBB to target orthotopic glioma and initiated effective synergistic therapy postintravenous injection. Our AIE drugs emerged as the pioneering paraptosis inducers against drug-resistant GBM, significantly extending survival up to 40 days compared to Temozolomide (20 days) in drug-resistant GBM-bearing mice. These compelling results open up new venues for the development of fluorescent anticancer drugs and innovative treatments for brain diseases.


Asunto(s)
Antineoplásicos , Barrera Hematoencefálica , Ferroptosis , Colorantes Fluorescentes , Glioblastoma , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Glioblastoma/metabolismo , Ferroptosis/efectos de los fármacos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Animales , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , Ratones , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Paraptosis
17.
Neurobiol Dis ; 199: 106570, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38885850

RESUMEN

BACKGROUND: Hepatic lipoprotein receptor-related protein 1 (LRP-1) plays a central role in peripheral amyloid beta (Aß) clearance, but its importance in Alzheimer's disease (AD) pathology is understudied. Our previous work showed that intragastric alcohol feeding to C57BL/6 J mice reduced hepatic LRP-1 expression which correlated with significant AD-relevant brain changes. Herein, we examined the role of hepatic LRP-1 in AD pathogenesis in APP/PS1 AD mice using two approaches to modulate hepatic LRP-1, intragastric alcohol feeding to model chronic heavy drinking shown by us to reduce hepatic LRP-1, and hepato-specific LRP-1 silencing. METHODS: Eight-month-old male APP/PS1 mice were fed ethanol or control diet intragastrically for 5 weeks (n = 7-11/group). Brain and liver Aß were assessed using immunoassays. Three important mechanisms of brain amyloidosis were investigated: hepatic LRP-1 (major peripheral Aß regulator), blood-brain barrier (BBB) function (vascular Aß regulator), and microglia (major brain Aß regulator) using immunoassays. Spatial LRP-1 gene expression in the periportal versus pericentral hepatic regions was confirmed using NanoString GeoMx Digital Spatial Profiler. Further, hepatic LRP-1 was silenced by injecting LRP-1 microRNA delivered by the adeno-associated virus 8 (AAV8) and the hepato-specific thyroxine-binding globulin (TBG) promoter to 4-month-old male APP/PS1 mice (n = 6). Control male APP/PS1 mice received control AAV8 (n = 6). Spatial memory and locomotion were assessed 12 weeks after LRP-1 silencing using Y-maze and open-field test, respectively, and brain and liver Aß were measured. RESULTS: Alcohol feeding reduced plaque-associated microglia in APP/PS1 mice brains and increased aggregated Aß (p < 0.05) by ELISA and 6E10-positive Aß load by immunostaining (p < 0.05). Increased brain Aß corresponded with a significant downregulation of hepatic LRP-1 (p < 0.01) at the protein and transcript level, primarily in pericentral hepatocytes (zone 3) where alcohol-induced injury occurs. Hepato-specific LRP-1 silencing significantly increased brain Aß and locomotion hyperactivity (p < 0.05) in APP/PS1 mice. CONCLUSION: Chronic heavy alcohol intake reduced hepatic LRP-1 expression and increased brain Aß. The hepato-specific LRP-1 silencing similarly increased brain Aß which was associated with behavioral deficits in APP/PS1 mice. Collectively, our results suggest that hepatic LRP-1 is a key regulator of brain amyloidosis in alcohol-dependent AD.


Asunto(s)
Enfermedad de Alzheimer , Hígado , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones Endogámicos C57BL , Ratones Transgénicos , Animales , Enfermedad de Alzheimer/metabolismo , Masculino , Ratones , Hígado/metabolismo , Amiloidosis/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Etanol/administración & dosificación , Modelos Animales de Enfermedad , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
18.
Br J Cancer ; 131(8): 1387-1398, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39266624

RESUMEN

BACKGROUND: Temozolomide (TMZ) is the first-line chemotherapeutic drug for gliomas treatment. However, the clinical efficacy of TMZ in glioma patients was very limited. Therefore, it is urgently needed to discover a novel approach to increase the sensitivity of glioma cells to TMZ. METHODS: Western blot, immunohistochemical staining, and qRT-PCR assays were used to explore the mechanisms underlying TMZ promoting DKK1 expression and andrographolide (AND) inhibiting DKK1 expression. HPLC was used to detect the ability of andrographolide (AND) to penetrate the blood-brain barrier. MTT assay, bioluminescence images, magnetic resonance imaging (MRI) and H&E staining were employed to measure the proliferative activity of glioma cells and the growth of intracranial tumors. RESULTS: TMZ can promote DKK1 expression in glioma cells and brain tumors of an orthotopic model of glioma. DKK1 could promote glioma cell proliferation and tumor growth in an orthotopic model of glioma. Mechanistically, TMZ increased EGFR expression and subsequently induced the activation of its downstream MEK-ERK and PI3K-Akt pathways, thereby promoting DKK1 expression in glioma cells. Andrographolide inhibited TMZ-induced DKK1 expression through inactivating MEK-ERK and PI3K-Akt pathways. Andrographolide can cross the blood-brain barrier, the combination of TMZ and andrographolide not only improved the anti-tumor effects of TMZ but also showed a survival benefit in an orthotopic model of glioma. CONCLUSION: Andrographolide can enhance anti-tumor activity of TMZ against glioma by inhibiting DKK1 expression.


Asunto(s)
Antineoplásicos Alquilantes , Neoplasias Encefálicas , Proliferación Celular , Diterpenos , Glioma , Péptidos y Proteínas de Señalización Intercelular , Temozolomida , Diterpenos/farmacología , Diterpenos/uso terapéutico , Temozolomida/farmacología , Glioma/tratamiento farmacológico , Glioma/patología , Glioma/genética , Glioma/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Humanos , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Ratones , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Sinergismo Farmacológico , Receptores ErbB/genética , Receptores ErbB/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
19.
J Neuroinflammation ; 21(1): 131, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760784

RESUMEN

BACKGROUND: Sepsis-associated encephalopathy (SAE) causes acute and long-term cognitive deficits. However, information on the prevention and treatment of cognitive dysfunction after sepsis is limited. The neuropeptide orexin-A (OXA) has been shown to play a protective role against neurological diseases by modulating the inflammatory response through the activation of OXR1 and OXR2 receptors. However, the role of OXA in mediating the neuroprotective effects of SAE has not yet been reported. METHODS: A mouse model of SAE was induced using cecal ligation perforation (CLP) and treated via intranasal administration of exogenous OXA after surgery. Mouse survival, in addition to cognitive and anxiety behaviors, were assessed. Changes in neurons, cerebral edema, blood-brain barrier (BBB) permeability, and brain ultrastructure were monitored. Levels of pro-inflammatory factors (IL-1ß, TNF-α) and microglial activation were also measured. The underlying molecular mechanisms were investigated by proteomics analysis and western blotting. RESULTS: Intranasal OXA treatment reduced mortality, ameliorated cognitive and emotional deficits, and attenuated cerebral edema, BBB disruption, and ultrastructural brain damage in mice. In addition, OXA significantly reduced the expression of the pro-inflammatory factors IL-1ß and TNF-α, and inhibited microglial activation. In addition, OXA downregulated the expression of the Rras and RAS proteins, and reduced the phosphorylation of P-38 and JNK, thus inhibiting activation of the MAPK pathway. JNJ-10,397,049 (an OXR2 blocker) reversed the effect of OXA, whereas SB-334,867 (an OXR1 blocker) did not. CONCLUSION: This study demonstrated that the intranasal administration of moderate amounts of OXA protects the BBB and inhibits the activation of the OXR2/RAS/MAPK pathway to attenuate the outcome of SAE, suggesting that OXA may be a promising therapeutic approach for the management of SAE.


Asunto(s)
Ratones Endogámicos C57BL , Orexinas , Encefalopatía Asociada a la Sepsis , Animales , Ratones , Encefalopatía Asociada a la Sepsis/tratamiento farmacológico , Encefalopatía Asociada a la Sepsis/metabolismo , Orexinas/metabolismo , Masculino , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Modelos Animales de Enfermedad , Administración Intranasal
20.
J Neuroinflammation ; 21(1): 244, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342243

RESUMEN

Alcohol consumption leads to neuroinflammation and blood‒brain barrier (BBB) damage, resulting in neurological impairment. We previously demonstrated that ethanol-induced disruption of barrier function in human brain endothelial cells was associated with mitochondrial injury, increased ATP and extracellular vesicle (EV) release, and purinergic receptor P2 × 7R activation. Therefore, we aimed to evaluate the effect of P2 × 7R blockade on peripheral and neuro-inflammation in ethanol-exposed mice. In a chronic intermittent ethanol (CIE)-exposed mouse model, P2 × 7R was inhibited by two different methods: Brilliant Blue G (BBG) or gene knockout. We assessed blood ethanol concentration (BEC), brain microvessel gene expression by using RT2 PCR array, plasma P2 × 7R and P-gp, serum ATP, EV-ATP, number of EVs, and EV mtDNA copy numbers. An RT2 PCR array of brain microvessels revealed significant upregulation of proinflammatory genes involved in apoptosis, vasodilation, and platelet activation in CIE-exposed wild-type animals, which were decreased 15-50-fold in BBG-treated-CIE-exposed animals. Plasma P-gp levels and serum P2 × 7R shedding were significantly increased in CIE-exposed animals. Pharmacological or genetic suppression of P2 × 7R decreased receptor shedding to levels equivalent to those in control group. The increase in EV number and EV-ATP content in the CIE-exposed mice was significantly reduced by P2 × 7R inhibition. CIE mice showed augmented EV-mtDNA copy numbers which were reduced in EVs after P2 × 7R inhibition or receptor knockout. These observations suggested that P2 × 7R signaling plays a critical role in ethanol-induced brain injury. Increased extracellular ATP, EV-ATP, EV numbers, and EV-mtDNA copy numbers highlight a new mechanism of brain injury during alcohol exposure via P2 × 7R and biomarkers of such damage. In this study, for the first time, we report the in vivo involvement of P2 × 7R signaling in CIE-induced brain injury.


Asunto(s)
Barrera Hematoencefálica , Etanol , Enfermedades Neuroinflamatorias , Receptores Purinérgicos P2X7 , Transducción de Señal , Animales , Masculino , Ratones , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Depresores del Sistema Nervioso Central/toxicidad , Depresores del Sistema Nervioso Central/farmacología , Etanol/toxicidad , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Neuroinflamatorias/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA