Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.136
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 41: 317-342, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37126419

RESUMEN

Over the last decade, immunometabolism has emerged as a novel interdisciplinary field of research and yielded significant fundamental insights into the regulation of immune responses. Multiple classical approaches to interrogate immunometabolism, including bulk metabolic profiling and analysis of metabolic regulator expression, paved the way to appreciating the physiological complexity of immunometabolic regulation in vivo. Studying immunometabolism at the systems level raised the need to transition towards the next-generation technology for metabolic profiling and analysis. Spatially resolved metabolic imaging and computational algorithms for multi-modal data integration are new approaches to connecting metabolism and immunity. In this review, we discuss recent studies that highlight the complex physiological interplay between immune responses and metabolism and give an overview of technological developments that bear the promise of capturing this complexity most directly and comprehensively.


Asunto(s)
Alergia e Inmunología , Inmunidad , Metabolismo , Animales , Humanos , Biología de Sistemas
2.
Annu Rev Immunol ; 32: 547-77, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24655298

RESUMEN

Systems-level analysis of biological processes strives to comprehensively and quantitatively evaluate the interactions between the relevant molecular components over time, thereby enabling development of models that can be employed to ultimately predict behavior. Rapid development in measurement technologies (omics), when combined with the accessible nature of the cellular constituents themselves, is allowing the field of innate immunity to take significant strides toward this lofty goal. In this review, we survey exciting results derived from systems biology analyses of the immune system, ranging from gene regulatory networks to influenza pathogenesis and systems vaccinology.


Asunto(s)
Inmunidad Innata/fisiología , Biología de Sistemas , Animales , Control de Enfermedades Transmisibles , Enfermedades Transmisibles/etiología , Humanos , Biología de Sistemas/métodos , Vacunas/inmunología
3.
Cell ; 177(6): 1384-1403, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150619

RESUMEN

Integrative structure determination is a powerful approach to modeling the structures of biological systems based on data produced by multiple experimental and theoretical methods, with implications for our understanding of cellular biology and drug discovery. This Primer introduces the theory and methods of integrative approaches, emphasizing the kinds of data that can be effectively included in developing models and using the nuclear pore complex as an example to illustrate the practice and challenges involved. These guidelines are intended to aid the researcher in understanding and applying integrative structural methods to systems of their interest and thus take advantage of this rapidly evolving field.


Asunto(s)
Biología Computacional/métodos , Biología de Sistemas/métodos , Algoritmos , Animales , Humanos , Modelos Moleculares , Biología Molecular , Poro Nuclear/fisiología , Programas Informáticos , Análisis de Sistemas , Integración de Sistemas
4.
Cell ; 177(1): 184-199, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901539

RESUMEN

Pathogen-imposed selection pressures have been paramount during human evolution. Detecting such selection signatures in ancient and modern human genomes can thus help us to identify genes of temporal and spatial immunological relevance. Admixture with ancient hominins and between human populations has been a source of genetic diversity open to selection by infections. Furthermore, cultural transitions, such as the advent of agriculture, have exposed humans to new microbial threats, with impacts on host defense mechanisms. The integration of population genetics and systems immunology holds great promise for the increased understanding of the factors driving immune response variation between individuals and populations.


Asunto(s)
Fenómenos del Sistema Inmunológico/fisiología , Inmunidad/genética , Adaptación Fisiológica/inmunología , Adaptación Fisiológica/fisiología , Evolución Biológica , Evolución Molecular , Variación Genética , Genética de Población/métodos , Humanos , Inmunidad/fisiología , Selección Genética/genética , Selección Genética/inmunología , Biología de Sistemas/métodos
5.
Nat Immunol ; 22(12): 1577-1589, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34811546

RESUMEN

Single-cell genomics technology has transformed our understanding of complex cellular systems. However, excessive cost and a lack of strategies for the purification of newly identified cell types impede their functional characterization and large-scale profiling. Here, we have generated high-content single-cell proteo-genomic reference maps of human blood and bone marrow that quantitatively link the expression of up to 197 surface markers to cellular identities and biological processes across all main hematopoietic cell types in healthy aging and leukemia. These reference maps enable the automatic design of cost-effective high-throughput cytometry schemes that outperform state-of-the-art approaches, accurately reflect complex topologies of cellular systems and permit the purification of precisely defined cell states. The systematic integration of cytometry and proteo-genomic data enables the functional capacities of precisely mapped cell states to be measured at the single-cell level. Our study serves as an accessible resource and paves the way for a data-driven era in cytometry.


Asunto(s)
Células Sanguíneas/metabolismo , Células de la Médula Ósea/metabolismo , Separación Celular , Citometría de Flujo , Perfilación de la Expresión Génica , Proteoma , Proteómica , Análisis de la Célula Individual , Transcriptoma , Factores de Edad , Células Sanguíneas/inmunología , Células Sanguíneas/patología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/patología , Células Cultivadas , Bases de Datos Genéticas , Envejecimiento Saludable/genética , Envejecimiento Saludable/inmunología , Envejecimiento Saludable/metabolismo , Humanos , Leucemia/genética , Leucemia/inmunología , Leucemia/metabolismo , Leucemia/patología , RNA-Seq , Biología de Sistemas
6.
Annu Rev Immunol ; 29: 527-85, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21219182

RESUMEN

Systems biology is an emerging discipline that combines high-content, multiplexed measurements with informatic and computational modeling methods to better understand biological function at various scales. Here we present a detailed review of the methods used to create computational models and to conduct simulations of immune function. We provide descriptions of the key data-gathering techniques employed to generate the quantitative and qualitative data required for such modeling and simulation and summarize the progress to date in applying these tools and techniques to questions of immunological interest, including infectious disease. We include comments on what insights modeling can provide that complement information obtained from the more familiar experimental discovery methods used by most investigators and the reasons why quantitative methods are needed to eventually produce a better understanding of immune system operation in health and disease.


Asunto(s)
Sistema Inmunológico/citología , Modelos Inmunológicos , Biología de Sistemas/métodos , Animales , Simulación por Computador , Humanos , Sistema Inmunológico/química , Infecciones/genética , Infecciones/inmunología
7.
Cell ; 174(3): 505-520, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30053424

RESUMEN

Although gene discovery in neuropsychiatric disorders, including autism spectrum disorder, intellectual disability, epilepsy, schizophrenia, and Tourette disorder, has accelerated, resulting in a large number of molecular clues, it has proven difficult to generate specific hypotheses without the corresponding datasets at the protein complex and functional pathway level. Here, we describe one path forward-an initiative aimed at mapping the physical and genetic interaction networks of these conditions and then using these maps to connect the genomic data to neurobiology and, ultimately, the clinic. These efforts will include a team of geneticists, structural biologists, neurobiologists, systems biologists, and clinicians, leveraging a wide array of experimental approaches and creating a collaborative infrastructure necessary for long-term investigation. This initiative will ultimately intersect with parallel studies that focus on other diseases, as there is a significant overlap with genes implicated in cancer, infectious disease, and congenital heart defects.


Asunto(s)
Mapeo Cromosómico/métodos , Trastornos del Neurodesarrollo/genética , Biología de Sistemas/métodos , Redes Reguladoras de Genes/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Humanos , Neurobiología/métodos , Neuropsiquiatría
8.
Annu Rev Biochem ; 86: 245-275, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28301739

RESUMEN

Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed.


Asunto(s)
Genoma , Metabolómica/estadística & datos numéricos , Modelos Biológicos , Modelos Estadísticos , Biología de Sistemas/estadística & datos numéricos , Transcriptoma , Bacterias/genética , Bacterias/metabolismo , Hongos/genética , Hongos/metabolismo , Humanos , Cinética , Ingeniería Metabólica , Metabolómica/métodos , Proteómica , Biología de Sistemas/métodos
9.
Physiol Rev ; 104(3): 1205-1263, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38483288

RESUMEN

Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.


Asunto(s)
Neurobiología , Resiliencia Psicológica , Estrés Psicológico , Biología de Sistemas , Humanos , Animales , Estrés Psicológico/fisiopatología , Encéfalo
10.
Nat Immunol ; 19(7): 776-786, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29784908

RESUMEN

The immune response to pathogens varies substantially among people. Whereas both genetic and nongenetic factors contribute to interperson variation, their relative contributions and potential predictive power have remained largely unknown. By systematically correlating host factors in 534 healthy volunteers, including baseline immunological parameters and molecular profiles (genome, metabolome and gut microbiome), with cytokine production after stimulation with 20 pathogens, we identified distinct patterns of co-regulation. Among the 91 different cytokine-stimulus pairs, 11 categories of host factors together explained up to 67% of interindividual variation in cytokine production induced by stimulation. A computational model based on genetic data predicted the genetic component of stimulus-induced cytokine production (correlation 0.28-0.89), and nongenetic factors influenced cytokine production as well.


Asunto(s)
Citocinas/biosíntesis , Adolescente , Adulto , Anciano , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Citocinas/genética , Femenino , Perfilación de la Expresión Génica , Genómica , Humanos , Masculino , Metabolómica , Metagenómica , Persona de Mediana Edad , Fenotipo , Biología de Sistemas , Adulto Joven
11.
Immunity ; 54(4): 753-768.e5, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33765435

RESUMEN

Viral infections induce a conserved host response distinct from bacterial infections. We hypothesized that the conserved response is associated with disease severity and is distinct between patients with different outcomes. To test this, we integrated 4,780 blood transcriptome profiles from patients aged 0 to 90 years infected with one of 16 viruses, including SARS-CoV-2, Ebola, chikungunya, and influenza, across 34 cohorts from 18 countries, and single-cell RNA sequencing profiles of 702,970 immune cells from 289 samples across three cohorts. Severe viral infection was associated with increased hematopoiesis, myelopoiesis, and myeloid-derived suppressor cells. We identified protective and detrimental gene modules that defined distinct trajectories associated with mild versus severe outcomes. The interferon response was decoupled from the protective host response in patients with severe outcomes. These findings were consistent, irrespective of age and virus, and provide insights to accelerate the development of diagnostics and host-directed therapies to improve global pandemic preparedness.


Asunto(s)
Inmunidad/genética , Virosis/inmunología , Presentación de Antígeno/genética , Estudios de Cohortes , Hematopoyesis/genética , Humanos , Interferones/sangre , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Células Mieloides/inmunología , Células Mieloides/patología , Pronóstico , Índice de Severidad de la Enfermedad , Biología de Sistemas , Transcriptoma , Virosis/sangre , Virosis/clasificación , Virosis/genética , Virus/clasificación , Virus/patogenicidad
12.
Cell ; 161(5): 971-987, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000478

RESUMEN

Constraint-based reconstruction and analysis (COBRA) methods at the genome scale have been under development since the first whole-genome sequences appeared in the mid-1990s. A few years ago, this approach began to demonstrate the ability to predict a range of cellular functions, including cellular growth capabilities on various substrates and the effect of gene knockouts at the genome scale. Thus, much interest has developed in understanding and applying these methods to areas such as metabolic engineering, antibiotic design, and organismal and enzyme evolution. This Primer will get you started.


Asunto(s)
Modelos Genéticos , Biología de Sistemas/métodos , Simulación por Computador , Escherichia coli/genética , Humanos , Ingeniería Metabólica , Mapas de Interacción de Proteínas , Thermotoga maritima/genética , Levaduras/genética
13.
Annu Rev Cell Dev Biol ; 32: 103-126, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27501448

RESUMEN

One of the central goals in biology is to understand how and how much of the phenotype of an organism is encoded in its genome. Although many genes that are crucial for organismal processes have been identified, much less is known about the genetic bases underlying quantitative phenotypic differences in natural populations. We discuss the fundamental gap between the large body of knowledge generated over the past decades by experimental genetics in the laboratory and what is needed to understand the genotype-to-phenotype problem on a broader scale. We argue that systems genetics, a combination of systems biology and the study of natural variation using quantitative genetics, will help to address this problem. We present major advances in these two mostly disconnected areas that have increased our understanding of the developmental processes of flowering time control and root growth. We conclude by illustrating and discussing the efforts that have been made toward systems genetics specifically in plants.


Asunto(s)
Redes Reguladoras de Genes , Plantas/genética , Variación Genética , Genotipo , Fenotipo , Biología de Sistemas
14.
Mol Cell ; 82(15): 2735-2737, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931038

RESUMEN

Rensvold, Shishkova, et al. (2022) apply an integrated systems biology approach spanning proteomics, lipidomics, and metabolomics to a collection of CRISPR knockout cells targeting 116 distinct human mitochondrial proteins, revealing new mitochondrial biology and guiding orphan disease diagnosis.


Asunto(s)
Proteoma , Proteómica , Humanos , Lipidómica , Metabolómica , Proteoma/genética , Proteoma/metabolismo , Biología de Sistemas
15.
Nat Immunol ; 18(7): 725-732, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28632713

RESUMEN

Systems-biology approaches in immunology take various forms, but here we review strategies for measuring a broad swath of immunological functions as a means of discovering previously unknown relationships and phenomena and as a powerful way of understanding the immune system as a whole. This approach has rejuvenated the field of vaccine development and has fostered hope that new ways will be found to combat infectious diseases that have proven refractory to classical approaches. Systems immunology also presents an important new strategy for understanding human immunity directly, taking advantage of the many ways the immune system of humans can be manipulated.


Asunto(s)
Alergia e Inmunología , Sistema Inmunológico/inmunología , Técnicas Inmunológicas/métodos , Biología de Sistemas/métodos , Humanos , Transducción de Señal/inmunología , Vacunas/inmunología
16.
Cell ; 157(3): 534-8, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24766803

RESUMEN

Modern genomics is very efficient at mapping genes and gene networks, but how to transform these maps into predictive models of the cell remains unclear. Recent progress in computer science, embodied by intelligent agents such as Siri, inspires an approach for moving from networks to multiscale models able to predict a range of cellular phenotypes and answer biological questions.


Asunto(s)
Inteligencia Artificial , Ontologías Biológicas , Biología Celular , Modelos Biológicos , Biología Celular/tendencias , Redes Reguladoras de Genes , Procesamiento de Lenguaje Natural , Biología de Sistemas
17.
Cell ; 158(4): 699-701, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25126778

RESUMEN

The manufacturing of clinically relevant cells is a widely used strategy in regenerative medicine. Cahan et al. develop a network biology platform named CellNet to accurately assess the fidelity of such cells and spot aberrant regulatory networks, and Morris et al. apply this platform to improve cell manufacturing.


Asunto(s)
Ingeniería Celular/métodos , Células Madre/citología , Biología de Sistemas/métodos , Animales , Humanos
18.
Cell ; 158(4): 903-915, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25126793

RESUMEN

Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering.


Asunto(s)
Ingeniería Celular/métodos , Células Madre/citología , Biología de Sistemas/métodos , Animales , Redes Reguladoras de Genes , Humanos , Ratones
19.
Cell ; 157(1): 163-86, 2014 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-24679534

RESUMEN

Learning and memory are two of the most magical capabilities of our mind. Learning is the biological process of acquiring new knowledge about the world, and memory is the process of retaining and reconstructing that knowledge over time. Most of our knowledge of the world and most of our skills are not innate but learned. Thus, we are who we are in large part because of what we have learned and what we remember and forget. In this Review, we examine the molecular, cellular, and circuit mechanisms that underlie how memories are made, stored, retrieved, and lost.


Asunto(s)
Memoria , Animales , Encéfalo/anatomía & histología , Encéfalo/fisiología , Humanos , Aprendizaje , Neuronas/citología , Neuronas/metabolismo , Sueño , Sinapsis/metabolismo , Biología de Sistemas
20.
Cell ; 158(4): 889-902, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25126792

RESUMEN

Engineering clinically relevant cells in vitro holds promise for regenerative medicine, but most protocols fail to faithfully recapitulate target cell properties. To address this, we developed CellNet, a network biology platform that determines whether engineered cells are equivalent to their target tissues, diagnoses aberrant gene regulatory networks, and prioritizes candidate transcriptional regulators to enhance engineered conversions. Using CellNet, we improved B cell to macrophage conversion, transcriptionally and functionally, by knocking down predicted B cell regulators. Analyzing conversion of fibroblasts to induced hepatocytes (iHeps), CellNet revealed an unexpected intestinal program regulated by the master regulator Cdx2. We observed long-term functional engraftment of mouse colon by iHeps, thereby establishing their broader potential as endoderm progenitors and demonstrating direct conversion of fibroblasts into intestinal epithelium. Our studies illustrate how CellNet can be employed to improve direct conversion and to uncover unappreciated properties of engineered cells.


Asunto(s)
Ingeniería Celular/métodos , Biología de Sistemas/métodos , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Ingeniería Celular/normas , Redes Reguladoras de Genes , Macrófagos/citología , Macrófagos/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA