Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 147(20): 1518-1533, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37013819

RESUMEN

BACKGROUND: Calcific aortic valve disease (CAVD) is characterized by a phenotypic switch of valvular interstitial cells to bone-forming cells. Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors at the interface between innate immunity and tissue repair. Type I interferons (IFNs) are not only crucial for an adequate antiviral response but also implicated in bone formation. We hypothesized that the accumulation of endogenous TLR3 ligands in the valvular leaflets may promote the generation of osteoblast-like cells through enhanced type I IFN signaling. METHODS: Human valvular interstitial cells isolated from aortic valves were challenged with mechanical strain or synthetic TLR3 agonists and analyzed for bone formation, gene expression profiles, and IFN signaling pathways. Different inhibitors were used to delineate the engaged signaling pathways. Moreover, we screened a variety of potential lipids and proteoglycans known to accumulate in CAVD lesions as potential TLR3 ligands. Ligand-receptor interactions were characterized by in silico modeling and verified through immunoprecipitation experiments. Biglycan (Bgn), Tlr3, and IFN-α/ß receptor alpha chain (Ifnar1)-deficient mice and a specific zebrafish model were used to study the implication of the biglycan (BGN)-TLR3-IFN axis in both CAVD and bone formation in vivo. Two large-scale cohorts (GERA [Genetic Epidemiology Research on Adult Health and Aging], n=55 192 with 3469 aortic stenosis cases; UK Biobank, n=257 231 with 2213 aortic stenosis cases) were examined for genetic variation at genes implicated in BGN-TLR3-IFN signaling associating with CAVD in humans. RESULTS: Here, we identify TLR3 as a central molecular regulator of calcification in valvular interstitial cells and unravel BGN as a new endogenous agonist of TLR3. Posttranslational BGN maturation by xylosyltransferase 1 (XYLT1) is required for TLR3 activation. Moreover, BGN induces the transdifferentiation of valvular interstitial cells into bone-forming osteoblasts through the TLR3-dependent induction of type I IFNs. It is intriguing that Bgn-/-, Tlr3-/-, and Ifnar1-/- mice are protected against CAVD and display impaired bone formation. Meta-analysis of 2 large-scale cohorts with >300 000 individuals reveals that genetic variation at loci relevant to the XYLT1-BGN-TLR3-interferon-α/ß receptor alpha chain (IFNAR) 1 pathway is associated with CAVD in humans. CONCLUSIONS: This study identifies the BGN-TLR3-IFNAR1 axis as an evolutionarily conserved pathway governing calcification of the aortic valve and reveals a potential therapeutic target to prevent CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcinosis , Adulto , Animales , Humanos , Ratones , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/patología , Biglicano/metabolismo , Calcinosis/metabolismo , Células Cultivadas , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismo , Pez Cebra
2.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L173-L188, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38771138

RESUMEN

Changes in the extracellular matrix of pulmonary arteries (PAs) are a key aspect of vascular remodeling in pulmonary hypertension (PH). Yet, our understanding of the alterations affecting the proteoglycan (PG) family remains limited. We sought to investigate the expression and spatial distribution of major vascular PGs in PAs from healthy individuals and various PH groups (chronic obstructive pulmonary disease: PH-COPD, pulmonary fibrosis: PH-PF, idiopathic: IPAH). PG regulation, deposition, and synthesis were notably heightened in IPAH, followed by PH-PF, with minor alterations in PH-COPD. Single-cell analysis unveiled cell-type and disease-specific PG regulation. Agrin expression, a basement membrane PG, was increased in IPAH, with PA endothelial cells (PAECs) identified as a major source. PA smooth muscle cells (PASMCs) mainly produced large-PGs, aggrecan and versican, and small-leucine-like proteoglycan (SLRP) biglycan, whereas the major PGs produced by adventitial fibroblasts were SLRP decorin and lumican. In IPAH and PF-PH, the neointima-forming PASMC population increased the expression of all investigated large-PGs and SLRPs, except fibroblast-predominant decorin (DCN). Expression of lumican, versican, and biglycan also positively correlated with collagen 1α1/1α2 expression in PASMCs in patients with IPAH and PH-PF. We demonstrated that transforming growth factor-beta (TGF-ß) regulates versican and biglycan expression, indicating their contribution to vessel fibrosis in IPAH and PF-PH. We furthermore show that certain circulating PG levels display a disease-dependent pattern, with increased decorin and lumican across all patient groups, while versican was elevated in PH-COPD and IPAH and biglycan reduced in IPAH. These findings suggest unique compartment-specific PG regulation in different forms of PH, indicating distinct pathological processes.NEW & NOTEWORTHY Idiopathic pulmonary arterial hypertension (IPAH) pulmonary arteries (PAs) displayed the greatest proteoglycan (PG) changes, with PH associated with pulmonary fibrosis (PH-PF) and PH associated with chronic obstructive pulmonary disease (PH-COPD) following. Agrin, an endothelial cell-specific PG, was solely upregulated in IPAH. Among all cells, neo-intima-forming smooth muscle cells (SMCs) displayed the most significant PG increase. Increased levels of circulating decorin, lumican, and versican, mainly derived from SMCs, and adventitial fibroblasts, may serve as systemic indicators of pulmonary remodeling, reflecting perivascular fibrosis and neointima formation.


Asunto(s)
Hipertensión Pulmonar , Miocitos del Músculo Liso , Proteoglicanos , Arteria Pulmonar , Humanos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Proteoglicanos/metabolismo , Masculino , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Femenino , Persona de Mediana Edad , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Remodelación Vascular , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Anciano , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Biglicano/metabolismo , Decorina/metabolismo , Adulto , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Lumican/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patología
3.
Immunol Cell Biol ; 102(2): 97-116, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37982607

RESUMEN

Reducing the activity of cytokines and leukocyte extravasation is an emerging therapeutic strategy to limit tissue-damaging inflammatory responses and restore immune homeostasis in inflammatory diseases. Proteoglycans embedded in the vascular endothelial glycocalyx, which regulate the activity of cytokines to restrict the inflammatory response in physiological conditions, are proteolytically cleaved in inflammatory diseases. Here we critically review the potential of proteolytically shed, soluble vascular endothelial glycocalyx proteoglycans to modulate pathological inflammatory responses. Soluble forms of the proteoglycans syndecan-1, syndecan-3 and biglycan exert beneficial anti-inflammatory effects by the removal of chemokines, suppression of proinflammatory cytokine expression and leukocyte migration, and induction of autophagy of proinflammatory M1 macrophages. By contrast, soluble versikine and decorin enhance proinflammatory responses by increasing inflammatory cytokine synthesis and leukocyte migration. Endogenous syndecan-2 and mimecan exert proinflammatory effects, syndecan-4 and perlecan mediate beneficial anti-inflammatory effects and glypican regulates Hh and Wnt signaling pathways involved in systemic inflammatory responses. Taken together, targeting the vascular endothelial glycocalyx-derived, soluble syndecan-1, syndecan-2, syndecan-3, syndecan-4, biglycan, versikine, mimecan, perlecan, glypican and decorin might be a potential therapeutic strategy to suppress overstimulated cytokine and leukocyte responses in inflammatory diseases.


Asunto(s)
Glicocálix , Sindecano-1 , Sindecano-1/metabolismo , Glicocálix/metabolismo , Sindecano-3/metabolismo , Sindecano-4/metabolismo , Sindecano-2/metabolismo , Biglicano/metabolismo , Glipicanos/metabolismo , Decorina/metabolismo , Quimiocinas/metabolismo , Antiinflamatorios/metabolismo
4.
Cell Tissue Res ; 396(3): 343-351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492000

RESUMEN

Dentin is a permeable and complex tubular composite formed by the mineralization of predentin that mineralization and repair are of considerable clinical interest during dentin homeostasis. The role of Vdr, a receptor of vitamin D, in dentin homeostasis remains unexplored. The aim of the present study was to assess the impact of Vdr on predentin mineralization and dental repair. Vdr-knockout (Vdr-/-) mice models were constructed; histology and immunohistochemistry analyses were conducted for both WT and Vdr-/- mice. The finding revealed a thicker predentin in Vdr-/- mice, characterized by higher expression of biglycan and decorin. A dental injury model was employed to observe tertiary dentin formation in Vdr-/- mice with dental injuries. Results showed that tertiary dentin was harder to form in Vdr-/- mice with dental injury. Over time, heightened pulp invasion was observed at the injury site in Vdr-/- mice. Expression of biglycan and decorin was reduced in the predentin at the injury site in the Vdr-/- mice by immunohistochemistry. Taken together, our results imply that Vdr plays a regulatory role in predentin mineralization and tertiary dentin formation during dentin homeostasis.


Asunto(s)
Dentina , Ratones Noqueados , Receptores de Calcitriol , Animales , Receptores de Calcitriol/metabolismo , Dentina/metabolismo , Ratones , Biglicano/metabolismo , Cicatrización de Heridas , Ratones Endogámicos C57BL , Decorina/metabolismo , Calcificación Fisiológica
5.
Exp Dermatol ; 33(1): e14969, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37967213

RESUMEN

Alopecia is a prevalent problem of cutaneous appendages and lacks effective therapy. Recently, researchers have been focusing on mesenchymal components of the hair follicle, i.e. dermal papilla cells, and we previously identified biglycan secreted by dermal papilla cells as the key factor responsible for hair follicle-inducing ability. In this research, we hypothesized biglycan played an important role in hair follicle cycle and regeneration through regulating the Wnt signalling pathway. To characterize the hair follicle cycle and the expression pattern of biglycan, we observed hair follicle morphology in C57BL/6 mice on Days 0, 3, 5, 12 and 18 post-depilation and found that biglycan is highly expressed at both mRNA and protein levels throughout anagen in HFs. To explore the role of biglycan during the phase transit process and regeneration, local injections were administered in C57BL/6 and nude mice. Results showed that local injection of biglycan in anagen HFs delayed catagen progression and involve activating the Wnt/ß-catenin signalling pathway. Furthermore, local injection of biglycan induced HF regeneration and up-regulated expression of key Wnt factors in nude mice. In addition, cell analyses exhibited biglycan knockdown inactivated the Wnt signalling pathway in early-passage dermal papilla cell, whereas biglycan overexpression or incubation activated the Wnt signalling pathway in late-passage dermal papilla cells. These results indicate that biglycan plays a critical role in regulating HF cycle transit and regeneration in a paracrine and autocrine fashion by activating the Wnt/ß-catenin signalling pathway and could be a potential treatment target for hair loss diseases.


Asunto(s)
Folículo Piloso , beta Catenina , Ratones , Animales , Folículo Piloso/metabolismo , beta Catenina/metabolismo , Ratones Desnudos , Biglicano/metabolismo , Ratones Endogámicos C57BL , Vía de Señalización Wnt/genética , Alopecia/metabolismo , Regeneración/fisiología , Proliferación Celular
6.
BMC Cancer ; 24(1): 516, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654221

RESUMEN

BACKGROUND: Numerous studies have indicated that cancer-associated fibroblasts (CAFs) play a crucial role in the progression of colorectal cancer (CRC). However, there are still many unknowns regarding the exact role of CAF subtypes in CRC. METHODS: The data for this study were obtained from bulk, single-cell, and spatial transcriptomic sequencing data. Bioinformatics analysis, in vitro experiments, and machine learning methods were employed to investigate the functional characteristics of CAF subtypes and construct prognostic models. RESULTS: Our study demonstrates that Biglycan (BGN) positive cancer-associated fibroblasts (BGN + Fib) serve as a driver in colorectal cancer (CRC). The proportion of BGN + Fib increases gradually with the progression of CRC, and high infiltration of BGN + Fib is associated with poor prognosis in terms of overall survival (OS) and recurrence-free survival (RFS) in CRC. Downregulation of BGN expression in cancer-associated fibroblasts (CAFs) significantly reduces migration and proliferation of CRC cells. Among 101 combinations of 10 machine learning algorithms, the StepCox[both] + plsRcox combination was utilized to develop a BGN + Fib derived risk signature (BGNFRS). BGNFRS was identified as an independent adverse prognostic factor for CRC OS and RFS, outperforming 92 previously published risk signatures. A Nomogram model constructed based on BGNFRS and clinical-pathological features proved to be a valuable tool for predicting CRC prognosis. CONCLUSION: In summary, our study identified BGN + Fib as drivers of CRC, and the derived BGNFRS was effective in predicting the OS and RFS of CRC patients.


Asunto(s)
Biglicano , Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Aprendizaje Automático , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/metabolismo , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Pronóstico , Biglicano/metabolismo , Biglicano/genética , Proliferación Celular , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Masculino , Regulación Neoplásica de la Expresión Génica , Femenino , Movimiento Celular , Microambiente Tumoral
7.
Liver Int ; 43(2): 500-512, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36371672

RESUMEN

BACKGROUND: Biglycan (BGN) is a small leucine-rich proteoglycan that participates in the production of excess extracellular matrix (ECM) and is related to fibrosis in many organs. However, the role of BGN in liver fibrosis remains poorly understood. This study aimed to investigate the role and mechanism of BGN in liver fibrosis. METHODS: Human liver samples, Bgn-/0 (BGN KO) mice and a human LX-2 hepatic stellate cells (HSCs) model were applied for the study of experimental fibrosis. GEO data and single-cell RNA-seq data of human liver tissue were analysed as a bioinformatic approach. Coimmunoprecipitation, immunofluorescence staining, western blotting and qRT-PCR were conducted to identify the regulatory effects of BGN on heat shock protein 47 (HSP47) expression and liver fibrosis. RESULTS: We observed that hepatic BGN expression was significantly increased in patients with fibrosis and in a mouse model of liver fibrosis. Genetic deletion of BGN disrupted TGF-ß1 pathway signalling and alleviated liver fibrosis in mice administered carbon tetrachloride (CCl4 ). siRNA-mediated knockdown of BGN significantly reduced TGF-ß1-induced ECM deposition and fibroblastic activation in LX-2 cells. Mechanistically, BGN directly interacted with and positively regulated the collagen synthesis chaperon protein HSP47. Rescue experiments showed that BGN promoted hepatic fibrosis by regulating ECM deposition and HSC activation by positively regulating HSP47. CONCLUSION: Our data indicate that BGN promotes hepatic fibrosis by regulating ECM deposition and HSC activation through an HSP47-dependent mechanism. BGN may be a new biomarker of hepatic fibrosis and a novel target for disease prevention and treatment.


Asunto(s)
Biglicano , Proteínas del Choque Térmico HSP47 , Cirrosis Hepática , Animales , Humanos , Ratones , Biglicano/metabolismo , Fibrosis , Proteínas del Choque Térmico HSP47/genética , Proteínas del Choque Térmico HSP47/metabolismo , Cirrosis Hepática/metabolismo , Factor de Crecimiento Transformador beta1/efectos adversos , Factor de Crecimiento Transformador beta1/metabolismo
8.
J Biochem Mol Toxicol ; 37(8): e23381, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37128782

RESUMEN

Gastric cancer (GC) is the fifth utmost common malignant cancer type globally, in which ferroptosis acts a critical function in the progress of GC. Long noncoding RNA ZEB1-AS1 has been recognized in numerous cancers, but the role of ZEB1-AS1 in ferroptosis remains obscure. Hence, we investigated the efficacy of ZEB1-AS1 on ferroptosis of GC cells. The cell growth and viability were analyzed via cell counting kit assay and xenograft tumor model in vivo and in vitro, respectively. The RNA and protein expression were measured by qRT-PCR and western blot analysis assay, respectively. The levels of Fe2+ , malondialdehyde (MDA), and lipid reactive oxygen species (ROS) were tested to determine ferroptosis. The erastin and RSL3 were used to induce ferroptosis. The mechanism was analyzed via luciferase reporter gene and RIP assays. The treatment of ferroptosis inducer Erastin and RSL3 suppressed the viability of GC cells and the ZEB1-AS1 overexpression rescued the phenotype in the cells. The levels of Fe2+ , MDA, and ROS were enhanced through the depletion of ZEB1-AS1 in Erastin/RSL3 treated GC cells. ZEB1-AS1 directly sponged miR-429 in GC cells and miR-429 targeted BGN in GC cells, and the inhibition of miR-429 rescued ZEB1-AS1 depletion-inhibited BGN expression. We validated that miR-429 induced and BGN-repressed ferroptosis in cancer cells. The BGN overexpression and miR-429 suppression could reverse the efficacy of ZEB1-AS1 on proliferation and ferroptosis in cancer cells. The expression of ZEB1-AS1 and BGN was enhanced and miR-429 expression was decreased in clinical GC tissues. ZEB1-AS1 attenuated ferroptosis of cancer cells by modulating miR-429/BGN axis.


Asunto(s)
Ferroptosis , MicroARNs , ARN Largo no Codificante , Neoplasias Gástricas , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Gástricas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ferroptosis/genética , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Biglicano/genética , Biglicano/metabolismo
9.
Ultrastruct Pathol ; 47(6): 484-494, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37840262

RESUMEN

Thin endometrium, defined as an endometrial thickness of less than 7 mm during the late follicular phase, is a common cause of frequent cancelation of embryo transfers or recurrent implantation failure during assisted reproductive treatment. Small proteoglycans regulate intracellular signaling cascades by bridging other matrix molecules and tissue elements, affecting cell proliferation, adhesion, migration, and cytokine concentration. The aim of the study is to investigate the role of small leucine-rich proteoglycans in the pathogenesis of thin and thick human endometrium and their differences from normal endometrium in terms of fine structure properties. Normal, thin, and thick endometrial samples were collected, and small leucine-rich proteoglycans (SLRPs), decorin, lumican, biglycan, and fibromodulin immunoreactivities were comparatively analyzed immunohistochemically. The data were compared statistically. Moreover, ultrastructural differences among the groups were evaluated by transmission electron microscopy. The immunoreactivities of decorin, lumican, and biglycan were higher in the thin endometrial glandular epithelium and stroma compared to the normal and thick endometrium (p < .001). Fibromodulin immunoreactivity was also higher in the thin endometrial glandular epithelium than in the normal and thick endometrium (p < .001). However, there was no statistical difference in the stroma among the groups. Ultrastructural features were not profoundly different among cases. Telocytes, however, were not seen in the thin endometrium in contrast to normal and thin endometrial tissues. These findings suggest a possible role of changes in proteoglycan levels in the pathogenesis of thin endometrium.


Asunto(s)
Proteoglicanos Pequeños Ricos en Leucina , Telocitos , Femenino , Humanos , Biglicano/metabolismo , Proteoglicanos Pequeños Ricos en Leucina/metabolismo , Lumican/metabolismo , Decorina/metabolismo , Fibromodulina/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Endometrio , Telocitos/metabolismo
10.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37446002

RESUMEN

Proteoglycans are vital components of the extracellular matrix in articular cartilage, providing biomechanical properties crucial for its proper functioning. They are key players in chondral diseases, specifically in the degradation of the extracellular matrix. Evaluating proteoglycan molecules can serve as a biomarker for joint degradation in osteoarthritis patients, as well as assessing the quality of repaired tissue following different treatment strategies for chondral injuries. Despite ongoing research, understanding osteoarthritis and cartilage repair remains unclear, making the identification of key molecules essential for early diagnosis and effective treatment. This review offers an overview of proteoglycans as primary molecules in articular cartilage. It describes the various types of proteoglycans present in both healthy and damaged cartilage, highlighting their roles. Additionally, the review emphasizes the importance of assessing proteoglycans to evaluate the quality of repaired articular tissue. It concludes by providing a visual and narrative description of aggrecan distribution and presence in healthy cartilage. Proteoglycans, such as aggrecan, biglycan, decorin, perlecan, and versican, significantly contribute to maintaining the health of articular cartilage and the cartilage repair process. Therefore, studying these proteoglycans is vital for early diagnosis, evaluating the quality of repaired cartilage, and assessing treatment effectiveness.


Asunto(s)
Enfermedades de los Cartílagos , Cartílago Articular , Osteoartritis , Humanos , Agrecanos/metabolismo , Cartílago Articular/metabolismo , Decorina/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Biglicano/metabolismo , Osteoartritis/diagnóstico , Osteoartritis/metabolismo , Enfermedades de los Cartílagos/metabolismo , Lectinas Tipo C/metabolismo
11.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047781

RESUMEN

BICD2 variants have been linked to neurodegenerative disorders like spinal muscular atrophy with lower extremity predominance (SMALED2) or hereditary spastic paraplegia (HSP). Recently, mutations in BICD2 were implicated in myopathies. Here, we present one patient with a known and six patients with novel BICD2 missense variants, further characterizing the molecular landscape of this heterogenous neurological disorder. A total of seven patients were genotyped and phenotyped. Skeletal muscle biopsies were analyzed by histology, electron microscopy, and protein profiling to define pathological hallmarks and pathogenicity markers with consecutive validation using fluorescence microscopy. Clinical and MRI-features revealed a typical pattern of distal paresis of the lower extremities as characteristic features of a BICD2-associated disorder. Histological evaluation showed myopathic features of varying severity including fiber size variation, lipofibromatosis, and fiber splittings. Proteomic analysis with subsequent fluorescence analysis revealed an altered abundance and localization of thrombospondin-4 and biglycan. Our combined clinical, histopathological, and proteomic approaches provide new insights into the pathophysiology of BICD2-associated disorders, confirming a primary muscle cell vulnerability. In this context, biglycan and thrombospondin-4 have been identified, may serve as tissue pathogenicity markers, and might be linked to perturbed protein secretion based on an impaired vesicular transportation.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Atrofia Muscular Espinal , Humanos , Biglicano/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteómica , Atrofia Muscular Espinal/genética , Mutación , Músculo Esquelético/metabolismo
12.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675295

RESUMEN

Cardiac fibrosis is a common pathological feature of different cardiovascular diseases, characterized by the aberrant deposition of extracellular matrix (ECM) proteins in the cardiac interstitium, myofibroblast differentiation and increased fibrillar collagen deposition stimulated by transforming growth factor (TGF)-ß activation. Biglycan (BGN), a small leucine-rich proteoglycan (SLRPG) integrated within the ECM, plays a key role in matrix assembly and the phenotypic control of cardiac fibroblasts. Moreover, BGN is critically involved in pathological cardiac remodeling through TGF-ß binding, thus causing myofibroblast differentiation and proliferation. Adenosine receptors (ARs), and in particular A2AR, may play a key role in stimulating fibrotic damage through collagen production/deposition, as a consequence of cyclic AMP (cAMP) and AKT activation. For this reason, A2AR modulation could be a useful tool to manage cardiac fibrosis in order to reduce fibrotic scar deposition in heart tissue. Therefore, the aim of the present study was to investigate the possible crosstalk between A2AR and BGN modulation in an in vitro model of TGF-ß-induced fibrosis. Immortalized human cardiac fibroblasts (IM-HCF) were stimulated with TGF-ß at the concentration of 10 ng/mL for 24 h to induce a fibrotic phenotype. After applying the TGF-ß stimulus, cells were treated with two different A2AR antagonists, Istradefylline and ZM241385, for an additional 24 h, at the concentration of 10 µM and 1 µM, respectively. Both A2AR antagonists were able to regulate the oxidative stress induced by TGF-ß through intracellular reactive oxygen species (ROS) reduction in IM-HCFs. Moreover, collagen1a1, MMPs 3/9, BGN, caspase-1 and IL-1ß gene expression was markedly decreased following A2AR antagonist treatment in TGF-ß-challenged human fibroblasts. The results obtained for collagen1a1, SMAD3, α-SMA and BGN were also confirmed when protein expression was evaluated; phospho-Akt protein levels were also reduced following Istradefylline and ZM241385 use, thus suggesting that collagen production involves AKT recruited by the A2AR. These results suggest that A2AR modulation might be an effective therapeutic option to reduce the fibrotic processes involved in heart pathological remodeling.


Asunto(s)
Fibroblastos , Proteínas Proto-Oncogénicas c-akt , Humanos , Biglicano/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fibroblastos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Colágeno/metabolismo , Fibrosis , Adenosina/farmacología , Adenosina/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Células Cultivadas
13.
Am J Physiol Cell Physiol ; 322(6): C1214-C1222, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35476501

RESUMEN

The class I small leucine-rich proteoglycan biglycan is a crucial structural extracellular matrix component that interacts with a wide range of extracellular matrix molecules. In addition, biglycan is involved in sequestering growth factors such as transforming growth factor-ß and bone morphogenetic proteins and thereby regulating pathway activity. Biglycan consists of a 42-kDa core protein linked to two glycosaminoglycan side chains and both are involved in protein interactions. Biglycan is encoded by the BGN gene located on the X-chromosome and is expressed in various tissues, including vascular tissue, skin, brain, kidney, lung, the immune system, and the musculoskeletal system. Although an increasing amount of data on the biological function of biglycan in the vasculature has been produced, its role in thoracic aortic aneurysms is still not fully elucidated. This review focuses on the role of biglycan in the healthy thoracic aorta and the development of thoracic aortic aneurysm and dissections in both mice and humans.


Asunto(s)
Aorta Torácica , Factor de Crecimiento Transformador beta , Animales , Aorta Torácica/metabolismo , Biglicano/genética , Biglicano/metabolismo , Proteínas Morfogenéticas Óseas , Proteínas de la Matriz Extracelular/genética , Ratones , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
14.
Mol Microbiol ; 115(6): 1395-1409, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33512032

RESUMEN

Lyme borreliosis is a tick-borne disease caused by Borrelia burgdorferi sensu lato spirochetes (Lyme borreliae). When the disease affects the central nervous system, it is referred to as neuroborreliosis. In Europe, neuroborreliosis is most often caused by Borrelia garinii. Although it is known that in the host Lyme borreliae spread from the tick bite site to distant tissues via the blood vasculature, the adherence of Lyme borreliae to human brain microvascular endothelial cells has not been studied before. Decorin binding proteins are adhesins expressed on Lyme borreliae. They mediate the adhesion of Lyme borreliae to decorin and biglycan, and the lysine residues located in the binding site of decorin binding proteins are important to the binding activity. In this study, we show that lysine residues located in the canonical binding site can also be found in decorin binding proteins of Borrelia garinii, and that these lysines contribute to biglycan and decorin binding. Most importantly, we show that the lysine residues are crucial for the binding of Lyme borreliae to decorin and biglycan expressing human brain microvascular endothelial cells, which in turn suggests that they are involved in the pathogenesis of neuroborreliosis.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana/fisiología , Biglicano/metabolismo , Grupo Borrelia Burgdorferi/metabolismo , Decorina/metabolismo , Neuroborreliosis de Lyme/patología , Adhesinas Bacterianas/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , Grupo Borrelia Burgdorferi/genética , Encéfalo/irrigación sanguínea , Células Cultivadas , Células Endoteliales/metabolismo , Humanos , Neuroborreliosis de Lyme/microbiología , Lisina/química , Simulación de Dinámica Molecular , Alineación de Secuencia , Enfermedades por Picaduras de Garrapatas/microbiología
15.
Osteoarthritis Cartilage ; 30(8): 1091-1102, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35339693

RESUMEN

OBJECTIVES: Proteolytic destruction of articular cartilage, a major pathogenic mechanism in osteoarthritis (OA), was not previously investigated by terminomics strategies. We defined the degradome of human knee OA cartilage and the contribution therein of the protease HtrA1 using Terminal Amine Isotopic Labeling of Substrates (TAILS). DESIGN: Proteins from OA cartilage taken at knee arthroplasty (n = 6) or separately, from healthy cartilage incubated in triplicate with/without active HtrA1, were labeled at natural and proteolytically cleaved N-termini by reductive dimethylation, followed by trypsin digestion, enrichment of N-terminally labeled/blocked peptides, tandem mass spectrometry and positional peptide annotation to identify cleavage sites. Biglycan proteolysis by HtrA1 was validated biochemically and Amino-Terminal Oriented Mass Spectrometry of Substrates (ATOMS) was used to define the HtrA1 cleavage sites. RESULTS: We identified 10,155 unique internal peptides from 2,162 proteins, suggesting at least 10,797 cleavage sites in OA cartilage. 7,635 internal peptides originated in 371 extracellular matrix/secreted components, many undergoing extensive proteolysis. Rampant ragging of protein termini suggested pervasive exopeptidase activity. HtrA1, the most abundant protease in OA cartilage, experimentally generated 323 cleavages in 109 cartilage proteins, accounting for 171 observed cleavages in the OA degradome. ATOMS identified HtrA1 cleavage sites in a selected substrate, biglycan, whose direct cleavage by HtrA1 was thus orthogonally validated. CONCLUSIONS: OA cartilage demonstrates widespread proteolysis by endo- and exopeptidases. HtrA1 contributes broadly to cartilage proteolysis. Forward degradomics of OA cartilage together with reverse degradomics of proteases active in OA, e.g., HtrA1, can potentially fully annotate OA proteolytic pathways and provide new biomarkers.


Asunto(s)
Cartílago Articular , Serina Peptidasa A1 que Requiere Temperaturas Altas , Péptido Hidrolasas , Biglicano/metabolismo , Cartílago Articular/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Humanos , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Proteínas/metabolismo , Proteolisis , Espectrometría de Masas en Tándem
16.
Eur Cell Mater ; 44: 90-100, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36189917

RESUMEN

The acetabular labrum is a fibrocartilaginous ring surrounding the acetabulum and is important for hip stability and contact pressure dissipation through a sealing function. Injury of the labrum may contribute to hip-joint degeneration and development of secondary osteoarthritis. Understanding how extracellular matrix (ECM) production and remodelling is regulated is of key importance for successful tissue restoration. The present study hypothesised that physiological stretching enhanced the metabolic activity and altered the ECM gene expression in labrum cells. Primary bovine labrum cells were physiologically stretched for up to 5 d. 24 h after the last stretch cycle, changes in metabolic activity were measured using the PrestoBlue™ HS Cell Viability Reagent and ECM gene expression was examined using the quantitative polymerase chain reaction method. Targets of interest were further investigated using immunofluorescence and enzyme-linked immunosorbent assay. Metabolic activity was not affected by the stretching (0.9746 ± 0.0614, p > 0.05). Physiological stretching upregulated decorin (DCN) (1.8548 ± 0.4883, p = 0.002) as well as proteoglycan 4 (PRG4) (1.7714 ± 0.6600, p = 0.029) and downregulated biglycan (BGN) (0.7018 + 0.1567, p = 0.008), cartilage oligomeric matrix protein (COMP) (0.5747 ± 0.2650, p = 0.029), fibronectin (FN1) (0.5832 ± 0.0996, p < 0.001) and spondin 1 (SPON1) (0.6282 ± 0.3624, p = 0.044) gene expression. No difference in PRG4 and DCN abundance or release could be measured. The here identified mechanosensitive targets are known to play relevant roles in tissue organisation. Therefore, physiological stretching might play a role in labrum tissue homeostasis and regeneration.


Asunto(s)
Cartílago Articular , Fibronectinas , Animales , Biglicano/metabolismo , Proteína de la Matriz Oligomérica del Cartílago/metabolismo , Cartílago Articular/metabolismo , Bovinos , Decorina/metabolismo , Matriz Extracelular , Fibronectinas/genética , Fibronectinas/metabolismo , Expresión Génica
17.
Acta Biochim Biophys Sin (Shanghai) ; 54(2): 243-251, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35130618

RESUMEN

Hedgehog (Hh) signalling plays essential roles in regulating embryonic development and contributes to tumour initiation, growth and progression in multiple cancers. The detailed mechanism by which Hh signalling participates in tumour growth warrants thorough study, although several downstream target genes have been identified. Herein, a set of novel targets of Hh signalling was identified in multiple types of tumour cells via RNA-Seq analysis. Among these targets, the expression regulation and oncogenic function of the extracellular matrix component biglycan (BGN) were investigated. Further investigation verified that Hh signalling activates the expression of BGN via the transcription factor Gli2, which directly binds to the promoter region of BGN. Functional assays revealed that BGN facilitates tumour cell growth and proliferation in colorectal cancer (CRC) cells, and xenograft assays confirmed that BGN also promotes tumour growth . Moreover, analysis of clinical CRC samples showed that both the protein and mRNA levels of BGN are increased in CRC tissues compared to those in adjacent tissues, and higher expression of BGN is correlated with poorer prognosis of CRC patients, further confirming the function of BGN in CRC. Taken together, aberrantly activated Hh signalling increases the expression of BGN, possibly regulates the extracellular matrix, and thereby promotes tumour growth in CRC.


Asunto(s)
Neoplasias Colorrectales , Proteínas Hedgehog , Biglicano/genética , Biglicano/metabolismo , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Matriz Extracelular/metabolismo , Femenino , Proteínas Hedgehog/genética , Humanos , Embarazo
18.
Differentiation ; 120: 1-9, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34062407

RESUMEN

Tendon injuries are common and account for up to 50% of musculoskeletal injuries in the United States. The poor healing nature of the tendon is attributed to poor vascularization and cellular composition. In the absence of FDA-approved growth factors for tendon repair, engineering strategies using bioactive factors, donor cells, and delivery matrices to promote tendon repair and regeneration are being explored. Growth factor alternatives in the form of small molecules, donor cells, and progenitors offer several advantages and enhance the tendon healing response. Small drug molecules and peptides offer stability over growth factors that are known to suffer from relatively short biological half-lives. The primary focus of this study was to assess the ability of the exendin-4 (Ex-4) peptide, a glucagon-like peptide 1 (GLP-1) receptor agonist, to induce tenocyte differentiation in bone marrow-derived human mesenchymal stem cells (hMSCs). We treated hMSCs with varied doses of Ex-4 in culture media to evaluate proliferation and tendonogenic differentiation. A 20 nM Ex-4 concentration was optimal for promoting cell proliferation and tendonogenic differentiation. Tendonogenic differentiation of hMSCs was evaluated via gene expression profile, immunofluorescence, and biochemical analyses. Collectively, the levels of tendon-related transcription factors (Mkx and Scx) and extracellular matrix (Col-I, Dcn, Bgn, and Tnc) genes and proteins were elevated compared to media without Ex-4 and other controls including insulin and IGF-1 treatments. The tendonogenic factor Ex-4 in conjunction with hMSCs appear to enhance tendon regeneration.


Asunto(s)
Diferenciación Celular , Exenatida/farmacología , Incretinas/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Tenocitos/metabolismo , Biglicano/metabolismo , Proliferación Celular , Células Cultivadas , Colágeno Tipo I/metabolismo , Decorina/metabolismo , Humanos , Insulina/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Tenascina/metabolismo , Tenocitos/citología
19.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35743123

RESUMEN

The beneficial effects of mineralocorticoid receptor (MR) antagonists (MRAs) for various kidney diseases are established. However, the underlying mechanisms of kidney injury induced by MR activation remain to be elucidated. We recently reported aldosterone-induced enhancement of proteoglycan expression in mitral valve interstitial cells and its association with fibromyxomatous valvular disorder. As the expression of certain proteoglycans is elevated in several kidney diseases, we hypothesized that proteoglycans mediate kidney injury in the context of aldosterone/MR pathway activation. We evaluated the proteoglycan expression and tissue injury in the kidney and isolated glomeruli of uninephrectomy/aldosterone/salt (NAS) mice. The MRA eplerenone was administered to assess the role of the MR pathway. We investigated the direct effects of biglycan, one of the proteoglycans, on macrophages using isolated macrophages. The kidney samples from NAS-treated mice showed enhanced fibrosis and increased expression of biglycan accompanying glomerular macrophage infiltration and enhanced expression of TNF-α, iNOS, Nox2, CCL3 (C-C motif chemokine ligand 3), and phosphorylated NF-κB. Eplerenone blunted these changes. Purified biglycan stimulated macrophages to express TNF-α, iNOS, Nox2, and CCL3. This was prevented by a toll-like receptor 4 (TLR4) or NF-κB inhibitor, indicating that biglycan stimulation is dependent on the TLR4/NF-κB pathway. We identified the proteoglycan biglycan as a novel target of MR involved in MR-induced glomerular injury and macrophage infiltration via a biglycan/TLR4/NF-κB/CCL3 cascade.


Asunto(s)
Enfermedades Renales , Receptor Toll-Like 4 , Aldosterona/metabolismo , Aldosterona/farmacología , Animales , Biglicano/metabolismo , Eplerenona/farmacología , Enfermedades Renales/etiología , Ratones , Antagonistas de Receptores de Mineralocorticoides/farmacología , FN-kappa B/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transducción de Señal , Cloruro de Sodio Dietético , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa
20.
Molecules ; 27(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36144730

RESUMEN

We analyzed the expression of ADAMTS proteinases ADAMTS-1, -2, -4, -5 and -13; their activating enzyme MMP-15; and the degradation products of proteoglycan substrates versican and biglycan in an ocular microenvironment of proliferative diabetic retinopathy (PDR) patients. Vitreous samples from PDR and nondiabetic patients, epiretinal fibrovascular membranes from PDR patients, rat retinas, retinal Müller glial cells and human retinal microvascular endothelial cells (HRMECs) were studied. The levels of ADAMTS proteinases and MMP-15 were increased in the vitreous from PDR patients. Both full-length and cleaved activation/degradation fragments of ADAMTS proteinases were identified. The amounts of versican and biglycan cleavage products were increased in vitreous from PDR patients. ADAMTS proteinases and MMP-15 were localized in endothelial cells, monocytes/macrophages and myofibroblasts in PDR membranes, and ADAMTS-4 was expressed in the highest number of stromal cells. The angiogenic activity of PDR membranes correlated significantly with levels of ADAMTS-1 and -4 cellular expression. ADAMTS proteinases and MMP-15 were expressed in rat retinas. ADAMTS-1 and -5 and MMP-15 levels were increased in diabetic rat retinas. HRMECs and Müller cells constitutively expressed ADAMTS proteinases but not MMP-15. The inhibition of NF-κB significantly attenuated the TNF-α-and-VEGF-induced upregulation of ADAMTS-1 and -4 in a culture medium of HRMECs and Müller cells. In conclusion, ADAMTS proteinases, MMP-15 and versican and biglycan cleavage products were increased in the ocular microenvironment of patients with PDR.


Asunto(s)
Proteínas ADAMTS/metabolismo , Diabetes Mellitus Experimental , Retinopatía Diabética , Animales , Biglicano/metabolismo , Western Blotting , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , FN-kappa B/metabolismo , Péptido Hidrolasas/metabolismo , Ratas , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Versicanos/genética , Versicanos/metabolismo , Cuerpo Vítreo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA